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ABSTRACT: Given real numbers α,β ,γ such that (α,β ,γ) 6= (k,−2k, k) for all k ∈ R and (β ,γ) /∈ {(0,α), (α,α),
(α+γ,γ)}, we investigate the stability of an alternative Jensen’s functional equation of the form

f (x y−1)−2 f (x)+ f (x y) = 0 or α f (x y−1)+β f (x)+γ f (x y) = 0,

where f is a mapping from an abelian group to a Banach space.
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INTRODUCTION

The problem of alternative Cauchy functional equa-
tions has been studied by various authors (e.g., Kan-
nappan et al [1], Ger [2] and Forti [3]). The Jensen’s
functional equation is a famous equation that is closely
related to the Cauchy functional equation. Nakma-
hachalasint [4] first solved an alternative Jensen’s
functional equation of the form

f (x)±2 f (x y)+ f (x y2) = 0 (1)

on a semigroup. His research extended the work of
Ng [5] and the work of Parnami et al [6] on the classical
Jensen’s functional equation

f (x y−1)−2 f (x)+ f (x y) = 0 (2)

on a group. The Hyers-Ulam stability (Hyers [7],
Aoki [8], Bourgin [9], Rassias [10] and Gavruta [11])
of the alternative Jensen’s functional equation (1) was
proved by Nakmahachalasint [12].

Kitisin et al [13] establish a criterion for existence
of the general solution to the alternative Jensen’s func-
tional equation of the form

f (x y−1)−2 f (x)+ f (x y) = 0 or
α f (x y−1)+β f (x)+γ f (x y) = 0, (3)

where f is a mapping from a group to a uniquely
divisible abelian group, but its stability problem has
not yet been investigated.

In this paper, we will prove the Hyers-Ulam stabil-
ity of the alternative Jensen’s functional equation (3)
when α,β and γ are real numbers with

(α,β ,γ) 6= (k,−2k, k) for all k ∈ R and
(β ,γ) /∈ {(0,α), (α,α), (α+γ,γ)} (4)

and f is a mapping from an abelian group (G, ·) to a
Banach space (E,‖ · ‖). In other words, we will prove
that for every ε ¾ 0, there exist δ1,δ2 ¾ 0 such that if
a mapping f : G→ E satisfies the inequalities

‖ f (x y−1)−2 f (x)+ f (x y)‖¶ δ1 or
‖α f (x y−1)+β f (x)+γ f (x y)‖¶ δ2

(5)

for every x , y ∈ G, where α,β and γ are fixed real
numbers with (4), then there exists a unique Jensen’s
mapping J : G→ E with

‖ f (x)− J(x)‖¶ ε

for all x ∈ G.
It should be noted that Kitisin et al [13] proved

that if α,β and γ are integers satisfying (4), then the
alternative Jensen’s functional equation (3) is equiva-
lent to Jensen’s functional equation (2). On the other
hand, when (β ,γ)∈ {(0,α), (α,α), (α+γ,γ)}, (3) is not
necessarily equivalent to (2).

AUXILIARY LEMMAS

Let (G,+) be a group and let E be a Banach space.
Given real numbers α,β ,γ as in (4) and a function
f : G→ E. For every pair of x , y ∈ G, we will define

F (α,β ,γ)
y (x) = ‖α f (x y−1)+β f (x)+γ f (x y)‖

and

Jy(x) = ‖ f (x y−1)−2 f (x)+ f (x y)‖.

For δ1,δ2 ¾ 0, we let

P f (α,β ,γ)
y (x) =

�

Jy(x)¶ δ1 or F (α,β ,γ)
y (x)¶ δ2

�

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2022.088
http://www.scienceasia.org/
mailto:ch.srisawat@gmail.com
www.scienceasia.org


624 ScienceAsia 48 (2022)

and
δ =max{δ1,δ2}.

The set of solution to the statement P f (α,β ,γ)
y (x) will

be denoted byA (α,β ,γ)
(G,E) , i.e.,

A (α,β ,γ)
(G,E) = { f : G→ E | P f (α,β ,γ)

y (x) for all x , y ∈ G}.

