Stability for a general form of an alternative functional equation related to the Jensen's functional equation

Choodech Srisawat

Department of Mathematics, Faculty of Science, Udon Thani Rajabhat University, Udon Thani 41000 Thailand
e-mail: ch.srisawat@gmail.com
Received 4 Feb 2022, Accepted 26 Mar 2022
Available online 25 May 2022
ABSTRACT: Given real numbers α, β, γ such that $(\alpha, \beta, \gamma) \neq(k,-2 k, k)$ for all $k \in \mathbb{R}$ and $(\beta, \gamma) \notin\{(0, \alpha),(\alpha, \alpha)$, $(\alpha+\gamma, \gamma)\}$, we investigate the stability of an alternative Jensen's functional equation of the form

$$
f\left(x y^{-1}\right)-2 f(x)+f(x y)=0 \quad \text { or } \quad \alpha f\left(x y^{-1}\right)+\beta f(x)+\gamma f(x y)=0,
$$

where f is a mapping from an abelian group to a Banach space.
KEYWORDS: stability, alternative equation, Jensen's functional equation
MSC2020: 39B82 39B72

INTRODUCTION

The problem of alternative Cauchy functional equations has been studied by various authors (e.g., Kannappan et al [1], Ger [2] and Forti [3]). The Jensen's functional equation is a famous equation that is closely related to the Cauchy functional equation. Nakmahachalasint [4] first solved an alternative Jensen's functional equation of the form

$$
\begin{equation*}
f(x) \pm 2 f(x y)+f\left(x y^{2}\right)=0 \tag{1}
\end{equation*}
$$

on a semigroup. His research extended the work of Ng [5] and the work of Parnami et al [6] on the classical Jensen's functional equation

$$
\begin{equation*}
f\left(x y^{-1}\right)-2 f(x)+f(x y)=0 \tag{2}
\end{equation*}
$$

on a group. The Hyers-Ulam stability (Hyers [7], Aoki [8], Bourgin [9], Rassias [10] and Gavruta [11]) of the alternative Jensen's functional equation (1) was proved by Nakmahachalasint [12].

Kitisin et al [13] establish a criterion for existence of the general solution to the alternative Jensen's functional equation of the form

$$
\begin{align*}
& f\left(x y^{-1}\right)-2 f(x)+f(x y)=0 \quad \text { or } \\
& \alpha f\left(x y^{-1}\right)+\beta f(x)+\gamma f(x y)=0, \tag{3}
\end{align*}
$$

where f is a mapping from a group to a uniquely divisible abelian group, but its stability problem has not yet been investigated.

In this paper, we will prove the Hyers-Ulam stability of the alternative Jensen's functional equation (3) when α, β and γ are real numbers with

$$
\begin{align*}
& (\alpha, \beta, \gamma) \neq(k,-2 k, k) \text { for all } k \in \mathbb{R} \quad \text { and } \\
& (\beta, \gamma) \notin\{(0, \alpha),(\alpha, \alpha),(\alpha+\gamma, \gamma)\} \tag{4}
\end{align*}
$$

and f is a mapping from an abelian group (G, \cdot) to a Banach space $(E,\|\cdot\|)$. In other words, we will prove that for every $\varepsilon \geqslant 0$, there exist $\delta_{1}, \delta_{2} \geqslant 0$ such that if a mapping $f: G \rightarrow E$ satisfies the inequalities

$$
\begin{align*}
& \left\|f\left(x y^{-1}\right)-2 f(x)+f(x y)\right\| \leqslant \delta_{1} \quad \text { or } \\
& \left\|\alpha f\left(x y^{-1}\right)+\beta f(x)+\gamma f(x y)\right\| \leqslant \delta_{2} \tag{5}
\end{align*}
$$

for every $x, y \in G$, where α, β and γ are fixed real numbers with (4), then there exists a unique Jensen's mapping $J: G \rightarrow E$ with

$$
\|f(x)-J(x)\| \leqslant \varepsilon
$$

for all $x \in G$.
It should be noted that Kitisin et al [13] proved that if α, β and γ are integers satisfying (4), then the alternative Jensen's functional equation (3) is equivalent to Jensen's functional equation (2). On the other hand, when $(\beta, \gamma) \in\{(0, \alpha),(\alpha, \alpha),(\alpha+\gamma, \gamma)\}$, (3) is not necessarily equivalent to (2).

AUXILIARY LEMMAS

Let $(G,+)$ be a group and let E be a Banach space. Given real numbers α, β, γ as in (4) and a function $f: G \rightarrow E$. For every pair of $x, y \in G$, we will define

$$
\mathscr{F}_{y}^{(\alpha, \beta, \gamma)}(x)=\left\|\alpha f\left(x y^{-1}\right)+\beta f(x)+\gamma f(x y)\right\|
$$

and

$$
\mathscr{J}_{y}(x)=\left\|f\left(x y^{-1}\right)-2 f(x)+f(x y)\right\| .
$$

For $\delta_{1}, \delta_{2} \geqslant 0$, we let

$$
\mathscr{P} f_{y}^{(\alpha, \beta, \gamma)}(x)=\left(\mathscr{J}_{y}(x) \leqslant \delta_{1} \text { or } \mathscr{F}_{y}^{(\alpha, \beta, \gamma)}(x) \leqslant \delta_{2}\right)
$$

and

$$
\delta=\max \left\{\delta_{1}, \delta_{2}\right\}
$$

The set of solution to the statement $\mathscr{P} f_{y}^{(\alpha, \beta, \gamma)}(x)$ will be denoted by $\mathscr{A}_{(G, E)}^{(\alpha, \beta, \gamma)}$, i.e.,

$$
\mathscr{A}_{(G, E)}^{(\alpha, \beta, \gamma)}=\left\{f: G \rightarrow E \mid \mathscr{P} f_{y}^{(\alpha, \beta, \gamma)}(x) \text { for all } x, y \in G\right\} .
$$

For each real number λ, we let

$$
\mathscr{M}(\lambda)= \begin{cases}|\lambda|^{-1} & \text { if } 0<|\lambda|<1 \\ |\lambda| & \text { if }|\lambda| \geqslant 1 \\ 1 & \text { if } \lambda=0\end{cases}
$$

It should be noted that for every $\lambda \in \mathbb{R}$,
(i) $1 \leqslant \mathscr{M}(\lambda)$;
(ii) $|\lambda| \leqslant \mathscr{M}(\lambda)$;
(iii) $|\lambda|^{-1} \leqslant \mathscr{M}(\lambda)$ if $\lambda \neq 0$.

