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ABSTRACT: In this paper, we study the unicity of meromorphic functions concerning their small functions and
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INTRODUCTION AND MAIN RESULTS

In this paper, we assume that the readers are familiar
with the basic notions of Nevanlinna value distribution
theory, see ([1–3]). In the following, a meromorphic
function means meromorphic in the whole complex
plane. By S(r, f ), we denote any quantity satisfying
S(r, f ) = o(T (r, f )) as r →∞ outside of an excep-
tional set E with finite logarithmic measure

∫

E dr/r <
∞. A meromorphic function a is said to be a small
function of f if it satisfies T (r, a) = o(T (r, f )). We say
that two non-constant meromorphic functions f and
g share small function a IM(CM) if f − a and g − a
have the same zeros ignoring multiplicities (counting
multiplicities). Let f be a non-constant meromorphic
function. We denote by N1(r, 1/ f ) the counting func-
tion of simple zeros of f .

Let f be a non-constant meromorphic function.
The order of f is defined by

λ= lim
r→∞

log+ T (r, f )
log r

.

Let a be a small function of f and g and let
S( f = a = g) be the set of all common zeros of f − a
and g−a counting multiplicities. We say that two non-
constant meromorphic functions f and g share small
function a CM almost if

N
�

r, 1
f −a

�

+N
�

r, 1
g−a

�

−2N(r, f = a = g)

= S(r, f )+ S(r, g).

Let c be a nonzero finite complex constant, and let f be
a meromorphic function, we define its shift by f (z+ c)
and its difference operator by

∆c f (z) = f (z+ c)− f (z).

Nevanlinna [2] proved the following famous five-
value theorem.

Theorem A Let f (z) and g(z) be two non-constant
meromorphic functions, and let a j ( j = 1, 2,3,4, 5) be
five distinct values in the extended complex plane. If f (z)
and g(z) share a j ( j = 1, 2,3, 4,5) IM, then f (z)≡ g(z).

In 2000, Li and Qiao [4] proved that Theorem A is
still valid for five small functions, they proved

Theorem B Let f (z) and g(z) be two non-constant
meromorphic functions, and let a j(z) ( j = 1,2, 3,4, 5)
(one of them can be∞) be five distinct small functions
of f (z) and g(z). If f (z) and g(z) share a j(z) ( j =
1,2, 3,4, 5) IM, then f (z)≡ g(z).

Recently, value distribution in difference analogue
of meromorphic functions has become a subject of
some interests, see [5–18].

In 2012, Chen and Chen [5] proved

Theorem C Let f (z) be a non-constant meromorphic
function of finite order, let a, c be two nonzero finite
values, and let n ¾ 7 be a positive integer. If [ f (z)]n

and [∆ f (z)]n share a CM, f (z) and ∆ f (z) share ∞
CM, then f (z)≡ t∆ f (z), where tn = 1, t 6= 1.

In 2018, Qi, Li and Yang [15] proved

Theorem D Let f (z) be a non-constant meromorphic
function of finite order, let a, c be two nonzero finite
values, and let n ¾ 9 be a positive integer. If [ f ′(z)]n

and [ f (z+c)]n share a CM, f ′(z) and f (z+c) share∞
CM, then f ′(z)≡ t f (z+ c), where tn = 1.

Theorem E Let f (z) be a non-constant entire function
of finite order, let a, c be two nonzero finite values, and
let n¾ 5 be a positive integer. If [ f ′(z)]n and [ f (z+ c)]n

share a CM, f ′(z) and f (z + c) share ∞ CM, then
f ′(z)≡ t f (z+ c), where tn = 1.

In 2020, Wang and Fang [16] removed the condi-
tion that the function f (z) is of finite order in Theorems
D and E, and proved
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Theorem F Let f (z) be a non-constant meromorphic
function, let a, c be two nonzero finite values, and let
n ¾ 5, k be two positive integers. If [ f (k)(z)]n and
[ f (z + c)]n share a CM, f (k)(z) and f (z + c) share ∞
CM, then f (k)(z)≡ t f (z+ c), where tn = 1.

By above theorems, we naturally pose following
problem:

Problem 1 Are Theorem C, Theorem D, and Theorem F
still valid if the constant a is replaced by a small function
a(z) of f (z)?

In this paper, we study the problem and obtain the
following results.