For each real number λ, we let

M (λ) =

( |λ|−1 if 0< |λ|< 1;
|λ| if |λ|¾ 1;
1 if λ= 0.

It should be noted that for every λ ∈ R,
(i) 1¶M (λ);
(ii) |λ|¶M (λ);
(iii) |λ|−1 ¶M (λ) if λ 6= 0.
We denote Λ= {−3,−2,−1,0, 1,2, 3} and

M = max
σ1,σ2,σ3,σ4∈Λ

{M (σ1α+σ2β +σ3γ+σ4)}.

The above notations will be used extensively in the
proofs below, and thus should be kept in mind.

First, we will give the bound of Jy(x) for a func-

tion f ∈A (0,β ,0)
(G,E) .

Lemma 1 If f ∈ A (0,β ,0)
(G,E) and x , y ∈ G, then Jy(x) ¶

12Mδ.

Proof : Let f ∈ A (0,β ,0)
(G,E) and x , y ∈ G. By (4), we must

have β 6= 0. Suppose Jy(x)>δ1. HenceF (0,β ,0)
y (x)¶

δ2 and we get ‖ f (x)‖ ¶ Mδ. Next, we will consider
the alternatives in P f (0,β ,0)

y (x y−1) as follows.
Case (i). Assume that Jy(x y−1) ¶ δ1. By

‖ f (x)‖¶ Mδ, we have

‖ f (x y−2)−2 f (x y−1)‖¶ 2Mδ. (6)

By (6) and the alternatives inP f (0,β ,0)
y (x y−2), we have

‖ f (x y−3)−3 f (x y−1)‖¶ 5Mδ or
‖ f (x y−1)‖¶ 2Mδ. (7)

By (7) and the alternatives in P f (0,β ,0)
y2 (x y−1), we get

‖ f (x y−1)+ f (x y)‖¶ 6Mδ or
‖ f (x y−1)‖¶ 2Mδ. (8)

If ‖ f (x y−1) + f (x y)‖ ¶ 6Mδ, then by ‖ f (x y−1) +
f (x y)‖ ¶ 6Mδ and ‖ f (x)‖ ¶ Mδ, we obtain
Jy(x) ¶ 8Mδ. It remains to consider the case
when ‖ f (x y−1)‖ ¶ 2Mδ. By the alternatives in
P f (0,β ,0)

y (x y) and ‖ f (x)‖¶ Mδ, we have

‖2 f (x y)− f (x y2)‖¶ 2Mδ or ‖ f (x y)‖¶ Mδ. (9)

By the alternatives in P f (0,β ,0)
y (x y2) and (9), we get

‖3 f (x y)− f (x y3)‖¶ 5Mδ or
‖ f (x y)‖¶ 2Mδ. (10)

By ‖ f (x y−1)‖ ¶ 2Mδ and (10), the alternatives in
P f (0,β ,0)

y2 (x y) gives

‖ f (x y)‖¶ 8Mδ. (11)

By ‖ f (x y−1)‖¶ 2Mδ,‖ f (x)‖¶ Mδ and (11), we get

Jy(x)¶ 12Mδ. (12)

Case (ii). Assume that F (0,β ,0)
y (x y−1) ¶ δ2. We

have ‖ f (x y−1)‖¶ Mδ. The proof is as in case (i) after
referring the steps (9)–(12). 2

Lemma 2 Let f ∈A (α,β ,γ)
(G,E) with α 6= γ and x , y ∈ G. If

Jy(x)> δ1, then ‖ f (x y−1)− f (x y)‖¶ 2Mδ.

Proof : Assume that Jy(x)> δ1. By the alternatives in

P f (α,β ,γ)
y−1 (x) andP f (α,β ,γ)

y (x), we getF (α,β ,γ)
y−1 (x)¶ δ2

and F (α,β ,γ)
y (x)¶ δ2, respectively. Therefore,

‖(α−γ)( f (x y−1)− f (x y))‖

¶F (α,β ,γ)
y−1 (x)+F (α,β ,γ)

y (x)

¶ 2δ.