We denote $\Lambda=\{-3,-2,-1,0,1,2,3\}$ and

$$
M=\max _{\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4} \in \Lambda}\left\{\mathscr{M}\left(\sigma_{1} \alpha+\sigma_{2} \beta+\sigma_{3} \gamma+\sigma_{4}\right)\right\}
$$

The above notations will be used extensively in the proofs below, and thus should be kept in mind.

First, we will give the bound of $\mathscr{J}_{y}(x)$ for a function $f \in \mathscr{A}_{(G, E)}^{(0, \beta, 0)}$.

Lemma 1 If $f \in \mathscr{A}_{(G, E)}^{(0, \beta, 0)}$ and $x, y \in G$, then $\mathscr{J}_{y}(x) \leqslant$ $12 M \delta$.
Proof: Let $f \in \mathscr{A}_{(G, E)}^{(0, \beta, 0)}$ and $x, y \in G$. By (4), we must have $\beta \neq 0$. Suppose $\mathscr{J}_{y}(x)>\delta_{1}$. Hence $\mathscr{F}_{y}^{(0, \beta, 0)}(x) \leqslant$ δ_{2} and we get $\|f(x)\| \leqslant M \delta$. Next, we will consider the alternatives in $\mathscr{P} f_{y}^{(0, \beta, 0)}\left(x y^{-1}\right)$ as follows.

Case (i). Assume that $\mathscr{J}_{y}\left(x y^{-1}\right) \leqslant \delta_{1} . \quad$ By $\|f(x)\| \leqslant M \delta$, we have

$$
\begin{equation*}
\left\|f\left(x y^{-2}\right)-2 f\left(x y^{-1}\right)\right\| \leqslant 2 M \delta \tag{6}
\end{equation*}
$$

By (6) and the alternatives in $\mathscr{P} f_{y}^{(0, \beta, 0)}\left(x y^{-2}\right)$, we have

$$
\begin{gather*}
\left\|f\left(x y^{-3}\right)-3 f\left(x y^{-1}\right)\right\| \leqslant 5 M \delta \text { or } \tag{7}\\
\left\|f\left(x y^{-1}\right)\right\| \leqslant 2 M \delta .
\end{gather*}
$$

By (7) and the alternatives in $\mathscr{P} f_{y^{2}}^{(0, \beta, 0)}\left(x y^{-1}\right)$, we get

$$
\begin{gather*}
\left\|f\left(x y^{-1}\right)+f(x y)\right\| \leqslant 6 M \delta \text { or } \tag{8}\\
\left\|f\left(x y^{-1}\right)\right\| \leqslant 2 M \delta .
\end{gather*}
$$

If $\left\|f\left(x y^{-1}\right)+f(x y)\right\| \leqslant 6 M \delta$, then by $\| f\left(x y^{-1}\right)+$ $f(x y) \| \leqslant 6 M \delta$ and $\|f(x)\| \leqslant M \delta$, we obtain $\mathscr{J}_{y}(x) \leqslant 8 M \delta$. It remains to consider the case when $\left\|f\left(x y^{-1}\right)\right\| \leqslant 2 M \delta$. By the alternatives in $\mathscr{P} f_{y}^{(0, \beta, 0)}(x y)$ and $\|f(x)\| \leqslant M \delta$, we have

$$
\left\|2 f(x y)-f\left(x y^{2}\right)\right\| \leqslant 2 M \delta \text { or }\|f(x y)\| \leqslant M \delta
$$

By the alternatives in $\mathscr{P} f_{y}^{(0, \beta, 0)}\left(x y^{2}\right)$ and (9), we get

$$
\begin{gather*}
\left\|3 f(x y)-f\left(x y^{3}\right)\right\| \leqslant 5 M \delta \text { or } \tag{10}\\
\|f(x y)\| \leqslant 2 M \delta .
\end{gather*}
$$

By $\left\|f\left(x y^{-1}\right)\right\| \leqslant 2 M \delta$ and (10), the alternatives in $\mathscr{P} f_{y^{2}}^{(0, \beta, 0)}(x y)$ gives

$$
\begin{equation*}
\|f(x y)\| \leqslant 8 M \delta \tag{11}
\end{equation*}
$$

By $\left\|f\left(x y^{-1}\right)\right\| \leqslant 2 M \delta,\|f(x)\| \leqslant M \delta$ and (11), we get

$$
\begin{equation*}
\mathscr{J}_{y}(x) \leqslant 12 M \delta \tag{12}
\end{equation*}
$$

Case (ii). Assume that $\mathscr{F}_{y}^{(0, \beta, 0)}\left(x y^{-1}\right) \leqslant \delta_{2}$. We have $\left\|f\left(x y^{-1}\right)\right\| \leqslant M \delta$. The proof is as in case (i) after referring the steps (9)-(12).

Lemma 2 Let $f \in \mathscr{A}_{(G, E)}^{(\alpha, \beta, \gamma)}$ with $\alpha \neq \gamma$ and $x, y \in G$. If $\mathscr{J}_{y}(x)>\delta_{1}$, then $\left\|f\left(x y^{-1}\right)-f(x y)\right\| \leqslant 2 M \delta$.

Proof: Assume that $\mathscr{J}_{y}(x)>\delta_{1}$. By the alternatives in $\mathscr{P} f_{y^{-1}}^{(\alpha, \beta, \gamma)}(x)$ and $\mathscr{P} f_{y}^{(\alpha, \beta, \gamma)}(x)$, we get $\mathscr{F}_{y^{-1}}^{(\alpha, \beta, \gamma)}(x) \leqslant \delta_{2}$ and $\mathscr{F}_{y}^{(\alpha, \beta, \gamma)}(x) \leqslant \delta_{2}$, respectively. Therefore,

$$
\begin{aligned}
& \left\|(\alpha-\gamma)\left(f\left(x y^{-1}\right)-f(x y)\right)\right\| \\
& \quad \leqslant \mathscr{F}_{y^{-1}}^{(\alpha, \beta, \gamma)}(x)+\mathscr{F}_{y}^{(\alpha, \beta, \gamma)}(x) \\
& \quad \leqslant 2 \delta
\end{aligned}
$$

