doi: 10.2306/scienceasia1513-1874.2022.062

# A refinement of Hardy type inequality on the n-spheres

# **Songting Yin**

Department of Mathematics and Computer Science, Tongling University, Tongling, 244000 Anhui, China

e-mail: vst419@163.com

Received 1 Dec 2020, Accepted 22 Feb 2022 Available online 15 Apr 2022

**ABSTRACT**: We give a refinement of Hardy type inequality with the best constant on the sphere. This improves the result of Xiao [J Math Inequal **10** (2016):793–805].

KEYWORDS: Hardy inequality, the best constant, sphere

MSC2020: 26D10 51M16

### INTRODUCTION

The classical Hardy inequality states that, for  $n \ge 3$  and all  $f \in C_c^{\infty}(\mathbb{R}^n \setminus \{0\})$ ,

$$\int_{\mathbb{R}^n} |\nabla f|^2 \, \mathrm{d}x \ge \frac{(n-2)^2}{4} \int_{\mathbb{R}^n} \frac{f^2}{|x|^2} \, \mathrm{d}x.$$

The constant  $(n-2)^2/4$  is optimal and not attained in the Sobolev space  $W^{1,2}(\mathbb{R}^n\setminus\{0\})$ . There has been a lot of research concerning Hardy inequality on the Euclidean space because of its applications to partial differential equations involving singular potentials. We can refer to [1-3] and the references therein.

The validity of Hardy inequality on a manifold and its best constants allows people to obtain qualitative properties on the manifold. In [4], Carron studied the weighted  $L^2$ -Hardy inequalities on a Riemannian manifold under some geometric assumptions on the weight function and obtained

$$\int_{M} \rho^{\alpha} |\nabla f|^{2} dV \ge \frac{(C + \alpha - 1)^{2}}{4} \int_{M} \rho^{\alpha} \frac{f^{2}}{\rho^{2}} dV,$$

for any  $f \in C_0^\infty(M)$ , where the weight function  $\rho$  satisfies  $|\nabla \rho| = 1$  and  $\Delta \rho \geqslant \frac{C}{\rho}$ . Along this line, we refer to [5–7] and so on. Particularly, in [7] Kombe and Özaydin obtained the improved Hardy inequalities in the Poincaré conformal disc model

$$\int_{\mathbb{R}^n} |\nabla f|^2 \, \mathrm{d}V \geqslant \frac{(n-2)^2}{4} \int_{\mathbb{R}^n} \frac{f^2}{\rho^2} \, \mathrm{d}V,$$

where  $f \in C_c^{\infty}(\mathbb{B}^n \setminus \{0\})$  and  $\rho = \log[(1+|x|)/(1-|x|)]$  is the geodesic distance. Furthermore, the constant  $(n-2)^2/4$  is sharp.

By comparison with the results above, the results of Hardy inequality on the sphere are relatively few. Recently, Xiao [8] studied the Hardy type inequality on

the sphere and derived the following inequality

$$C \int_{\mathbb{S}^n} f^2 \, \mathrm{d}V + \int_{\mathbb{S}^n} |\nabla f|^2 \, \mathrm{d}V$$

$$\geq \frac{(n-2)^2}{4} \left( \int_{\mathbb{S}^n} \frac{f^2}{d(p,x)^2} \, \mathrm{d}V + \int_{\mathbb{S}^n} \frac{f^2}{(\pi - d(p,x))^2} \, \mathrm{d}V \right) \quad (1)$$

for any function  $f \in C^{\infty}(\mathbb{S}^n)$  and some constant C, where d(p,x) is the geodesic distance from p on  $\mathbb{S}^n$ , and the constant  $(n-2)^2/4$  is sharp.

In [9] the author used the tangent function and obtained another type Hardy inequality on the sphere as follows.

$$\frac{n-2}{2} \int_{\mathbb{S}^n} f^2 \, \mathrm{d}V + \int_{\mathbb{S}^n} |\nabla f|^2 \, \mathrm{d}V$$

$$\geqslant \frac{(n-2)^2}{4} \int_{\mathbb{S}^n} \frac{f^2}{\tan^2 d(p,x)} \, \mathrm{d}V.$$

The results of the  $L^p$  Hardy inequalities were discussed in  $\lceil 10, 11 \rceil$ , respectively.