Since α 6= γ, the proof is completed as desired. 2
The above lemma states a necessary property for

a function f ∈ A (α,β ,γ)
(G,E) with α 6= γ in the case when

Jy(x) > δ1. Next, we will prove the bound of Jy(x)
concerning the relation between P f (α,β ,γ)

y (x y−1) and

P f (α,β ,γ)
y (x) with α 6= γ as in the following two lem-

mas.

Lemma 3 Let f ∈A (α,β ,γ)
(G,E) with α 6= γ and x , y ∈ G. If

Jy(x y−1)>δ1 andJy(x)>δ1, thenJy(x)¶ 34M5δ.

Proof : Assume that Jy(x y−1) > δ1 and Jy(x) > δ1.
By Lemma 2, we obtain that

‖ f (x y−2)− f (x)‖¶ 2Mδ (13)

and
‖ f (x y−1)− f (x y)‖¶ 2Mδ. (14)

From Jy(x y−1) > δ1 and Jy(x) > δ1, the alter-
natives in P f (α,β ,γ)

y (x y−1) and P f (α,β ,γ)
y (x) gives

F (α,β ,γ)
y (x y−1)¶ δ2 andF (α,β ,γ)

y (x)¶ δ2, respectively.

Eliminating f (x y−2) from (13) and F (α,β ,γ)
y (x y−1) ¶

δ2, we get

‖β f (x y−1)+ (α+γ) f (x)‖¶ 3M2δ. (15)
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By (14) and (15), we have

‖(α+γ) f (x)+β f (x y)‖¶ 5M2δ. (16)

Eliminating f (x y−1) from (14) and F (α,β ,γ)
y (x) ¶ δ2,

we obtain

‖β f (x)+ (α+γ) f (x y)‖¶ 3M2δ. (17)

We eliminate f (x y) from (16) and (17) to get

‖(β −α−γ)(β +α+γ) f (x)‖¶ 8M3δ.

From β 6= α+γ, we conclude that

‖(β +α+γ) f (x)‖¶ 8M4δ. (18)

First, we suppose β 6= −α−γ. Hence (18) reduces to

‖ f (x)‖¶ 8M5δ. (19)

Eliminating f (x) from (16) and (17), we conclude that

‖ f (x y)‖¶ 8M5δ. (20)

By (14), (19) and (20), we have

Jy(x)¶ 34M5δ. (21)

Next, we suppose β = −α − γ. If α + γ = 0, then
β = 0 which contradicts β 6= α+ γ. Hence α+ γ 6= 0.
Substituting β = −α−γ in (17), we get

‖(α+γ)( f (x)− f (x y))‖¶ 3M2δ.

Thus we conclude that

‖ f (x)− f (x y)‖¶ 3M3δ. (22)

By (14) and (22), Jy(x)¶ 8M3δ ¶ 34M5δ. 2

Lemma 4 Let f ∈A (α,β ,γ)
(G,E) with α 6= γ and x , y ∈ G. If

Jy(x y−1)¶ δ1 and Jy(x)> δ1, then

Jy(x)¶ 56M5δ.

Proof : Assume that Jy(x y−1) ¶ δ1 and Jy(x) > δ1.
By Lemma 2, we have

‖ f (x y−1)− f (x y)‖¶ 2Mδ. (23)

By Jy(x) > δ1, the alternatives in P f (α,β ,γ)
y (x) gives

F (α,β ,γ)
y (x) ¶ δ2. Eliminating f (x y−1) from (23) and

F (α,β ,γ)
y (x)¶ δ2, we obtain that

‖β f (x)+ (α+γ) f (x y)‖¶ 3M2δ. (24)

We eliminate f (x y−1) from (23) and Jy(x y−1) ¶ δ1
to get

‖ f (x y−2)+ f (x)−2 f (x y)‖¶ 5Mδ. (25)

Next, we will consider the alternatives in
P f (α,β ,γ)

y (x y−2) as follows.
Case (i). Assume that Jy(x y−2)> δ1. By Lemma

2, we have

‖ f (x y−3)− f (x y−1)‖¶ 2Mδ. (26)