Since $\alpha \neq \gamma$, the proof is completed as desired.
The above lemma states a necessary property for a function $f \in \mathscr{A}_{(G, E)}^{(\alpha, \beta, \gamma)}$ with $\alpha \neq \gamma$ in the case when $\mathscr{J}_{y}(x)>\delta_{1}$. Next, we will prove the bound of $\mathscr{J}_{y}(x)$ concerning the relation between $\mathscr{P} f_{y}^{(\alpha, \beta, \gamma)}\left(x y^{-1}\right)$ and $\mathscr{P} f_{y}^{(\alpha, \beta, \gamma)}(x)$ with $\alpha \neq \gamma$ as in the following two lemmas.
Lemma 3 Let $f \in \mathscr{A}_{(G, E)}^{(\alpha, \beta, \gamma)}$ with $\alpha \neq \gamma$ and $x, y \in G$. If $\mathscr{J}_{y}\left(x y^{-1}\right)>\delta_{1}$ and $\mathscr{J}_{y}(x)>\delta_{1}$, then $\mathscr{J}_{y}(x) \leqslant 34 M^{5} \delta$.
Proof: Assume that $\mathscr{J}_{y}\left(x y^{-1}\right)>\delta_{1}$ and $\mathscr{J}_{y}(x)>\delta_{1}$. By Lemma 2, we obtain that

$$
\begin{equation*}
\left\|f\left(x y^{-2}\right)-f(x)\right\| \leqslant 2 M \delta \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|f\left(x y^{-1}\right)-f(x y)\right\| \leqslant 2 M \delta \tag{14}
\end{equation*}
$$

From $\mathscr{J}_{y}\left(x y^{-1}\right)>\delta_{1}$ and $\mathscr{J}_{y}(x)>\delta_{1}$, the alternatives in $\mathscr{P} f_{y}^{(\alpha, \beta, \gamma)}\left(x y^{-1}\right)$ and $\mathscr{P} f_{y}^{(\alpha, \beta, \gamma)}(x)$ gives $\mathscr{F}_{y}^{(\alpha, \beta, \gamma)}\left(x y^{-1}\right) \leqslant \delta_{2}$ and $\mathscr{F}_{y}^{(\alpha, \beta, \gamma)}(x) \leqslant \delta_{2}$, respectively. Eliminating $f\left(x y^{-2}\right)$ from (13) and $\mathscr{F}_{y}^{(\alpha, \beta, \gamma)}\left(x y^{-1}\right) \leqslant$ δ_{2}, we get

$$
\begin{equation*}
\left\|\beta f\left(x y^{-1}\right)+(\alpha+\gamma) f(x)\right\| \leqslant 3 M^{2} \delta \tag{15}
\end{equation*}
$$

By (14) and (15), we have

$$
\begin{equation*}
\|(\alpha+\gamma) f(x)+\beta f(x y)\| \leqslant 5 M^{2} \delta . \tag{16}
\end{equation*}
$$

Eliminating $f\left(x y^{-1}\right)$ from (14) and $\mathscr{F}_{y}^{(\alpha, \beta, \gamma)}(x) \leqslant \delta_{2}$, we obtain

$$
\begin{equation*}
\|\beta f(x)+(\alpha+\gamma) f(x y)\| \leqslant 3 M^{2} \delta . \tag{17}
\end{equation*}
$$

We eliminate $f(x y)$ from (16) and (17) to get

$$
\|(\beta-\alpha-\gamma)(\beta+\alpha+\gamma) f(x)\| \leqslant 8 M^{3} \delta
$$

From $\beta \neq \alpha+\gamma$, we conclude that

$$
\begin{equation*}
\|(\beta+\alpha+\gamma) f(x)\| \leqslant 8 M^{4} \delta \tag{18}
\end{equation*}
$$

First, we suppose $\beta \neq-\alpha-\gamma$. Hence (18) reduces to

$$
\begin{equation*}
\|f(x)\| \leqslant 8 M^{5} \delta \tag{19}
\end{equation*}
$$

Eliminating $f(x)$ from (16) and (17), we conclude that

$$
\begin{equation*}
\|f(x y)\| \leqslant 8 M^{5} \delta \tag{20}
\end{equation*}
$$

By (14), (19) and (20), we have

$$
\begin{equation*}
\mathscr{J}_{y}(x) \leqslant 34 M^{5} \delta \tag{21}
\end{equation*}
$$

Next, we suppose $\beta=-\alpha-\gamma$. If $\alpha+\gamma=0$, then $\beta=0$ which contradicts $\beta \neq \alpha+\gamma$. Hence $\alpha+\gamma \neq 0$. Substituting $\beta=-\alpha-\gamma$ in (17), we get

$$
\|(\alpha+\gamma)(f(x)-f(x y))\| \leqslant 3 M^{2} \delta
$$

Thus we conclude that

$$
\begin{equation*}
\|f(x)-f(x y)\| \leqslant 3 M^{3} \delta \tag{22}
\end{equation*}
$$

By (14) and (22), $\mathscr{J}_{y}(x) \leqslant 8 M^{3} \delta \leqslant 34 M^{5} \delta$.
Lemma 4 Let $f \in \mathscr{A}_{(G, E)}^{(\alpha, \beta, \gamma)}$ with $\alpha \neq \gamma$ and $x, y \in G$. If $\mathscr{J}_{y}\left(x y^{-1}\right) \leqslant \delta_{1}$ and $\mathscr{J}_{y}(x)>\delta_{1}$, then

$$
\mathscr{J}_{y}(x) \leqslant 56 M^{5} \delta
$$

Proof: Assume that $\mathscr{J}_{y}\left(x y^{-1}\right) \leqslant \delta_{1}$ and $\mathscr{J}_{y}(x)>\delta_{1}$. By Lemma 2, we have

$$
\begin{equation*}
\left\|f\left(x y^{-1}\right)-f(x y)\right\| \leqslant 2 M \delta \tag{23}
\end{equation*}
$$

By $\mathscr{J}_{y}(x)>\delta_{1}$, the alternatives in $\mathscr{P} f_{y}^{(\alpha, \beta, \gamma)}(x)$ gives $\mathscr{F}_{y}^{(\alpha, \beta, \gamma)}(x) \leqslant \delta_{2}$. Eliminating $f\left(x y^{-1}\right)$ from (23) and $\mathscr{F}_{y}^{(\alpha, \beta, \gamma)}(x) \leqslant \delta_{2}$, we obtain that

$$
\begin{equation*}
\|\beta f(x)+(\alpha+\gamma) f(x y)\| \leqslant 3 M^{2} \delta \tag{24}
\end{equation*}
$$

We eliminate $f\left(x y^{-1}\right)$ from (23) and $\mathscr{J}_{y}\left(x y^{-1}\right) \leqslant \delta_{1}$ to get

$$
\begin{equation*}
\left\|f\left(x y^{-2}\right)+f(x)-2 f(x y)\right\| \leqslant 5 M \delta . \tag{25}
\end{equation*}
$$

Next, we will consider the alternatives in $\mathscr{P} f_{y}^{(\alpha, \beta, \gamma)}\left(x y^{-2}\right)$ as follows.