Theorem 1 Let f (z) be a non-constant meromorphic
function, let c be a nonzero finite value and n ¾ 6 a
positive integer, and let a(z)(6≡ 0) be a small function
of f (z). If [ f (z)]n and [∆c f (z)]n share a(z) CM, f (z)
and ∆c f (z) share∞ CM, then f (z) ≡ t∆c f (z), where
tn = 1, t 6= 1.

Hence, Theorem C is still valid if the constant a is
replaced by a small function a(z) of f (z).

Theorem 2 Let f (z) be a non-constant meromorphic
function, let c be a nonzero value and n ¾ 5 a positive
integer, and let a(z)(6≡ 0) be a small function of f (z). If
[ f (k)(z)]n and [ f (z + c)]n share a(z) CM, f (k)(z) and
f (z + c) share ∞ CM, then either f (k)(z) ≡ t f (z + c),
where tn = 1 or [ f (k)(z)]n[ f (z+ c)]n ≡ a2(z).

Remark 1 The following example shows that The-
orem F is not valid if the constant a is replaced
by a small function a(z) of f (z). In other words,
[ f (k)(z)]n[ f (z+ c)]n ≡ a2(z) can not be removed in
Theorem 2.

Example 1 Let f (z) = eez
, c = kπi and let a(z) = ezn/2.

Then by calculation we have [ f ′(z) f (z + c)]n = enz =
a2(z).

Theorem 3 Let f (z) be a transcendental meromorphic
function of finite order, let c be a nonzero value and n¾ 5
a positive integer, and let a(z)(6≡ 0) be a small function of
f (z). If [ f (k)(z)]n and [ f (z+c)]n share a(z) CM, f (k)(z)
and f (z + c) share ∞ CM, then f (k)(z) ≡ t f (z + c),
where tn = 1.

Theorem 4 Let f (z) be a transcendental meromorphic
function, let c be a nonzero value and n ¾ 5 a positive
integer, and let a(z)(6≡ 0) be a rational function. If
[ f (k)(z)]n and [ f (z + c)]n share a(z) CM, f (k)(z) and
f (z + c) share∞ CM, then f (k)(z) ≡ t f (z + c), where
tn = 1.

LEMMAS

Lemma 1 ([2, 3]) Let f (z) be a non-constant mero-
morphic function, and let k be a positive integer. Then

m
�

r, f (k)

f

�

= S(r, f ).

Lemma 2 ([14]) Let f be a non-constant meromorphic
function, and let n¾ 2 be a positive integer. If f and f (n)

have finite many zeros, then f is of finite order.

Lemma 3 ([2]) Let

H =
�

F ′′

F ′
−

2F ′

F −1

�

−
�

G′′

G′
−

2G′

G−1

�

,

where F and G are two non-constant meromorphic func-
tions. If F and G share 1 CM and H 6≡ 0, then

N1(r,
1

F−1 )¶ N(r, H)+ S(r, F)+ S(r, G).

Remark 2 We know from the proof in [2] that
Lemma 3 is valid when F and G share 1 CM almost.

Lemma 4 ([8, 10]) Let f be a non-constant meromor-
phic function of finite order, let c be a nonzero complex
number. Then

m
�

r,
f (z+ c)

f (z)

�

= S(r, f ),

for all r outside of a possible exceptional set E with finite
logarithmic measure.

Lemma 5 ([7, 12]) Let f be a non-constant meromor-
phic function of finite order, let c be a nonzero complex
number. Then

T (r, f (z+ c)) = T (r, f )+ S(r, f ),
N(r, f (z+ c)) = N(r, f )+ S(r, f ),

N(r, 1
f (z+c) ) = N(r, 1

f )+ S(r, f ).

Lemma 6 ([6, 8]) Let f be a non-constant meromor-
phic function of finite order, let c be a nonzero complex
number. If f (z+ c)≡ f (z), then f is of order at least 1.

THE PROOF OF Theorem 1

Let

F =
f n

a
, G =

[∆c f ]n

a
. (1)

Since f n and [∆c f ]n share a CM, we know that F and
G share 1 CM almost. Set

φ =
F ′

F(F −1)
−

G′

G(G−1)
. (2)

We discuss from following two cases.
Case 1: φ ≡ 0. By (2) we have

F −1
F
≡ A

G−1
G

, (3)

where A is a nonzero value.
If A= 1, then from (3) we get f n ≡ [∆c f ]n, that

is f ≡ t∆c f , where t is a complex number such that
tn = 1.
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If A 6= 1, then from (3) we have

1
F
−

A
G
≡ 1−A. (4)

By (4) we can obtain

T (r, f ) = T (r,∆c f )+ S(r, f ),
S(r, f ) = S(r,∆c f ).