The alternatives in P f (α,β ,γ)
y (x y−2) gives

F (α,β ,γ)
y (x y−2) ¶ δ2. Eliminating f (x y−3) from

(26) and F (α,β ,γ)
y (x y−2)¶ δ2, we get

‖β f (x y−2)+ (α+γ) f (x y−1)‖¶ 3M2δ. (27)

By (23) and (27), we obtain

‖β f (x y−2)+ (α+γ) f (x y)‖¶ 5M2δ. (28)

Eliminating f (x y−2) from (25) and (28), we have

‖β f (x)− (α+2β +γ) f (x y)‖¶ 10M2δ. (29)

By (24) and (29), we obtain that

‖β( f (x)− f (x y))‖¶ 13M2δ. (30)

If β 6= 0, then (30) reduces to

‖ f (x)− f (x y)‖¶ 13M3δ. (31)

By (23) and (31), we obtain that Jy(x) ¶ 28M3δ. If
β = 0, then (4) gives α+γ 6= 0. Thus (24) reduces to

‖ f (x y)‖¶ 3M3δ. (32)

By (25) and (32), we obtain that

‖ f (x y−2)+ f (x)‖¶ 11M3δ. (33)

Next, we will consider two cases of P f (α,0,γ)
y (x y) as

follows. If Jy(x y)¶ δ1, then by (32), we get

‖ f (x)+ f (x y2)‖¶ 7M3δ. (34)

Eliminating f (x y−2) and f (x y2) from (33), (34) and
the alternatives in P f (α,0,γ)

y2 (x), we conclude that

‖ f (x)‖¶ 19M5δ. (35)

IfJy(x y)>δ1, then we haveF (α,0,γ)
y (x y)¶ δ2. Since

Jy(x y)> δ1, Lemma 2 gives

‖ f (x)− f (x y2)‖¶ 2Mδ. (36)

By F (α,0,γ)
y (x y) ¶ δ2 and (36), we get (35). By (23),

(32) and (35), we obtain

Jy(x)¶ 46M5δ. (37)
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Case (ii). Assume that Jy(x y−2) ¶ δ1. Eliminat-
ing f (x y−1) from (23) and Jy(x y−2)¶ δ1, we get

‖ f (x y−3)−2 f (x y−2)+ f (x y)‖¶ 3Mδ. (38)

Eliminating f (x y−2) from (25) and (38), we have

‖ f (x y−3)+2 f (x)−3 f (x y)‖¶ 13Mδ. (39)

Eliminating f (x) from (24) and (39), we obtain

‖β f (x y−3)− (2α+3β +2γ) f (x y)‖¶ 19M2δ. (40)

Next, we will consider two cases of P f (α,β ,γ)
y2 (x y−1)

as follows. We first assume that Jy2(x y−1) ¶ δ1.
Eliminating f (x y−1) from (23) and Jy2(x y−1) ¶ δ1,
we get

‖ f (x y−3)− f (x y)‖¶ 5Mδ. (41)

By (40) and (41), we get

‖2(β +α+γ) f (x y)‖¶ 24M2δ. (42)

If β 6= −α−γ, then (42) reduces to

‖ f (x y)‖¶ 12M3δ. (43)

By (24) and (43), we have

‖β f (x)‖¶ 15M4δ.

Suppose β 6= 0. We get

‖ f (x)‖¶ 15M5δ. (44)

By (23), (43) and (44), we obtain

Jy(x)¶ 56M5δ. (45)

Suppose β = 0. Repeating to the steps (32)–(36), we
get (37). If β = −α− γ, then α+ γ 6= 0. Thus (24)
reduces to

‖ f (x)− f (x y)‖¶ 3M3δ. (46)

By (23) and (46), we conclude that (45). We next
assume that Jy2(x y−1)> δ1. Lemma 2 gives

‖ f (x y−3)− f (x y)‖¶ 2Mδ.

Repeating the steps (41)–(46), we obtain (45).
The desired results follows from the consideration

of the above two cases. 2
Next, we will prove the bound of f (x) concern-

ing the relation betweenP f (1,β ,1)
y (x y−1),P f (1,β ,1)

y (x)
and P f (1,β ,1)

y (x y) as in the following two lemmas. It
should be noted that β /∈ {−2,0, 1,2}.