Case (i). Assume that $\mathscr{J}_{y}\left(x y^{-2}\right)>\delta_{1}$. By Lemma 2, we have

$$
\begin{equation*}
\left\|f\left(x y^{-3}\right)-f\left(x y^{-1}\right)\right\| \leqslant 2 M \delta \tag{26}
\end{equation*}
$$

The alternatives in $\mathscr{P} f_{y}^{(\alpha, \beta, \gamma)}\left(x y^{-2}\right)$ gives $\mathscr{F}_{y}^{(\alpha, \beta, \gamma)}\left(x y^{-2}\right) \leqslant \delta_{2}$. Eliminating $f\left(x y^{-3}\right)$ from (26) and $\mathscr{F}_{y}^{(\alpha, \beta, \gamma)}\left(x y^{-2}\right) \leqslant \delta_{2}$, we get

$$
\begin{equation*}
\left\|\beta f\left(x y^{-2}\right)+(\alpha+\gamma) f\left(x y^{-1}\right)\right\| \leqslant 3 M^{2} \delta \tag{27}
\end{equation*}
$$

By (23) and (27), we obtain

$$
\begin{equation*}
\left\|\beta f\left(x y^{-2}\right)+(\alpha+\gamma) f(x y)\right\| \leqslant 5 M^{2} \delta \tag{28}
\end{equation*}
$$

Eliminating $f\left(x y^{-2}\right)$ from (25) and (28), we have

$$
\begin{equation*}
\|\beta f(x)-(\alpha+2 \beta+\gamma) f(x y)\| \leqslant 10 M^{2} \delta \tag{29}
\end{equation*}
$$

By (24) and (29), we obtain that

$$
\begin{equation*}
\|\beta(f(x)-f(x y))\| \leqslant 13 M^{2} \delta \tag{30}
\end{equation*}
$$

If $\beta \neq 0$, then (30) reduces to

$$
\begin{equation*}
\|f(x)-f(x y)\| \leqslant 13 M^{3} \delta \tag{31}
\end{equation*}
$$

By (23) and (31), we obtain that $\mathscr{J}_{y}(x) \leqslant 28 M^{3} \delta$. If $\beta=0$, then (4) gives $\alpha+\gamma \neq 0$. Thus (24) reduces to

$$
\begin{equation*}
\|f(x y)\| \leqslant 3 M^{3} \delta \tag{32}
\end{equation*}
$$

By (25) and (32), we obtain that

$$
\begin{equation*}
\left\|f\left(x y^{-2}\right)+f(x)\right\| \leqslant 11 M^{3} \delta \tag{33}
\end{equation*}
$$

Next, we will consider two cases of $\mathscr{P} f_{y}^{(\alpha, 0, \gamma)}(x y)$ as follows. If $\mathscr{J}_{y}(x y) \leqslant \delta_{1}$, then by (32), we get

$$
\begin{equation*}
\left\|f(x)+f\left(x y^{2}\right)\right\| \leqslant 7 M^{3} \delta . \tag{34}
\end{equation*}
$$

Eliminating $f\left(x y^{-2}\right)$ and $f\left(x y^{2}\right)$ from (33), (34) and the alternatives in $\mathscr{P} f_{y^{2}}^{(\alpha, 0, \gamma)}(x)$, we conclude that

$$
\begin{equation*}
\|f(x)\| \leqslant 19 M^{5} \delta \tag{35}
\end{equation*}
$$

If $\mathscr{J}_{y}(x y)>\delta_{1}$, then we have $\mathscr{F}_{y}^{(\alpha, 0, \gamma)}(x y) \leqslant \delta_{2}$. Since $\mathscr{J}_{y}(x y)>\delta_{1}$, Lemma 2 gives

$$
\begin{equation*}
\left\|f(x)-f\left(x y^{2}\right)\right\| \leqslant 2 M \delta \tag{36}
\end{equation*}
$$

By $\mathscr{F}_{y}^{(\alpha, 0, \gamma)}(x y) \leqslant \delta_{2}$ and (36), we get (35). By (23), (32) and (35), we obtain

$$
\begin{equation*}
\mathscr{J}_{y}(x) \leqslant 46 M^{5} \delta \tag{37}
\end{equation*}
$$

Case (ii). Assume that $\mathscr{J}_{y}\left(x y^{-2}\right) \leqslant \delta_{1}$. Eliminating $f\left(x y^{-1}\right)$ from (23) and $\mathscr{g}_{y}\left(x y^{-2}\right) \leqslant \delta_{1}$, we get

$$
\begin{equation*}
\left\|f\left(x y^{-3}\right)-2 f\left(x y^{-2}\right)+f(x y)\right\| \leqslant 3 M \delta \tag{38}
\end{equation*}
$$

Eliminating $f\left(x y^{-2}\right)$ from (25) and (38), we have

$$
\begin{equation*}
\left\|f\left(x y^{-3}\right)+2 f(x)-3 f(x y)\right\| \leqslant 13 M \delta \tag{39}
\end{equation*}
$$

Eliminating $f(x)$ from (24) and (39), we obtain

$$
\begin{equation*}
\left\|\beta f\left(x y^{-3}\right)-(2 \alpha+3 \beta+2 \gamma) f(x y)\right\| \leqslant 19 M^{2} \delta \tag{40}
\end{equation*}
$$

