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A refinement of Hardy type inequality on the n-spheres
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ABSTRACT: We give a refinement of Hardy type inequality with the best constant on the sphere. This improves the

result of Xiao [J Math Inequal 10 (2016):793-805].
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INTRODUCTION

The classical Hardy inequality states that, for n = 3 and
all f € C>°(R™\{0}),
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The constant (n—2)%/4 is optimal and not attained
in the Sobolev space W12(R"\{0}). There has been
a lot of research concerning Hardy inequality on the
Euclidean space because of its applications to partial
differential equations involving singular potentials. We
can refer to [1-3] and the references therein.

The validity of Hardy inequality on a manifold and
its best constants allows people to obtain qualitative
properties on the manifold. In [4], Carron studied
the weighted L2-Hardy inequalities on a Riemannian
manifold under some geometric assumptions on the
weight function and obtained
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for any f € C;°(M), where the weight function p
satisfies [Vp| =1 and Ap > %. Along this line, we
refer to [5-7] and so on. Particularly, in [7] Kombe and
Ozaydin obtained the improved Hardy inequalities in
the Poincaré conformal disc model
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where f € C>°(B"\{0}) and p=log[(1+|x|) / (1—|x[)]
is the geodesic distance. Furthermore, the constant
(n—2)%/4 is sharp.

By comparison with the results above, the results
of Hardy inequality on the sphere are relatively few.
Recently, Xiao [8] studied the Hardy type inequality on
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the sphere and derived the following inequality
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for any function f € C*°(S") and some constant C,
where d(p, x) is the geodesic distance from p on S",
and the constant (n—2)?/4 is sharp.

In [9] the author used the tangent function and
obtained another type Hardy inequality on the sphere
as follows.
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The results of the LP Hardy inequalities were discussed
in [10, 11], respectively.

In this short note, we still focus on Inequality (1).
We observe that for any 0 < R < 7, Inequality (1) can
be changed by
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However it is not easy to see whether the constant
(n—2)%/4 is sharp. Clearly, if it is not sharp, then
(2) boils down to very little significance. The other
observation is that the first term in the left-hand side
in (1) has no effect on the sharpness of the constant
(n—2)?/4 regardless of the choice of C, but cannot
be removed because it leads to a contradiction if f is
a nonzero constant function. This may be the most
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remarkable difference from that in Euclidean spaces
and some other Riemannian manifolds. As a conse-
quence, it is very interesting and important to prove
the sharpness of the constant (n—2)?/4 in (2), and
consider how to determine and reduce that constant
C. Specifically, by choosing R = 7t/2, we adapt the
inequality (1) to the following form.

Theorem 1 Let S™ be the n dimensional sphere with
n = 3. Then for any function f € C*°(S"), it holds
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where p and q are the antipodal points, and B,(7/2)
(resp., By(m/2)) denotes the geodesic ball centered at
p (resp., q) of radius m/2. Moreover, the constant
(n—2)%/4 is sharp. That is,
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Our proof is based on Lemma 1 below and a
new construction of the auxiliary functions. Then, by
using symmetry of spheres and standard discussions,
Theorem 1 is proved.

THE PROOF OF THE MAIN RESULT

We first establish a useful lemma as follows.

Lemma 1

N
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Proof: Let F(r) = (1—rcotr)/r.
4/m2, and by L'Hospital’s rule
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Then F(n/2) =
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To prove the result, it suffices to show F’(r) = 0. Since
, r?ese?r4+rcotr —2
F'(r)= s
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we only need to show
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That is to prove
i
r2+rsinrcosr = 2sin’r, r e (0, E].
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Namely,

1
r2+ =rsin2r > 1—cos2r, r <€ (0, E].

2 2
Notice that the inequality above becomes the equality
when r = 0. Therefore, the inequality is valid if

3
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By a similar argument, it simply requires that

1= rsin2r+cos2r, r e (0, g].
Then it is is sufficient to prove
T
sin2r = 2rcos2r, r € (0, E]'

The inequality follows from tan 2r = 2r if r € (0, t/4),
and is obviously true if r € (1t/4, /2]. This ends the
proof. O
We are now in a position to prove Theorem 1 in
the following.
Proof: Let r,(x) =d(p, x) denote the distance function
from the fixed point p € S". Next we follow the
arguments in [7] (see also [8,9]). Let f = rl‘j‘go with
a<0. Then Vf = goVrg + rg‘Vap and
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where
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The last equality holds because Ar, = (n—1)cotr, in
the sphere. Therefore, from (3) and (4), we have

IVFI2 > %div(<p2Vr§a)+a(1—a){—§—(n—1)a{—:cotrp.

Integrating both sides of the inequality above on
B,(m/2) gives

1
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Let q be the antipodal point of p. Then r,(x) =
d(q,x) =m—r, for any x € S". Set f = r;‘c,b. Then
by similar arguments, we also have

1
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q
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—cotr dv. (6)
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Note that dB,(n/2) = 0B,(n/2) and Vr, = —Vr,,
r, =1y = m/2 on dB,(n/2). By Stokes theorem, we
obtain
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where n is a fixed normal vector along 9B, (/2) and
dv is the induced volume form with respect to n.
Therefore, it follows from (5)—(7) that
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which shows
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Using Lemma 1 and letting a = —(n—2) /2, we deduce
that

J‘ |vf|2dV+WJ deV
Sn sn
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In what follows, we show the constant (n—2)?/4
is sharp. The skill is borrowed from [9] (see also
[8,12]). Let n : R — [0, 1] be a smooth function such
that 0 <71 <1 and

1, te[-1,1];
t)=
n(®) {o, It] > 2.

Let H(t) =1 —m(t), and for sufficient small ¢ > 0 we
construct

0, r=0;
H(g)r%, 0<r<g;

f =80 L
H(T)(’IT—T')Z, 5 ST<T;
0, r=rm.

Observe that f,(r) can be approximated by smooth
functions on the sphere S". Compute

Jfﬁdv:f fde+f fZdv
5" B,(5) By(5)

P
=Vol(s" ™) J H*(£)r2™(sinr,)" ' dr
e’ P P
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+Vol(s" ™) H2(

)(ﬂ: r,)* "(sin(m—r,))"'dr
HZ(%")rj—“(sm )l dr

5o
+Vol(S™ ™) f H 2(—q)rj_“(sin g tdr
. €

oo
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£
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—

< 2Vol(s™ ) J —e2)Vol(s™™).  (8)

On the other hand, we get
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2
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Therefore, combining the above two inequalities, we
obtain
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Next we are to estimate
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A straightforward calculation yields
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Thus, we have
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Since f,(r) can be approximated by smooth functions
on the sphere S", then, by (8)-(10), it holds that

ry"(sin r)" dr) . (10)
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+
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=I+II+III+1IV.
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Note that

(e

2
limf r,"(sin r,)"tdr = oo,

2e

e—0

and by L'Hospital rule,

n
fgz rq_"(sin rg"tdr
1i

=
e=0 (3 _pras n—1
sz r (smrp) dr

This implies that I = I =1V =0, and C < (n—2)?/4.
The reverse inequality follows from the Hardy in-
equalty in Theorem 1. This completes the proof. O
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