In this short note, we still focus on Inequality (1). We observe that for any  $0 \le R \le \pi$ , Inequality (1) can be changed by

$$C \int_{\mathbb{S}^n} f^2 \, \mathrm{d}V + \int_{\mathbb{S}^n} |\nabla f|^2 \, \mathrm{d}V \geqslant \frac{(n-2)^2}{4}$$

$$\times \left( \int_{B_n(R)} \frac{f^2}{d(p,x)^2} \, \mathrm{d}V + \int_{\mathbb{S}^n \setminus B_n(R)} \frac{f^2}{(\pi - d(p,x))^2} \, \mathrm{d}V \right). \quad (2)$$

However it is not easy to see whether the constant  $(n-2)^2/4$  is sharp. Clearly, if it is not sharp, then (2) boils down to very little significance. The other observation is that the first term in the left-hand side in (1) has no effect on the sharpness of the constant  $(n-2)^2/4$  regardless of the choice of C, but cannot be removed because it leads to a contradiction if f is a nonzero constant function. This may be the most

remarkable difference from that in Euclidean spaces and some other Riemannian manifolds. As a consequence, it is very interesting and important to prove the sharpness of the constant  $(n-2)^2/4$  in (2), and consider how to determine and reduce that constant C. Specifically, by choosing  $R = \pi/2$ , we adapt the inequality (1) to the following form.

**Theorem 1** Let  $\mathbb{S}^n$  be the n dimensional sphere with  $n \ge 3$ . Then for any function  $f \in C^{\infty}(\mathbb{S}^n)$ , it holds

$$\frac{2(n-1)(n-2)}{\pi^2} \int_{\mathbb{S}^n} f^2 \, dV + \int_{\mathbb{S}^n} |\nabla f|^2 \, dV 
\geqslant \frac{(n-2)^2}{4} \left( \int_{B_p(\frac{\pi}{2})} \frac{f^2}{d(p,x)^2} \, dV + \int_{B_q(\frac{\pi}{2})} \frac{f^2}{d(q,x)^2} \, dV \right),$$

where p and q are the antipodal points, and  $B_p(\pi/2)$  (resp.,  $B_q(\pi/2)$ ) denotes the geodesic ball centered at p (resp., q) of radius  $\pi/2$ . Moreover, the constant  $(n-2)^2/4$  is sharp. That is,

$$\frac{(n-2)^2}{4} = \inf_{f \in C^{\infty}(\mathbb{S}^n) \setminus \{0\}} \frac{\int_{\mathbb{S}^n} |\nabla f|^2 dV + \frac{2(n-1)(n-2)}{\pi^2} \int_{\mathbb{S}^n} f^2 dV}{\int_{B_p(\frac{\pi}{2})} \frac{f^2}{d(p,x)^2} dV + \int_{B_q(\frac{\pi}{2})} \frac{f^2}{d(q,x)^2} dV}.$$

Our proof is based on Lemma 1 below and a new construction of the auxiliary functions. Then, by using symmetry of spheres and standard discussions, Theorem 1 is proved.

# THE PROOF OF THE MAIN RESULT

We first establish a useful lemma as follows.

#### Lemma 1

$$\frac{1}{3} \le \frac{1 - r \cot r}{r^2} \le \frac{4}{\pi^2}, \quad r \in (0, \frac{\pi}{2}].$$

*Proof*: Let  $F(r) = (1 - r \cot r)/r^2$ . Then  $F(\pi/2) = 4/\pi^2$ , and by L'Hospital's rule

$$\lim_{r \to 0^{+}} F(r) = \lim_{r \to 0^{+}} \frac{1 - r \cot r}{r^{2}} = \lim_{r \to 0^{+}} \frac{\sin r - r \cos r}{r^{2} \sin r}$$

$$= \lim_{r \to 0^{+}} \frac{\sin r - r \cos r}{r^{3}}$$

$$= \lim_{r \to 0^{+}} \frac{\cos r - \cos r + r \sin r}{3r^{2}} = \frac{1}{3}.$$

To prove the result, it suffices to show  $F'(r) \ge 0$ . Since

$$F'(r) = \frac{r^2 \csc^2 r + r \cot r - 2}{r^3},$$

we only need to show

$$r^2 \csc^2 r + r \cot r - 2 \ge 0$$
,  $r \in (0, \frac{\pi}{2}]$ .

That is to prove

$$r^2 + r \sin r \cos r \ge 2 \sin^2 r$$
,  $r \in (0, \frac{\pi}{2}]$ .

Namely,

$$r^2 + \frac{1}{2}r\sin 2r \ge 1 - \cos 2r$$
,  $r \in (0, \frac{\pi}{2}]$ .