Next, we will consider two cases of $\mathscr{P} f_{y^{2}}^{(\alpha, \beta, \gamma)}\left(x y^{-1}\right)$ as follows. We first assume that $\mathscr{J}_{y^{2}}\left(x y^{-1}\right) \leqslant \delta_{1}$. Eliminating $f\left(x y^{-1}\right)$ from (23) and $\mathscr{J}_{y^{2}}\left(x y^{-1}\right) \leqslant \delta_{1}$, we get

$$
\begin{equation*}
\left\|f\left(x y^{-3}\right)-f(x y)\right\| \leqslant 5 M \delta \tag{41}
\end{equation*}
$$

By (40) and (41), we get

$$
\begin{equation*}
\|2(\beta+\alpha+\gamma) f(x y)\| \leqslant 24 M^{2} \delta \tag{42}
\end{equation*}
$$

If $\beta \neq-\alpha-\gamma$, then (42) reduces to

$$
\begin{equation*}
\|f(x y)\| \leqslant 12 M^{3} \delta \tag{43}
\end{equation*}
$$

By (24) and (43), we have

$$
\|\beta f(x)\| \leqslant 15 M^{4} \delta
$$

Suppose $\beta \neq 0$. We get

$$
\begin{equation*}
\|f(x)\| \leqslant 15 M^{5} \delta \tag{44}
\end{equation*}
$$

By (23), (43) and (44), we obtain

$$
\begin{equation*}
\mathscr{J}_{y}(x) \leqslant 56 M^{5} \delta . \tag{45}
\end{equation*}
$$

Suppose $\beta=0$. Repeating to the steps (32)-(36), we get (37). If $\beta=-\alpha-\gamma$, then $\alpha+\gamma \neq 0$. Thus (24) reduces to

$$
\begin{equation*}
\|f(x)-f(x y)\| \leqslant 3 M^{3} \delta \tag{46}
\end{equation*}
$$

By (23) and (46), we conclude that (45). We next assume that $\mathscr{J}_{y^{2}}\left(x y^{-1}\right)>\delta_{1}$. Lemma 2 gives

$$
\left\|f\left(x y^{-3}\right)-f(x y)\right\| \leqslant 2 M \delta .
$$

Repeating the steps (41)-(46), we obtain (45).
The desired results follows from the consideration of the above two cases.

Next, we will prove the bound of $f(x)$ concerning the relation between $\mathscr{P} f_{y}^{(1, \beta, 1)}\left(x y^{-1}\right), \mathscr{P} f_{y}^{(1, \beta, 1)}(x)$ and $\mathscr{P} f_{y}^{(1, \beta, 1)}(x y)$ as in the following two lemmas. It should be noted that $\beta \notin\{-2,0,1,2\}$.

Lemma 5 Let $f \in \mathscr{A}_{(G, E)}^{(1, \beta, 1)}$ and let $x, y \in G$.
(i) If $\mathscr{J}_{y}\left(x y^{-1}\right) \leqslant \delta_{1}, \mathscr{F}_{y}^{(1, \beta, 1)}(x) \leqslant \delta_{2}$ and $\mathscr{J}_{y}(x y) \leqslant$ δ_{1}, then $\|f(x)\| \leqslant 5 M \delta$.
(ii) If $\mathscr{F}_{y}^{(1, \beta, 1)}\left(x y^{-1}\right) \leqslant \delta_{2}, \mathscr{F}_{y}^{(1, \beta, 1)}(x) \leqslant \delta_{2}$ and $\mathscr{F}_{y}^{(1, \beta, 1)}(x y) \leqslant \delta_{2}$, then $\|f(x)\| \leqslant 4 M^{3} \delta$.

Proof: Assume that all assumptions in the lemma hold. (i) We observe that

$$
\begin{align*}
& \left\|f\left(x y^{-2}\right)+(2+2 \beta) f(x)+f\left(x y^{2}\right)\right\| \\
& \quad \leqslant \mathscr{J}_{y}\left(x y^{-1}\right)+2 \mathscr{F}_{y}^{(1, \beta, 1)}(x)+\mathscr{J}_{y}(x y) \\
& \quad \leqslant 4 \delta . \tag{47}
\end{align*}
$$

Consider the alternatives in $\mathscr{P} f_{y^{2}}^{(1, \beta, 1)}(x)$. The inequality $\mathscr{J}_{y^{2}}(x) \leqslant \delta_{1}$ and (47) give

$$
\|(4+2 \beta) f(x)\| \leqslant 5 \delta
$$

while the inequality $\mathscr{F}_{y^{2}}^{(1, \beta, 1)}(x) \leqslant \delta_{2}$ and (47) also give

$$
\|(2+\beta) f(x)\| \leqslant 5 \delta
$$

Hence $\|f(x)\| \leqslant 5 M \delta$.
(ii) We observe that

$$
\begin{align*}
& \left\|f\left(x y^{-2}\right)+\left(2-\beta^{2}\right) f(x)+f\left(x y^{2}\right)\right\| \\
& \leqslant \mathscr{F}_{y}^{(1, \beta, 1)}\left(x y^{-1}\right)+|\beta| \mathscr{F}_{y}^{(1, \beta, 1)}(x) \\
& \quad+\mathscr{F}_{y}^{(1, \beta, 1)}(x y) \\
& \leqslant \tag{48}\\
& \leqslant M \delta .
\end{align*}
$$

Consider the alternatives in $\mathscr{P} f_{y^{2}}^{(1, \beta, 1)}(x)$. The inequality $\mathscr{J}_{y^{2}}(x) \leqslant \delta_{1}$ and (48) give

$$
\left\|\left(4-\beta^{2}\right) f(x)\right\| \leqslant 4 M \delta
$$

while the inequality $\mathscr{F}_{y^{2}}^{(1, \beta, 1)}(x) \leqslant \delta_{2}$ and (48) also give

$$
\left\|\left(2-\beta-\beta^{2}\right) f(x)\right\| \leqslant 4 M \delta
$$

Hence $\|f(x)\| \leqslant 4 M^{3} \delta$.

Lemma 6 Let $f \in \mathscr{A}_{(G, E)}^{(1, \beta, 1)}$ and let $x, y \in G$. If $\mathscr{J}_{y}\left(x y^{-1}\right) \leqslant \delta_{1}, \mathscr{F}_{y}^{(1, \beta, 1)}(x) \leqslant \delta_{2}$ and $\mathscr{F}_{y}^{(1, \beta, 1)}(x y) \leqslant$ δ_{2}, then $\|f(x)\| \leqslant 46 M^{7} \delta$.