(5)

According to (1), (4), (5) and Nevanlinna’s Second
Fundamental Theorem ([2], Page 19, Theorem 1.6) we
get

nT (r, f ) = T (r, F)+ S(r, f )¶ N(r, F)

+N(r, 1
F )+N(r, 1

F− 1
1−A
)+ S(r, f )

¶ N(r, f )+N(r, 1
f )+N(r,∆c f )+ S(r, f )

¶ 3T (r, f )+ S(r, f ), (6)

it follows from (6) and n ¾ 6 that T (r, f ) = S(r, f ), a
contradiction.
Case 2: φ 6≡ 0. Let z0 be a common pole of f and
∆c f with multiplicity l, then by (2) we know that z0
is the zero of ϕ, and the multiplicity is at least nl − 1.
Since f and ∆c f share∞ CM, then

N(r, F) = N(r, G)¶
1

nl −1
N(r, 1

ϕ )+ S(r, f )

¶
1

nl −1
T (r,ϕ)+ S(r, f )

¶
1

n−1
[N(r, 1

F )+N(r, 1
G )]+ S(r, f ). (7)

Let H be defined as in Lemma 3. Suppose that H 6≡ 0,
by Lemma 3 and Remark 2 we have

N(r, H)¶ N(r, 1
F )+N(r, 1

G )

+N0(r,
1
F ′ )+N0(r,

1
G′ )+ S(r, f ). (8)

where N0(r, 1/F ′) denotes the counting function cor-
responding to the zeros of F ′ which are not the zeros
of F and F − 1; N0(r, 1/G′) denotes the counting
function corresponding to the zeros of G′ which are
not the zeros of G and G − 1. By Nevanlinna’s Second
Fundamental Theorem, we get

T (r, F)+ T (r, G)¶ N(r, F)+N(r, 1
F )

+N(r, 1
F−1 )+N(r, G)+N(r, 1

G )+N(r, 1
G−1 )

−N0(r,
1
F ′ )−N0(r,

1
G′ )+ S(r, f ). (9)

Since F and G share 1 almost CM, we have

N(r, 1
F−1 )+N(r, 1

G−1 )

¶ N1(r,
1

F−1 )+
1
2 (N(r,

1
F−1 )+N(r, 1

G−1 )). (10)

By (8)–(10) we have

T (r, F)+T (r, G)¶ N(r, F)+2N(r, 1
F )+N(r, G)+2N(r, 1

G )

+ 1
2 (N(r,

1
F−1 )+N(r, 1

G−1 )) (11)

By Nevanlinna’s First Fundamental Theorem ([2], Page
12, Theorem 1.2), we have

N(r, 1
F−1 )+N(r, 1

G−1 )¶ T (r, F)+T (r, G)+S(r, f ). (12)

By (7), (11) and (12), we can obtain

T (r, F)+ T (r, G)¶ 4N(r, 1
f )+4N(r, 1

∆c f )+2N(r, f )

+2N(r,∆c f )+ S(r, f )

¶ (4+ 4
n−1 )(T (r, F)+ T (r, G))+ S(r, f ). (13)

Obviously, by (1) we have

N(r, 1
F ) = N(r, 1

f )+ S(r, f ),

N(r, F) = N(r, f )+ S(r, f ),

N(r, 1
G ) = N(r, 1

∆c f )+ S(r, f ),

N(r, G) = N(r,∆c f )+ S(r, f ),
T (r, F) = nT (r, f )+ S(r, f ),
T (r, G) = nT (r,∆c f )+ S(r, f ).

Hence, by above formulas, (13) and Nevanlinna’s First
Fundamental Theorem, we get

n(T (r, f )+ T (r,∆c f ))

¶ (4+ 4
n−1 )(N(r,

1
f )+N(r, 1

∆c f ))+ S(r, f )

¶ (4+ 4
n−1 )(T (r, f )+ T (r,∆c f ))+ S(r, f ),

and it follows that

n(1− 4
n−1 )(T (r, f )+ T (r,∆c f ))¶ S(r, f ). (14)

Thus by (14) and n ¾ 6, we get T (r, f ) = S(r, f ), a
contradiction.

Hence, H ≡ 0. Thus we have

F ′′

F ′
−2

F ′

F −1
=

G′′

G′
−2

G′

G−1
.