Notice that the inequality above becomes the equality when r = 0. Therefore, the inequality is valid if

$$2r + r\cos 2r \ge \frac{3}{2}\sin 2r$$
,  $r \in (0, \frac{\pi}{2}]$ .

By a similar argument, it simply requires that

$$1 \ge r \sin 2r + \cos 2r, \quad r \in (0, \frac{\pi}{2}].$$

Then it is is sufficient to prove

$$\sin 2r \ge 2r \cos 2r$$
,  $r \in (0, \frac{\pi}{2}]$ .

The inequality follows from  $\tan 2r \ge 2r$  if  $r \in (0, \pi/4)$ , and is obviously true if  $r \in (\pi/4, \pi/2]$ . This ends the proof.

We are now in a position to prove Theorem 1 in the following.

*Proof*: Let  $r_p(x) = d(p,x)$  denote the distance function from the fixed point  $p \in \mathbb{S}^n$ . Next we follow the arguments in [7] (see also [8,9]). Let  $f = r_p^\alpha \varphi$  with  $\alpha < 0$ . Then  $\nabla f = \varphi \nabla r_p^\alpha + r_p^\alpha \nabla \varphi$  and

$$\begin{split} |\nabla f|^2 &= \varphi^2 |\nabla r_p^{\alpha}|^2 + r_p^{2\alpha} |\nabla \varphi|^2 + 2r_p^{\alpha} \varphi \langle \nabla r_p^{\alpha}, \nabla \varphi \rangle \\ &\geqslant \varphi^2 \alpha^2 r_p^{2\alpha - 2} + \frac{1}{2} \langle \nabla r_p^{2\alpha}, \nabla \varphi^2 \rangle \\ &= \varphi^2 \alpha^2 r_p^{2\alpha - 2} + \frac{1}{2} \mathrm{div} (\varphi^2 \nabla r_p^{2\alpha}) - \frac{1}{2} \varphi^2 \Delta r_p^{2\alpha}, \end{split} \tag{3}$$

where

$$\begin{split} \Delta r_p^{2\alpha} &= \text{div}(\nabla r_p^{2\alpha}) = \text{div}(2\alpha r_p^{2\alpha - 1} \nabla r_p) \\ &= 2\alpha r_p^{2\alpha - 1} \Delta r_p + 2\alpha (2\alpha - 1) r_p^{2\alpha - 2} \\ &= 2(n - 1)\alpha r_p^{2\alpha - 1} \cot r_p + 2\alpha (2\alpha - 1) r_p^{2\alpha - 2}. \end{split} \tag{4}$$

The last equality holds because  $\Delta r_p = (n-1)\cot r_p$  in the sphere. Therefore, from (3) and (4), we have

$$|\nabla f|^2 \geqslant \frac{1}{2} \operatorname{div}(\varphi^2 \nabla r_p^{2\alpha}) + \alpha (1 - \alpha) \frac{f^2}{r_p^2} - (n - 1) \alpha \frac{f^2}{r_p} \cot r_p.$$

Integrating both sides of the inequality above on  $B_p(\pi/2)$  gives

$$\int_{B_{p}(\frac{\pi}{2})} |\nabla f|^{2} dV \geqslant \frac{1}{2} \int_{B_{p}(\frac{\pi}{2})} \operatorname{div}(\varphi^{2} \nabla r_{p}^{2\alpha}) dV$$

$$+\alpha (1-\alpha) \int_{B_{p}(\frac{\pi}{2})} \frac{f^{2}}{r_{p}^{2}} dV - (n-1)\alpha \int_{B_{p}(\frac{\pi}{2})} \frac{f^{2}}{r_{p}} \cot r_{p} dV. \quad (5)$$

Let q be the antipodal point of p. Then  $r_q(x) = d(q, x) = \pi - r_p$  for any  $x \in \mathbb{S}^n$ . Set  $f = r_q^{\alpha} \phi$ . Then by similar arguments, we also have

$$\int_{B_{q}(\frac{\pi}{2})} |\nabla f|^{2} dV \geqslant \frac{1}{2} \int_{B_{q}(\frac{\pi}{2})} \operatorname{div}(\phi^{2} \nabla r_{q}^{2\alpha}) dV 
+\alpha (1-\alpha) \int_{B_{q}(\frac{\pi}{2})} \frac{f^{2}}{r_{q}^{2}} dV - (n-1)\alpha \int_{B_{q}(\frac{\pi}{2})} \frac{f^{2}}{r_{q}} \cot r_{q} dV.$$
(6)