Proof: Assume that the assumption in the lemma holds. By $\mathscr{J}_{y}\left(x y^{-1}\right) \leqslant \delta_{1}$ and $\mathscr{F}_{y}^{(1, \beta, 1)}(x) \leqslant \delta_{2}$, we get

$$
\begin{equation*}
\left\|f\left(x y^{-2}\right)+(1+2 \beta) f(x)+2 f(x y)\right\| \leqslant 3 \delta \tag{49}
\end{equation*}
$$

Next, we will consider two possible cases in $\mathscr{P} f_{y^{2}}^{(1, \beta, 1)}(x)$ as follows.

Case (i). Assume that $\mathscr{J}_{y^{2}}(x) \leqslant \delta_{1}$. Using $\mathscr{F}_{y}^{(1, \beta, 1)}(x y) \leqslant \delta_{2}, \mathscr{J}_{y^{2}}(x) \leqslant \delta_{1}$ and (49), we obtain

$$
\begin{equation*}
\|2 f(x)+f(x y)\| \leqslant 5 M \delta \tag{50}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|(1-2 \beta) f(x)+f\left(x y^{2}\right)\right\| \leqslant 6 M^{2} \delta . \tag{51}
\end{equation*}
$$

Eliminating $f(x y)$ from (50) and the alternatives in $\mathscr{P} f_{y}^{(1, \beta, 1)}\left(x y^{2}\right)$, we have

$$
\begin{align*}
& \left\|2 f(x)+2 f\left(x y^{2}\right)-f\left(x y^{3}\right)\right\| \leqslant 6 M \delta \text { or } \\
& \left\|2 f(x)-\beta f\left(x y^{2}\right)-f\left(x y^{3}\right)\right\| \leqslant 6 M \delta . \tag{52}
\end{align*}
$$

By (51) and (52), we obtain

$$
\begin{align*}
& \left\|4 \beta f(x)-f\left(x y^{3}\right)\right\| \leqslant 18 M^{2} \delta \text { or } \\
& \left\|\left(2 \beta^{2}-\beta-2\right) f(x)+f\left(x y^{3}\right)\right\| \leqslant 12 M^{3} \delta . \tag{53}
\end{align*}
$$

Consider the alternatives in $\mathscr{P} f_{y^{2}}^{(1, \beta, 1)}(x y)$.

- If $\mathscr{J}_{y^{2}}(x y) \leqslant \delta_{1}$, then we use $\mathscr{J}_{y^{2}}(x y) \leqslant \delta_{1}$ and $\mathscr{F}_{y}{ }^{(1, \beta, 1)}(x) \leqslant \delta_{2}$ to get

$$
\begin{equation*}
\left\|\beta f(x)+3 f(x y)-f\left(x y^{3}\right)\right\| \leqslant 2 \delta . \tag{54}
\end{equation*}
$$

By (53) and (54), we obtain

$$
\begin{align*}
& \|3 \beta f(x)-3 f(x y)\| \leqslant 20 M^{2} \delta \text { or } \\
& \left\|\left(2 \beta^{2}-2\right) f(x)+3 f(x y)\right\| \leqslant 14 M^{3} \delta . \tag{55}
\end{align*}
$$

Eliminating $f(x y)$ from (50) and (55), we have $\|f(x)\| \leqslant 15 M^{5} \delta$.

- If $\mathscr{F}_{y^{2}}^{(1, \beta, 1)}(x y) \leqslant \delta_{2}$, then we use $\mathscr{F}_{y^{2}}^{(1, \beta, 1)}(x y) \leqslant$ δ_{2} and $\mathscr{F}_{y}^{(1, \beta, 1)}(x) \leqslant \delta_{2}$ to get

$$
\begin{equation*}
\left\|\beta f(x)+(1-\beta) f(x y)-f\left(x y^{3}\right)\right\| \leqslant 2 \delta \tag{56}
\end{equation*}
$$

By (53) and (56), we obtain

$$
\begin{align*}
& \|3 \beta f(x)+(\beta-1) f(x y)\| \leqslant 20 M^{2} \delta \text { or } \\
& \|\left(2 \beta^{2}-2\right) f(x)+(1-\beta) f(x y) \leqslant 14 M^{3} \delta . \tag{57}
\end{align*}
$$

Eliminating $f(x y)$ from (50) and (57), we get $\|f(x)\| \leqslant 25 M^{5} \delta$.

Case (ii). Assume that $\mathscr{F}_{y^{2}}^{(1, \beta, 1)}(x) \leqslant \delta_{2}$. By $\mathscr{F}_{y}^{(1, \beta, 1)}(x y) \leqslant \delta_{2}, \mathscr{F}_{y^{2}}^{(1, \beta, 1)}(x) \leqslant \delta_{2}$ and (49), we obtain

$$
\begin{equation*}
\|f(x)+f(x y)\| \leqslant 5 M \delta \tag{58}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|(1-\beta) f(x)+f\left(x y^{2}\right)\right\| \leqslant 6 M^{2} \delta \tag{59}
\end{equation*}
$$

Eliminating $f\left(x y^{2}\right)$ from (59) and the alternatives in $\mathscr{P} f_{y^{2}}^{(1, \beta, 1)}\left(x y^{2}\right)$, we get

$$
\begin{aligned}
& \left\|(3-2 \beta) f(x)+f\left(x y^{4}\right)\right\| \leqslant 13 M^{2} \delta \text { or } \\
& \left\|\left(\beta^{2}-\beta+1\right) f(x)+f\left(x y^{4}\right)\right\| \leqslant 7 M^{3} \delta .
\end{aligned}
$$

(60)

By (58) and the the alternatives in $\mathscr{P} f_{y}^{(1, \beta, 1)}\left(x y^{2}\right)$, we have

$$
\begin{align*}
& \left\|f(x)+2 f\left(x y^{2}\right)-f\left(x y^{3}\right)\right\| \leqslant 6 M \delta \text { or } \\
& \left\|f(x)-\beta f\left(x y^{2}\right)-f\left(x y^{3}\right)\right\| \leqslant 6 M \delta . \tag{61}
\end{align*}
$$

Consider the alternatives in $\mathscr{P} f_{y}^{(1, \beta, 1)}\left(x y^{3}\right)$ as follows.