Lemma 5 Let f ∈A (1,β ,1)
(G,E) and let x , y ∈ G.

(i) If Jy(x y−1) ¶ δ1,F (1,β ,1)
y (x) ¶ δ2 and Jy(x y) ¶

δ1, then ‖ f (x)‖¶ 5Mδ.
(ii) If F (1,β ,1)

y (x y−1) ¶ δ2,F (1,β ,1)
y (x) ¶ δ2 and

F (1,β ,1)
y (x y)¶ δ2, then ‖ f (x)‖¶ 4M3δ.

Proof : Assume that all assumptions in the lemma hold.
(i) We observe that

‖ f (x y−2)+ (2+2β) f (x)+ f (x y2)‖

¶ Jy(x y−1)+2F (1,β ,1)
y (x)+Jy(x y)

¶ 4δ. (47)

Consider the alternatives in P f (1,β ,1)
y2 (x). The

inequality Jy2(x)¶ δ1 and (47) give

‖(4+2β) f (x)‖¶ 5δ,

while the inequalityF (1,β ,1)
y2 (x)¶ δ2 and (47) also

give
‖(2+β) f (x)‖¶ 5δ.

Hence ‖ f (x)‖¶ 5Mδ.
(ii) We observe that

‖ f (x y−2)+ (2−β2) f (x)+ f (x y2)‖

¶F (1,β ,1)
y (x y−1)+ |β |F (1,β ,1)

y (x)

+F (1,β ,1)
y (x y)

¶ 3Mδ. (48)

Consider the alternatives in P f (1,β ,1)
y2 (x). The

inequality Jy2(x)¶ δ1 and (48) give

‖(4−β2) f (x)‖¶ 4Mδ,

while the inequalityF (1,β ,1)
y2 (x)¶ δ2 and (48) also

give
‖(2−β −β2) f (x)‖¶ 4Mδ.

Hence ‖ f (x)‖¶ 4M3δ.
2

Lemma 6 Let f ∈ A (1,β ,1)
(G,E) and let x , y ∈ G. If

Jy(x y−1) ¶ δ1,F (1,β ,1)
y (x) ¶ δ2 and F (1,β ,1)

y (x y) ¶
δ2, then ‖ f (x)‖¶ 46M7δ.

Proof : Assume that the assumption in the lemma
holds. By Jy(x y−1)¶ δ1 and F (1,β ,1)

y (x)¶ δ2, we get

‖ f (x y−2)+ (1+2β) f (x)+2 f (x y)‖¶ 3δ. (49)

Next, we will consider two possible cases in
P f (1,β ,1)

y2 (x) as follows.
Case (i). Assume that Jy2(x) ¶ δ1. Using

F (1,β ,1)
y (x y)¶ δ2,Jy2(x)¶ δ1 and (49), we obtain

‖2 f (x)+ f (x y)‖¶ 5Mδ (50)
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and

‖(1−2β) f (x)+ f (x y2)‖¶ 6M2δ. (51)

Eliminating f (x y) from (50) and the alternatives in
P f (1,β ,1)

y (x y2), we have

‖2 f (x)+2 f (x y2)− f (x y3)‖¶ 6Mδ or
‖2 f (x)−β f (x y2)− f (x y3)‖¶ 6Mδ. (52)

By (51) and (52), we obtain

‖4β f (x)− f (x y3)‖¶ 18M2δ or
‖(2β2−β −2) f (x)+ f (x y3)‖¶ 12M3δ. (53)

Consider the alternatives in P f (1,β ,1)
y2 (x y).

• If Jy2(x y) ¶ δ1, then we use Jy2(x y) ¶ δ1 and
F (1,β ,1)

y (x)¶ δ2 to get

‖β f (x)+3 f (x y)− f (x y3)‖¶ 2δ. (54)

By (53) and (54), we obtain

‖3β f (x)−3 f (x y)‖¶ 20M2δ or
‖(2β2−2) f (x)+3 f (x y)‖¶ 14M3δ. (55)

Eliminating f (x y) from (50) and (55), we have
‖ f (x)‖¶ 15M5δ.