Note that  $\partial B_p(\pi/2)=\partial B_q(\pi/2)$  and  $\nabla r_p=-\nabla r_q$ ,  $r_p=r_q=\pi/2$  on  $\partial B_p(\pi/2)$ . By Stokes theorem, we obtain

$$\int_{B_{p}(\frac{\pi}{2})} \operatorname{div}(\varphi^{2} \nabla r_{p}^{2\alpha}) \, dV + \int_{B_{q}(\frac{\pi}{2})} \operatorname{div}(\varphi^{2} \nabla r_{q}^{2\alpha}) \, dV \\
= \int_{\partial B_{p}(\frac{\pi}{2})} \langle \varphi^{2} \nabla r_{p}^{2\alpha}, \mathbf{n} \rangle \, d\nu + \int_{\partial B_{q}(\frac{\pi}{2})} \langle \varphi^{2} \nabla r_{q}^{2\alpha}, \mathbf{n} \rangle \, d\nu \\
= 2\alpha \int_{\partial B_{p}(\frac{\pi}{2})} \frac{f^{2}}{r_{p}} \langle \nabla r_{p}, \mathbf{n} \rangle \, d\nu + 2\alpha \int_{\partial B_{q}(\frac{\pi}{2})} \frac{f^{2}}{r_{q}} \langle \nabla r_{q}, \mathbf{n} \rangle \, d\nu \\
= \frac{4\alpha}{\pi} \int_{\partial B_{p}(\frac{\pi}{2})} f^{2} \langle \nabla r_{p} + \nabla r_{q}, \mathbf{n} \rangle \, d\nu = 0, \tag{7}$$

where **n** is a fixed normal vector along  $\partial B_p(\pi/2)$  and dv is the induced volume form with respect to **n**. Therefore, it follows from (5)–(7) that

$$\begin{split} \int_{\mathbb{S}^n} |\nabla f|^2 \, \mathrm{d} V &\geqslant \ \alpha (1-\alpha) \int_{B_p(\frac{\pi}{2})} \frac{f^2}{r_p^2} \, \mathrm{d} V \\ &+ \alpha (1-\alpha) \int_{B_q(\frac{\pi}{2})} \frac{f^2}{r_q^2} \, \mathrm{d} V - (n-1) \alpha \int_{B_p(\frac{\pi}{2})} \frac{f^2}{r_p} \cot r_p \, \mathrm{d} V \\ &- (n-1) \alpha \int_{B_n(\frac{\pi}{2})} \frac{f^2}{r_q} \cot r_q \, \mathrm{d} V, \end{split}$$

which shows

$$\begin{split} \int_{\mathbb{S}^n} |\nabla f|^2 \, \mathrm{d}V - (n-1)\alpha \int_{B_p(\frac{\pi}{2})} f^2 \frac{1 - r_p \cot r_p}{r_p^2} \, \mathrm{d}V \\ - (n-1)\alpha \int_{B_q(\frac{\pi}{2})} f^2 \frac{1 - r_q \cot r_q}{r_q^2} \, \mathrm{d}V \\ \geqslant \alpha (2 - n - \alpha) \int_{B_p(\frac{\pi}{2})} \frac{f^2}{r_p^2} \, \mathrm{d}V + \alpha (2 - n - \alpha) \int_{B_q(\frac{\pi}{2})} \frac{f^2}{r_q^2} \, \mathrm{d}V. \end{split}$$

Using Lemma 1 and letting  $\alpha = -(n-2)/2$ , we deduce that

$$\begin{split} \int_{\mathbb{S}^n} |\nabla f|^2 \, \mathrm{d}V + \frac{2(n-1)(n-2)}{\pi^2} \int_{\mathbb{S}^n} f^2 \, \mathrm{d}V \\ & \geq \frac{(n-2)^2}{4} \Biggl( \int_{B_p(\frac{\pi}{2})} \frac{f^2}{r_p^2} \, \mathrm{d}V + \int_{B_q(\frac{\pi}{2})} \frac{f^2}{r_q^2} \, \mathrm{d}V \Biggr). \end{split}$$