- If $\mathscr{J}_{y}\left(x y^{3}\right) \leqslant \delta_{1}$, then we eliminate $f\left(x y^{3}\right)$ from (61) and $\mathscr{J}_{y}\left(x y^{3}\right) \leqslant \delta_{1}$ to get

$$
\begin{align*}
& \left\|2 f(x)+3 f\left(x y^{2}\right)-f\left(x y^{4}\right)\right\| \leqslant 13 M \delta \text { or } \\
& \left\|2 f(x)-(1+2 \beta) f\left(x y^{2}\right)-f\left(x y^{4}\right)\right\| \leqslant 13 M \delta . \tag{62}
\end{align*}
$$

By (59) and (62), we obtain

$$
\begin{align*}
& \left\|(1-3 \beta) f(x)+f\left(x y^{4}\right)\right\| \leqslant 31 M^{2} \delta \text { or } \\
& \left\|\left(2 \beta^{2}-\beta-3\right) f(x)+f\left(x y^{4}\right)\right\| \leqslant 31 M^{3} \delta . \tag{63}
\end{align*}
$$

By (60) and (63), we conclude that
$\|f(x)\| \leqslant 44 M^{5} \delta \quad$ or $\quad\|(3-2 \beta) f(x)\| \leqslant 44 M^{4} \delta$.
In the case when $\beta \neq \frac{3}{2}$, we get

$$
\|f(x)\| \leqslant 44 M^{5} \delta
$$

Suppose $\beta=\frac{3}{2}$. Hence (49), (59), (60), (61) and (63) become

$$
\begin{gather*}
\left\|f\left(x y^{-2}\right)+4 f(x)+2 f(x y)\right\| \leqslant 3 \delta \tag{64}\\
\left\|-\frac{1}{2} f(x)+f\left(x y^{2}\right)\right\| \leqslant 6 M^{2} \delta \tag{65}\\
\left\|f\left(x y^{4}\right)\right\| \leqslant 13 M^{2} \delta \text { or } \\
\left\|\frac{7}{4} f(x)+f\left(x y^{4}\right)\right\| \leqslant 7 M^{3} \delta \tag{66}
\end{gather*}
$$

and

$$
\begin{align*}
& \left\|-\frac{7}{2} f(x)+f\left(x y^{4}\right)\right\| \leqslant 31 M^{2} \delta \text { or } \tag{67}\\
& \left\|f\left(x y^{4}\right)\right\| \leqslant 31 M^{3} \delta,
\end{align*}
$$

respectively. By (66) and (67), we get

$$
\begin{equation*}
\left\|f\left(x y^{4}\right)\right\| \leqslant 31 M^{3} \delta \tag{68}
\end{equation*}
$$

Eliminating $f\left(x y^{4}\right)$ from $\mathscr{P} f_{y^{2}}^{\left(1, \frac{3}{2}, 1\right)}\left(x y^{4}\right)$ and (68), we obtain

$$
\begin{equation*}
\left\|f\left(x y^{2}\right)+f\left(x y^{6}\right)\right\| \leqslant 63 M^{3} \delta \tag{69}
\end{equation*}
$$

By $\mathscr{P} f_{y^{4}}^{\left(1, \frac{3}{2}, 1\right)}\left(x y^{2}\right)$ and (69), we have

$$
\begin{align*}
& \left\|f\left(x y^{-2}\right)-3 f\left(x y^{2}\right)\right\| \leqslant 64 M^{3} \delta \text { or } \\
& \left\|f\left(x y^{-2}\right)+\frac{1}{2} f\left(x y^{2}\right)\right\| \leqslant 64 M^{3} \delta . \tag{70}
\end{align*}
$$

By (65) and (70), we get

$$
\begin{align*}
& \left\|f\left(x y^{-2}\right)-\frac{3}{2} f(x)\right\| \leqslant 82 M^{3} \delta \text { or } \\
& \left\|f\left(x y^{-2}\right)+\frac{1}{4} f(x)\right\| \leqslant 67 M^{3} \delta . \tag{71}
\end{align*}
$$

Eliminating $f\left(x y^{-2}\right)$ from (64) and (71), we have

$$
\begin{align*}
& \left\|\frac{11}{2} f(x)+2 f(x y)\right\| \leqslant 85 M^{3} \delta \text { or } \\
& \left\|\frac{15}{4} f(x)+2 f(x y)\right\| \leqslant 70 M^{3} \delta . \tag{72}
\end{align*}
$$

By (58) and (72), we conclude that

$$
\|f(x)\| \leqslant 46 M^{3} \delta
$$

- If $\mathscr{F}_{y}^{(1, \beta, 1)}\left(x y^{3}\right) \leqslant \delta_{2}$, then we eliminate $f\left(x y^{3}\right)$ from (61) and $\mathscr{F}_{y}^{(1, \beta, 1)}\left(x y^{3}\right) \leqslant \delta_{2}$ to get
$\left\|\beta f(x)+(1+2 \beta) f\left(x y^{2}\right)+f\left(x y^{4}\right)\right\| \leqslant 7 M^{2} \delta$ or
$\left\|\beta f(x)+\left(1-\beta^{2}\right) f\left(x y^{2}\right)+f\left(x y^{4}\right)\right\| \leqslant 7 M^{2} \delta$.

By (59) and (73), we obtain

$$
\begin{align*}
& \left\|\left(2 \beta^{2}-1\right) f(x)+f\left(x y^{4}\right)\right\| \leqslant 13 M^{3} \delta \text { or } \\
& \left\|\left(\beta^{3}-\beta^{2}-2 \beta+1\right) f(x)-f\left(x y^{4}\right)\right\| \leqslant 13 M^{4} \delta \tag{74}
\end{align*}
$$

By (60) and (74), we conclude that

$$
\|f(x)\| \leqslant 26 M^{7} \delta
$$

The desired bound of $f(x)$ follows from the consideration of all cases above.

Now we will give the bound of $\mathscr{J}_{y}(x)$ for a function $f \in \mathscr{A}_{(G, E)}^{(1, \beta, 1)}$.
Lemma 7 If $f \in \mathscr{A}_{(G, E)}^{(1, \beta, 1)}$, then $\mathscr{J}_{y}(x) \leqslant 139 M^{8} \delta$ for all $x, y \in G$.
Proof: Let $f \in \mathscr{A}_{(G, E)}^{(1, \beta, 1)}$ and $x, y \in G$. Suppose $\mathscr{J}_{y}(x)>$ δ_{1}. From the alternatives in $\mathscr{P} f_{y}^{(1, \beta, 1)}(x)$, we get $\mathscr{F}_{y}^{(1, \beta, 1)}(x) \leqslant \delta_{2}$. The alternatives in $\mathscr{P} f_{y}^{(1, \beta, 1)}\left(x y^{-1}\right)$ will be considered as follows.