• If F (1,β ,1)
y2 (x y) ¶ δ2, then we use F (1,β ,1)

y2 (x y) ¶
δ2 and F (1,β ,1)

y (x)¶ δ2 to get

‖β f (x)+ (1−β) f (x y)− f (x y3)‖¶ 2δ. (56)

By (53) and (56), we obtain

‖3β f (x)+ (β −1) f (x y)‖¶ 20M2δ or
‖(2β2−2) f (x)+ (1−β) f (x y)¶ 14M3δ.

(57)
Eliminating f (x y) from (50) and (57), we get
‖ f (x)‖¶ 25M5δ.

Case (ii). Assume that F (1,β ,1)
y2 (x) ¶ δ2. By

F (1,β ,1)
y (x y) ¶ δ2,F (1,β ,1)

y2 (x) ¶ δ2 and (49), we ob-
tain

‖ f (x)+ f (x y)‖¶ 5Mδ (58)

and

‖(1−β) f (x)+ f (x y2)‖¶ 6M2δ. (59)

Eliminating f (x y2) from (59) and the alternatives in
P f (1,β ,1)

y2 (x y2), we get

‖(3−2β) f (x)+ f (x y4)‖¶ 13M2δ or
‖(β2−β +1) f (x)+ f (x y4)‖¶ 7M3δ. (60)

By (58) and the the alternatives in P f (1,β ,1)
y (x y2), we

have

‖ f (x)+2 f (x y2)− f (x y3)‖¶ 6Mδ or
‖ f (x)−β f (x y2)− f (x y3)‖¶ 6Mδ. (61)

Consider the alternatives in P f (1,β ,1)
y (x y3) as follows.

• If Jy(x y3)¶ δ1, then we eliminate f (x y3) from
(61) and Jy(x y3)¶ δ1 to get

‖2 f (x)+3 f (x y2)− f (x y4)‖¶ 13Mδ or

‖2 f (x)− (1+2β) f (x y2)− f (x y4)‖¶ 13Mδ.
(62)

By (59) and (62), we obtain

‖(1−3β) f (x)+ f (x y4)‖¶ 31M2δ or
‖(2β2−β −3) f (x)+ f (x y4)‖¶ 31M3δ.

(63)
By (60) and (63), we conclude that

‖ f (x)‖¶ 44M5δ or ‖(3−2β) f (x)‖¶ 44M4δ.

In the case when β 6=
3
2

, we get

‖ f (x)‖¶ 44M5δ.

Suppose β =
3
2

. Hence (49), (59), (60), (61) and

(63) become

‖ f (x y−2)+4 f (x)+2 f (x y)‖¶ 3δ. (64)




−
1
2

f (x)+ f (x y2)




¶ 6M2δ, (65)

‖ f (x y4)‖¶ 13M2δ or
‖ 7

4 f (x)+ f (x y4)‖¶ 7M3δ,
(66)

and




− 7
2 f (x)+ f (x y4)





¶ 31M2δ or

‖ f (x y4)‖¶ 31M3δ,
(67)

respectively. By (66) and (67), we get

‖ f (x y4)‖¶ 31M3δ. (68)

Eliminating f (x y4) from P f
(1, 3

2 ,1)
y2 (x y4) and

(68), we obtain

‖ f (x y2)+ f (x y6)‖¶ 63M3δ. (69)

By P f
(1, 3

2 ,1)
y4 (x y2) and (69), we have

‖ f (x y−2)−3 f (x y2)‖¶ 64M3δ or




 f (x y−2)+ 1
2 f (x y2)





¶ 64M3δ.
(70)
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By (65) and (70), we get




 f (x y−2)− 3
2 f (x)





¶ 82M3δ or




 f (x y−2)+ 1
4 f (x)





¶ 67M3δ.
(71)

Eliminating f (x y−2) from (64) and (71), we have






11
2 f (x)+2 f (x y)





¶ 85M3δ or






15
4 f (x)+2 f (x y)





¶ 70M3δ.
(72)

By (58) and (72), we conclude that

‖ f (x)‖¶ 46M3δ.