In what follows, we show the constant  $(n-2)^2/4$  is sharp. The skill is borrowed from [9] (see also [8,12]). Let  $\eta: \mathbb{R} \to [0,1]$  be a smooth function such that  $0 \le \eta \le 1$  and

$$\eta(t) = \begin{cases} 1, & t \in [-1, 1]; \\ 0, & |t| \ge 2. \end{cases}$$

Let  $H(t) = 1 - \eta(t)$ , and for sufficient small  $\varepsilon > 0$  we construct

$$f_{\varepsilon}(r) = \begin{cases} 0, & r = 0; \\ H(\frac{r}{\varepsilon})r^{\frac{2-n}{2}}, & 0 < r \leq \frac{\pi}{2}; \\ H(\frac{\pi-r}{\varepsilon})(\pi-r)^{\frac{2-n}{2}}, & \frac{\pi}{2} \leq r < \pi; \\ 0, & r = \pi. \end{cases}$$

Observe that  $f_{\varepsilon}(r)$  can be approximated by smooth functions on the sphere  $\mathbb{S}^n$ . Compute

$$\begin{split} &\int_{\mathbb{S}^{n}} f_{\varepsilon}^{2} \, \mathrm{d}V = \int_{B_{p}(\frac{\pi}{2})} f_{\varepsilon}^{2} \, \mathrm{d}V + \int_{B_{q}(\frac{\pi}{2})} f_{\varepsilon}^{2} \, \mathrm{d}V \\ &= \mathrm{Vol}(\mathbb{S}^{n-1}) \int_{\varepsilon}^{\frac{\pi}{2}} H^{2}(\frac{r_{p}}{\varepsilon}) r_{p}^{2-n} (\sin r_{p})^{n-1} \, \mathrm{d}r \\ &+ \mathrm{Vol}(\mathbb{S}^{n-1}) \int_{\frac{\pi}{2}}^{\pi-\varepsilon} H^{2}(\frac{\pi-r_{p}}{\varepsilon}) (\pi-r_{p})^{2-n} (\sin(\pi-r_{p}))^{n-1} \, \mathrm{d}r \\ &= \mathrm{Vol}(\mathbb{S}^{n-1}) \int_{\varepsilon}^{\frac{\pi}{2}} H^{2}(\frac{r_{p}}{\varepsilon}) r_{p}^{2-n} (\sin r_{p})^{n-1} \, \mathrm{d}r \\ &+ \mathrm{Vol}(\mathbb{S}^{n-1}) \int_{\varepsilon}^{\frac{\pi}{2}} H^{2}(\frac{r_{q}}{\varepsilon}) r_{q}^{2-n} (\sin r_{q})^{n-1} \, \mathrm{d}r \\ &= 2 \mathrm{Vol}(\mathbb{S}^{n-1}) \int_{\varepsilon}^{\frac{\pi}{2}} H^{2}(\frac{r_{p}}{\varepsilon}) r_{p}^{2-n} (\sin r_{p})^{n-1} \, \mathrm{d}r \\ &\leq 2 \mathrm{Vol}(\mathbb{S}^{n-1}) \int_{\varepsilon}^{\frac{\pi}{2}-n} r_{p}^{n-1} \, \mathrm{d}r = \left(\frac{\pi^{2}}{4} - \varepsilon^{2}\right) \mathrm{Vol}(\mathbb{S}^{n-1}). \end{split}$$

On the other hand, we get

$$\begin{split} \int_{B_p(\frac{\pi}{2})} \frac{f_{\varepsilon}^2}{r_p^2} \, \mathrm{d}V &= \mathrm{Vol}(\mathbb{S}^{n-1}) \int_{\varepsilon}^{\frac{\pi}{2}} H^2(\frac{r_p}{\varepsilon}) r_p^{-n} (\sin r_p)^{n-1} \, \mathrm{d}r \\ &\geqslant \mathrm{Vol}(\mathbb{S}^{n-1}) \int_{2\varepsilon}^{\frac{\pi}{2}} H^2(\frac{r_p}{\varepsilon}) r_p^{-n} (\sin r_p)^{n-1} \, \mathrm{d}r \\ &= \mathrm{Vol}(\mathbb{S}^{n-1}) \int_{2\varepsilon}^{\frac{\pi}{2}} r_p^{-n} (\sin r_p)^{n-1} \, \mathrm{d}r, \end{split}$$

$$\begin{split} \int_{B_q(\frac{\pi}{2})} \frac{f_\varepsilon^2}{r_q^2} \, \mathrm{d}V \\ &= \mathrm{Vol}(\mathbb{S}^{n-1}) \! \int_{\frac{\pi}{2}}^{\pi-\varepsilon} \! H^2(\frac{\pi-r_p}{\varepsilon}) (\pi-r_p)^{-n} (\sin(\pi-r_p))^{n-1} \mathrm{d}r \\ &= \mathrm{Vol}(\mathbb{S}^{n-1}) \! \int_{\varepsilon}^{\frac{\pi}{2}} \! H^2(\frac{r_q}{\varepsilon}) r_q^{-n} (\sin r_q)^{n-1} \mathrm{d}r \\ &\geqslant \mathrm{Vol}(\mathbb{S}^{n-1}) \! \int_{2\varepsilon}^{\frac{\pi}{2}} r_q^{-n} (\sin r_q)^{n-1} \mathrm{d}r. \end{split}$$