Case (i). Assume that $\mathscr{J}_{y}\left(x y^{-1}\right) \leqslant \delta_{1}$. By Lemma 5 and Lemma 6, we conclude that

$$
\begin{equation*}
\|f(x)\| \leqslant 46 M^{7} \delta \tag{75}
\end{equation*}
$$

By $\mathscr{F}_{y}^{(1, \beta, 1)}(x) \leqslant \delta_{2}$ and (75), we conclude that $\mathscr{J}_{y}(x) \leqslant 139 M^{8} \delta$ as desired.

Case (ii). Assume that $\mathscr{F}_{y}^{(1, \beta, 1)}\left(x y^{-1}\right) \leqslant \delta_{2}$. Consider the alternatives in $\mathscr{P} f_{y}^{(1, \beta, 1)}(x y)$. If $\mathscr{F}_{y}^{(1, \beta, 1)}(x y) \leqslant \delta_{2}$, then Lemma 5 gives $\|f(x)\| \leqslant$ $4 M^{3} \delta$. Thus the desired proof is similar to the above case. If $\mathscr{J}_{y}(x y) \leqslant \delta_{1}$, then the proof is as in Case (i) after replacing y by y^{-1} and x by $x y^{-1}$.

HYERS-ULAM STABILITY

We will next provide the following lemma which eventually be used in the main theorem.
Lemma 8 If $f \in \mathscr{A}_{(G, E)}^{(\alpha, \beta, \gamma)}$, then $\mathscr{J}_{y}(x) \leqslant 139 M^{9} \delta$ for all $x, y \in G$.

Proof: Let $f \in \mathscr{A}_{(G, E)}^{(\alpha, \beta, \gamma)}$. If $\alpha \neq \gamma$, then by Lemma 3 and Lemma 4, we conclude that $\mathscr{J}_{y}(x) \leqslant 56 M^{5} \delta$ for all $x, y \in G$. If $\alpha=\gamma$, then we consider two cases as follows:

Case (i). Assume that $\alpha=0$. Lemma 1 gives $\mathscr{J}_{y}(x) \leqslant 12 M \delta$ for all $x, y \in G$.

Case (ii) Assume that $\alpha \neq 0$. Hence $f \in$ $\mathscr{A}_{(G, E)}^{\left(1, \alpha^{-1} \beta, 1\right)}$ and Lemma 7 gives

$$
\mathscr{J}_{y}(x) \leqslant 139 M^{8} \max \left\{\delta_{1},|\alpha|^{-1} \delta_{2}\right\} \leqslant 139 M^{9} \delta
$$

for all $x, y \in G$.
Now we will prove the Hyers-Ulam stability of the alternative Jensen's functional equation (3). For the stability results of Jensen's functional equation, it can be found in, for instance, Kominek [14] or Jung [15].

Theorem 1 Let G be an abelian group. If $f \in \mathscr{A}_{(G, E)}^{(\alpha, \beta, \gamma)}$, then there exists a unique Jensen's mapping $J: G \rightarrow E$ satisfying (2) with $J(0)=f(0)$ such that

$$
\|f(x)-J(x)\| \leqslant \varepsilon
$$

for all $x \in G$ when $\varepsilon=278 M^{9} \delta$. Moreover, the mapping J is given by

$$
J(x)=f(0)+\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left(f\left(x^{2^{n}}\right)-f(0)\right)
$$

for all $x \in G$.
Proof: Assume that $f \in \mathscr{A}_{(G, E)}^{(\alpha, \beta, \gamma)}$. By Lemma 8, we obtain $\mathscr{J}_{y}(x) \leqslant 139 M^{9} \delta$ for all $x, y \in G$. The HyersUlam stability of the Jensen's functional equation can be proved by the so-called direct method and it can be seen in Srisawat [16]. Hence the rest of the proof can be omitted.

Acknowledgements: This research was supported by Faculty of Science, Udon Thani Rajabhat University.

REFERENCES

1. Kannappan PL, Kuczma M (1974) On a functional equation related to the Cauchy equation. Ann Polon Math 30, 49-55.
2. Ger R (1977) On an alternative functional equation. Aequ Math 15, 145-162.
3. Forti GL (1979) La soluzione generale dell 'equazione funzionale $\{c f(x+y)-a f(x)-b f(y)-d\}\{f(x+y)-$ $f(x)-f(y)\}=0$. Matematiche 34, 219-242.
4. Nakmahachalasint P (2012) An alternative Jensen's functional equation on semigroups. ScienceAsia 38, 408-413.
5. Ng CT (1990) Jensen's functional equation on groups. Aequ Math 39, 85-99.
6. Parnami JC, Vasudeva HL (1992) On Jensen's functional equation. Aequ Math 43, 211-218.
7. Hyers DH (1941) On the stability of the linear functional equations. Proc Natl Acad Sci USA 27, 222-224.
8. Aoki T (1950) On the stability of the linear transformation in Banach spaces. J Math Soc Jpn 2, 64-66.
9. Bourgin DG (1951) Class of transformations and bordering transformations. Bull Am Math Soc 57, 223-237.
10. Rassias ThM (1978) On the stability of linear mapping in Banach spaces. Proc Am Math Soc 72, 297-300.
11. Gavruta P (1994) A generalization of the Hyers-UlamRassias stability of approximately additive mappings. J

Math Anal Appl 184, 431-436.
12. Nakmahachalasint P (2013) Stability of an alternative Jensen's functional equation. ScienceAsia 39, 643-648.
13. Kitisin N, Srisawat C (2020) A general form of an alternative functional equation related to the Jensen's functional equation. ScienceAsia 46, 368-375.
14. Kominek Z (1989) On a local stability of the Jensen functional equation. Demonstr Math 22, 499-507.
15. Jung SM (1998) Hyers-Ulam-Rassias stability of Jensen's equation and its application. Proc Am Math Soc 126, 3137-3143.
16. Srisawat C (2019) Hyers-Ulam stability of an alternative functional equation of Jensen type. ScienceAsia 45, 275-278.