Solving above equation, we get

1
F −1

=
A

G−1
+ B,

A
G−1

=
1+ B− BF

F −1
(15)

where A(6= 0) and B are constants.
Now we consider three subcases.

Case 2.1: B 6= 0,−1. It follows from (15) that

T (r,∆c f ) = T (r, f )+ S(r, f ),

N
�

r,
1

F − B+1
B

�

= N(r, G).
(16)
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So by (15), (16), Nevanlinna’s Second Fundamental
Theorem, and the fact that f and ∆c f share ∞ CM,
we get

nT (r, f )¶ T (r, F)+ S(r, f )

¶ N(r, F)+N(r, 1
F )+N(r, 1

F− B+1
B
)+ S(r, f )

¶ N(r, 1
F )+N(r, F)+N(r, G)+ S(r, f )

¶ N(r, 1
f )+N(r, f )+N(r,∆c f )+ S(r, f )

¶ 3T (r, f )+ S(r, f ). (17)

Therefore, by (17) and n ¾ 6, we can get T (r, f ) =
S(r, f ), a contradiction.
Case 2.2: B = 0. By (15) we obtain

F =
G+(A−1)

A
, G = AF − (A−1). (18)

If A 6= 1, by (18) we get

N
�

r,
1

F − A−1
A

�

= N(r, 1
G ) = N(r, 1

∆c f )+ S(r, f ). (19)

By (16), (19), Nevanlinna’s Second Fundamental The-
orem, and the fact that f and ∆c f share ∞ CM, we
get

nT (r, f )¶ T (r, F)+ S(r, f )

¶ N(r, F)+N(r, 1
F )+N(r, 1

F− A−1
A
)+ S(r, f )

¶ N(r, 1
F )+N(r, F)+N(r, 1

G )+ S(r, f )

¶ N(r, 1
f )+N(r, f )+N(r, 1

∆c f )+ S(r, f )

¶ 3T (r, f )+ S(r, f ). (20)

Therefore, by (20) and n ¾ 6, we can get T (r, f ) =
S(r, f ), a contradiction.

Hence A= 1. It follows from (18) that F ≡ G. Thus
by (1) we deduce that f ≡ t∆c f , where tn = 1, t 6=−1.
Case 2.3: B = −1, by (15) we have

F =
A

−G+A+1
, G =

(A+1)F −A
F

. (21)

If A 6=−1, we get from (19) that N(r, 1
F− A

A+1
) = N(r, 1

G ).
Using the same argument as in the Case 2.1, we get a
contradiction. Thus, A= −1.

By (21), we get FG ≡ 1. It follows from FG ≡ 1
and (1) that

f n[∆c f ]n ≡ a2. (22)

Set f∆c f = b, then we get bn = a2. It follows that
T (r, b) = 2

n T (r, a). Thus b 6≡ 0 is a small function of
f . Since f and ∆c f share ∞ CM, we deduce from
f∆c f = b that

N(r, 1
f )¶ N(r, 1

b )¶ T (r, b)+O(1) = S(r, f ), (23)

N(r, f )¶ N(r, b)¶ T (r, b) = S(r, f ). (24)

Thus by Nevanlinna’s Second Fundamental Theorem,
(23), (24), and Lemma 5, we get

2T (r, f ) = T (r, f 2)¶ T (r, f 2

b )+ T (r, b)+O(1)

¶ N(r, f 2

b )+N(r, b
f 2 )+N(r, 1

f 2
b −1
)+ S(r, f )

¶ N(r, b
f fc
)+ S(r, f )¶ S(r, f ), (25)

that is T (r, f ) = S(r, f ), a contradiction.
Hence, we prove that f ≡ t∆c f , where tn = 1.

THE PROOF OF Theorem 2

Let

F =
( f (k))n

a
, G =

( fc)n

a
. (26)

Since fc and f (k) share ∞ CM, f (k) has no pole with
multiplicity 1. Then we use the same argument as in
the proof of Theorem 1 and note that (26) is replaced
by the following formula:

N(r, 1
F ) = N(r, 1

G )

¶ 1
2n−1 N(r, 1

φ )+ S(r, f )

¶ 1
2n−1 T (r,φ)+ S(r, f )

¶ 1
2n−1 [N(r,

1
F )+N(r, 1

G )]+ S(r, f ), (27)

and we prove either f (k) ≡ t fc , with tn = 1, or
( f (k) fc)n ≡ a2.