Therefore, combining the above two inequalities, we obtain

$$\int_{B_{p}(\frac{\pi}{2})} \frac{f_{\varepsilon}^{2}}{r_{p}^{2}} dV + \int_{B_{q}(\frac{\pi}{2})} \frac{f_{\varepsilon}^{2}}{r_{q}^{2}} dV$$

$$\geq 2\text{Vol}(\mathbb{S}^{n-1}) \int_{2\varepsilon}^{\frac{\pi}{2}} r_{p}^{-n} (\sin r_{p})^{n-1} dr. \quad (9)$$

Next we are to estimate

$$\int_{\mathbb{S}^n} |\nabla f_{\varepsilon}|^2 dV = \int_{B_{\rho}(\frac{\pi}{2})} |\nabla f_{\varepsilon}|^2 dV + \int_{B_{q}(\frac{\pi}{2})} |\nabla f_{\varepsilon}|^2 dV.$$

A straightforward calculation yields

$$\begin{split} \left( \int_{B_{p}(\frac{\pi}{2})} |\nabla f_{\varepsilon}|^{2} \, \mathrm{d}V \right)^{\frac{1}{2}} &= \mathrm{Vol}(\mathbb{S}^{n-1})^{\frac{1}{2}} \left( \int_{\varepsilon}^{\frac{\pi}{2}} \left| H'(\frac{r_{p}}{\varepsilon}) \frac{1}{\varepsilon} r_{p}^{\frac{2-n}{2}} \right|^{2} \right. \\ &+ \frac{2-n}{2} H(\frac{r_{p}}{\varepsilon}) r_{p}^{-\frac{n}{2}} \left|^{2} (\sin r_{p})^{n-1} \, \mathrm{d}r \right)^{\frac{1}{2}} \\ &\leq \frac{\mathrm{Vol}(\mathbb{S}^{n-1})^{\frac{1}{2}}}{\varepsilon} \left( \int_{\varepsilon}^{\frac{\pi}{2}} \left| H'(\frac{r_{p}}{\varepsilon}) \right|^{2} r_{p}^{2-n} (\sin r_{p})^{n-1} \, \mathrm{d}r \right)^{\frac{1}{2}} \\ &+ \frac{n-2}{2} \mathrm{Vol}(\mathbb{S}^{n-1})^{\frac{1}{2}} \left( \int_{\varepsilon}^{2\varepsilon} \left| H'(\frac{r_{p}}{\varepsilon}) \right|^{2} r_{p}^{2-n} (\sin r_{p})^{n-1} \, \mathrm{d}r \right)^{\frac{1}{2}} \\ &= \frac{\mathrm{Vol}(\mathbb{S}^{n-1})^{\frac{1}{2}}}{\varepsilon} \left( \int_{\varepsilon}^{2\varepsilon} \left| H'(\frac{r_{p}}{\varepsilon}) \right|^{2} r_{p}^{2-n} (\sin r_{p})^{n-1} \, \mathrm{d}r \right)^{\frac{1}{2}} \\ &\leq \frac{\mathrm{Vol}(\mathbb{S}^{n-1})^{\frac{1}{2}}}{\varepsilon} \max_{t \in [0,2]} H'(t) \left( \int_{\varepsilon}^{2\varepsilon} r_{p} \, \mathrm{d}r \right)^{\frac{1}{2}} \\ &+ \frac{n-2}{2} \mathrm{Vol}(\mathbb{S}^{n-1})^{\frac{1}{2}} \left( \int_{\varepsilon}^{\frac{\pi}{2}} r_{p}^{-n} (\sin r_{p})^{n-1} \, \mathrm{d}r \right)^{\frac{1}{2}} \\ &= \sqrt{\frac{3}{2}} \mathrm{Vol}(\mathbb{S}^{n-1})^{\frac{1}{2}} \max_{t \in [0,2]} H'(t) \\ &+ \frac{n-2}{2} \mathrm{Vol}(\mathbb{S}^{n-1})^{\frac{1}{2}} \left( \int_{\varepsilon}^{\frac{\pi}{2}} r_{p}^{-n} (\sin r_{p})^{n-1} \, \mathrm{d}r \right)^{\frac{1}{2}}, \end{split}$$