• If F (1,β ,1)
y (x y3) ¶ δ2, then we eliminate f (x y3)

from (61) and F (1,β ,1)
y (x y3)¶ δ2 to get

‖β f (x)+ (1+2β) f (x y2)+ f (x y4)‖¶ 7M2δ or

‖β f (x)+ (1−β2) f (x y2)+ f (x y4)‖¶ 7M2δ.
(73)

By (59) and (73), we obtain

‖(2β2−1) f (x)+ f (x y4)‖¶ 13M3δ or

‖(β3−β2−2β +1) f (x)− f (x y4)‖¶ 13M4δ.
(74)

By (60) and (74), we conclude that

‖ f (x)‖¶ 26M7δ.

The desired bound of f (x) follows from the consider-
ation of all cases above. 2

Now we will give the bound ofJy(x) for a function

f ∈A (1,β ,1)
(G,E) .

Lemma 7 If f ∈ A (1,β ,1)
(G,E) , then Jy(x) ¶ 139M8δ for

all x , y ∈ G.

Proof : Let f ∈A (1,β ,1)
(G,E) and x , y ∈ G. SupposeJy(x)>

δ1. From the alternatives in P f (1,β ,1)
y (x), we get

F (1,β ,1)
y (x) ¶ δ2. The alternatives in P f (1,β ,1)

y (x y−1)
will be considered as follows.

Case (i). Assume that Jy(x y−1) ¶ δ1. By Lemma
5 and Lemma 6, we conclude that

‖ f (x)‖¶ 46M7δ. (75)

By F (1,β ,1)
y (x) ¶ δ2 and (75), we conclude that

Jy(x)¶ 139M8δ as desired.
Case (ii). Assume that F (1,β ,1)

y (x y−1) ¶ δ2.

Consider the alternatives in P f (1,β ,1)
y (x y). If

F (1,β ,1)
y (x y) ¶ δ2, then Lemma 5 gives ‖ f (x)‖ ¶

4M3δ. Thus the desired proof is similar to the above
case. If Jy(x y) ¶ δ1, then the proof is as in Case (i)
after replacing y by y−1 and x by x y−1. 2

HYERS-ULAM STABILITY

We will next provide the following lemma which even-
tually be used in the main theorem.

Lemma 8 If f ∈ A (α,β ,γ)
(G,E) , then Jy(x) ¶ 139M9δ for

all x , y ∈ G.

Proof : Let f ∈ A (α,β ,γ)
(G,E) . If α 6= γ, then by Lemma 3

and Lemma 4, we conclude that Jy(x) ¶ 56M5δ for
all x , y ∈ G. If α = γ, then we consider two cases as
follows:

Case (i). Assume that α = 0. Lemma 1 gives
Jy(x)¶ 12Mδ for all x , y ∈ G.

Case (ii) Assume that α 6= 0. Hence f ∈
A (1,α−1β ,1)
(G,E) and Lemma 7 gives

Jy(x)¶ 139M8 max{δ1, |α|−1δ2}¶ 139M9δ

for all x , y ∈ G. 2
Now we will prove the Hyers-Ulam stability of the

alternative Jensen’s functional equation (3). For the
stability results of Jensen’s functional equation, it can
be found in, for instance, Kominek [14] or Jung [15].

Theorem 1 Let G be an abelian group. If f ∈A (α,β ,γ)
(G,E) ,

then there exists a unique Jensen’s mapping J : G → E
satisfying (2) with J(0) = f (0) such that

‖ f (x)− J(x)‖¶ ε

for all x ∈ G when ε= 278M9δ. Moreover, the mapping
J is given by

J(x) = f (0)+ lim
n→∞

1
2n
( f (x2n

)− f (0))

for all x ∈ G.

Proof : Assume that f ∈ A (α,β ,γ)
(G,E) . By Lemma 8, we

obtain Jy(x) ¶ 139M9δ for all x , y ∈ G. The Hyers-
Ulam stability of the Jensen’s functional equation can
be proved by the so-called direct method and it can be
seen in Srisawat [16]. Hence the rest of the proof can
be omitted. 2
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