$$\begin{split} &\left(\int_{B_{q}(\frac{\pi}{2})} |\nabla f_{\varepsilon}|^{2} \, \mathrm{d}V\right)^{\frac{1}{2}} \\ &= \mathrm{Vol}(\mathbb{S}^{n-1})^{\frac{1}{2}} \Bigg(\int_{\frac{\pi}{2}}^{\pi-\varepsilon} \left| H'(\frac{\pi-r_{p}}{\varepsilon})^{\frac{-1}{\varepsilon}} (\pi-r_{p})^{\frac{2-n}{2}} \right. \\ &\left. + \frac{2-n}{2} H(\frac{\pi-r_{p}}{\varepsilon}) (\pi-r_{p})^{-\frac{n}{2}} \right|^{2} (\sin(\pi-r_{p}))^{n-1} \mathrm{d}r \Bigg)^{\frac{1}{2}} \\ &= \mathrm{Vol}(\mathbb{S}^{n-1})^{\frac{1}{2}} \Bigg(\int_{\varepsilon}^{\frac{\pi}{2}} \left| H'(\frac{r_{q}}{\varepsilon})^{\frac{-1}{2}} r_{q}^{\frac{2-n}{2}} \right. \\ &\left. + \frac{2-n}{2} H(\frac{r_{q}}{\varepsilon}) r_{q}^{-\frac{n}{2}} \right|^{2} (\sin r_{q})^{n-1} \, \mathrm{d}r \Bigg)^{\frac{1}{2}} \\ &\leqslant \sqrt{\frac{3}{2}} \mathrm{Vol}(\mathbb{S}^{n-1})^{\frac{1}{2}} \max_{t \in [0,2]} H'(t) \\ &+ \frac{n-2}{2} \mathrm{Vol}(\mathbb{S}^{n-1})^{\frac{1}{2}} \Bigg(\int_{\varepsilon}^{\frac{\pi}{2}} r_{q}^{-n} (\sin r_{q})^{n-1} \, \mathrm{d}r \Bigg)^{\frac{1}{2}}, \end{split}$$

Thus, we have

$$\int_{\mathbb{S}^{n}} |\nabla f_{\varepsilon}|^{2} dV \leq 3 \text{Vol}(\mathbb{S}^{n-1}) (\max_{t \in [0,2]} H'(t))^{2} 
+ \frac{(n-2)^{2}}{2} \text{Vol}(\mathbb{S}^{n-1}) \int_{\varepsilon}^{\frac{\pi}{2}} r_{q}^{-n} (\sin r_{q})^{n-1} dr 
+ \sqrt{\frac{3}{2}} (n-2) \text{Vol}(\mathbb{S}^{n-1}) 
\times \max_{t \in [0,2]} H'(t) \left( \int_{\varepsilon}^{\frac{\pi}{2}} r_{q}^{-n} (\sin r_{q})^{n-1} dr \right)^{\frac{1}{2}}. \quad (10)$$

Since  $f_{\varepsilon}(r)$  can be approximated by smooth functions on the sphere  $\mathbb{S}^n$ , then, by (8)–(10), it holds that

$$\begin{split} C := &\inf_{f \in C^{\infty}(\mathbb{S}^{n}) \setminus \{0\}} \frac{\int_{\mathbb{S}^{n}} |\nabla f|^{2} \, \mathrm{d}V + \frac{2(n-1)(n-2)}{\pi^{2}} \int_{\mathbb{S}^{n}} f^{2} \, \mathrm{d}V}{\int_{B_{p}(\frac{\pi}{2})} \frac{f^{2}}{r_{p}^{2}} \, \mathrm{d}V + \int_{B_{q}(\frac{\pi}{2})} \frac{f^{2}}{r_{q}^{2}} \, \mathrm{d}V} \\ \leqslant &\frac{\int_{\mathbb{S}^{n}} |\nabla f_{\varepsilon}|^{2} \, \mathrm{d}V + \frac{2(n-1)(n-2)}{\pi^{2}} \int_{\mathbb{S}^{n}} f^{2} \, \mathrm{d}V}{\int_{B_{p}(\frac{\pi}{2})} \frac{f_{\varepsilon}^{2}}{r_{p}^{2}} \, \mathrm{d}V + \int_{B_{q}(\frac{\pi}{2})} \frac{f_{\varepsilon}^{2}}{r_{q}^{2}} \, \mathrm{d}V} \\ \leqslant &\frac{\frac{2(n-1)(n-2)}{\pi^{2}} (\frac{\pi^{2}}{4} - \varepsilon^{2})}{2 \int_{2\varepsilon}^{\frac{\pi}{2}} r_{p}^{-n} (\sin r_{p})^{n-1} \, \mathrm{d}r} + \frac{3(\max_{t \in [0,2]} H'(t))^{2}}{2 \int_{2\varepsilon}^{\frac{\pi}{2}} r_{p}^{-n} (\sin r_{q})^{n-1} \, \mathrm{d}r} \\ &+ \frac{(n-2)^{2}}{4} \frac{\int_{\varepsilon}^{\frac{\pi}{2}} r_{q}^{-n} (\sin r_{q})^{n-1} \, \mathrm{d}r}{\int_{2\varepsilon}^{\frac{\pi}{2}} r_{p}^{-n} (\sin r_{p})^{n-1} \, \mathrm{d}r} \\ &+ \frac{\sqrt{\frac{3}{2}} (n-2) \mathrm{Vol}(\mathbb{S}^{n-1}) \max_{t \in [0,2]} H'(t) \left(\int_{\varepsilon}^{\frac{\pi}{2}} r_{q}^{-n} (\sin r_{q})^{n-1} \, \mathrm{d}r}{2 \int_{2\varepsilon}^{\frac{\pi}{2}} r_{p}^{-n} (\sin r_{p})^{n-1} \, \mathrm{d}r} \\ &:= I + II + III + IV. \end{split}$$

Note that

$$\lim_{\varepsilon \to 0} \int_{2\varepsilon}^{\frac{\pi}{2}} r_p^{-n} (\sin r_p)^{n-1} dr = \infty,$$

and by L'Hospital rule,

$$\lim_{\varepsilon \to 0} \frac{\int_{\varepsilon}^{\frac{\pi}{2}} r_q^{-n} (\sin r_q)^{n-1} dr}{\int_{2\varepsilon}^{\frac{\pi}{2}} r_p^{-n} (\sin r_p)^{n-1} dr} = 1.$$

This implies that I = II = IV = 0, and  $C \le (n-2)^2/4$ . The reverse inequality follows from the Hardy inequalty in Theorem 1. This completes the proof.

Acknowledgements: This research is supported by NSFC (No. 11971253), AHNSF (No. 2108085MA11) and GXBJRC (No. gxbjZD2021077).

### REFERENCES

- 1. Baras P, Goldstein J (1984) The heat equation with a singular potential. *Trans Amer Math Soc* **284**, 121–139.
- García Azorero JP, Peral Alonso I (1998) Hardy inequalities and some critical elliptic and parabolic problems. J Differ Equations 144, 441–476.

- Kombe I (2004) The linear heat equation with a highly singular, oscillating potential. *Proc Amer Math Soc* 132, 2683–2691.
- Carron G (1997) Inégalités de Hardy sur les variétés Riemanniennes non-compactes. J Math Pures Appl 76, 883–891
- Du F, Mao J (2015) Hardy and Rellich type inequalities on metric measure spaces. J Math Anal Appl 429, 354–365
- D'Ambrosio L, Dipierro S (2014) Hardy inequalities on Riemannian manifolds and applications. Ann Inst Henri Poincaré Anal Non Linéaire 31, 449–475.
- Kombe I, Özaydin M (2009) Improved Hardy and Rellich inequalities on Riemannian manifolds. *Trans Amer Math Soc* 361, 6191–6203.
- Xiao Y (2016) Some Hardy inequalities on the sphere. J Math Inequal 10, 793–805.
- 9. Yin S (2018) A sharp Hardy type inequality on the sphere. *New York J Math* **24**, 1101–1110.
- 10. Abolarinwa A, Rauf K, Yin S (2019) Sharp  $L^p$  Hardy type and uncertainty principle inequalities on the sphere. *J Math Inequal* **13**, 1011–1022.
- 11. Sun X, Pan F (2017) Hardy type inequalities on the sphere. *J Ineq Appl* **148**, 1–8.
- Yang Q, Su D, Kong Y (2014) Hardy inequalities on Riemannian manifolds with negative curvature. *Commun Contemp Math* 16, UD 1350043.