THE PROOF OF Theorem 3

By Theorem 2, we obtain either f (k) ≡ t fc , with tn = 1,
or ( f (k) fc)n ≡ a2. We claim that f (k) ≡ t fc , with tn = 1.
Otherwise, we suppose

[ f (k)]n f n
c ≡ a2. (28)

Since f is a meromorphic function of finite order, It
follows from (28) that N(r, 1/ fc) = S(r, f ). Thus by
Lemma 1, Lemma 4, Lemma 5, and Nevanlinna’s First
Fundamental Theorem, we have

2nT (r, f ) = T (r, t f rac1 f 2n)+ S(r, f )

= m(r, 1
f 2n )+N(r, 1

f 2n )+ S(r, f ) = m(r, 1
f 2n )+ S(r, f )

¶ m
�

r,
[ f (k)]n f n

c

f 2

�

+2T (r, a)+O(1)

¶ nm(r, f (k)

f )+ nm(r, fc
f )+2T (r, a)+ S(r, f )

= S(r, f ). (29)

which is T (r, f ) = S(r, f ), a contradiction.
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THE PROOF OF Theorem 4

By Theorem 2, we know that either f (k)(z) ≡ t fc(z),
where tn = 1 or [ f (k)(z)]n f n

c (z) = a2(z). We claim that

f (k)(z)≡ t fc(z), (30)

where tn = 1. Otherwise, we have

[ f (k)(z)]n f n
c (z)≡ a2(z). (31)

Since a(z) is a rational function, it follows from
(31) that both f (z) and f (k)(z) have finite many zeros
and poles. If k ¾ 2, by Lemma 2 we know that f (z) is
a transcendental meromorphic function of finite order.
Thus by Theorem 3 we get a contradiction.

Next, we consider the case of k = 1. Since f (z)
has finite many zeros and poles, we assume that

f (z) = b(z)eα(z), (32)

where b(z) is a rational function and α(z) is an entire
function. By (32) we get

fc(z) = bc(z)e
αc(z), (33)

f ′(z) = (b′(z)+α′(z)b(z))eα(z), (34)

It follows from (31)–(34) that

[(b′(z)+α′(z)b(z))bc(z)]
n en(α(z)+αc(z)) ≡ a2(z). (35)

Thus, we have

(b′(z)+α′(z)b(z))bc(z) = d(z)eβ(z), (36)

where d(z) is a rational function, and β(z) is an entire
function.

By (35) and (36), we get

dn(z)enβ(z) en(α(z)+αc(z)) ≡ a2(z). (37)

It follows from (37) that

β(z)+α(z)+αc(z)≡ A, (38)

where A is a finite complex number. Differential both
sides of (38) we obtain

β ′(z)+α′(z)+α′c(z)≡ 0. (39)

By (36) we have

α′(z)≡
c

b(z)bc(z)
eβ(z)−

b′(z)
b(z)

. (40)

Therefore,

d(z)
b(z)bc(z)

eβ(z)+
d(z)

bc(z)b2c(z)
eβc(z)

≡
b′(z)
b(z)

+
b′c(z)

bc(z)
−β ′(z). (41)

Next, we consider two cases.
Case 1:

b′(z)
b(z)

b′c(z)

bc(z)
−β ′(z)≡ 0. (42)

Then, we claim that β ′(z) ≡ 0. Otherwise, by (42) we
get

b(z)bc(z)≡ B eβ(z), (43)

where B is a nonzero constant. Since b(z) is a rational
function, so it is impossible. Thus, β ′(z) ≡ 0, that is
β(z) is a constant. And then we deduce that

d(z)
b(z)bc(z)

+
dc(z)

bc(z)b2c(z)
≡ 0.

Let A(z) = d(z)
b(z)bc(z)

. Then A(z) + Ac(z) ≡ 0, Ac(z) +
A2c(z) ≡ 0, A(z) ≡ A2c(z). Then by Lemma 6, A(z) is
a meromorphic function of order ¾ 1, but A(z) is a
rational function, it is impossible.
Case 2:

b′(z)
b(z)

+
b′c(z)

bc(z)
−β ′(z) 6≡ 0. (44)

We claim that β ′(z) 6≡ 0. Otherwise, β(z) = D is a
constant. It follows (41) that

�

d(z)
b(z)bc(z)

+
dc(z)

bc(z)b2c(z)

�

eD ≡
b′(z)
b(z)

+
b′c(z)

bc(z)
. (45)

We can rewrite above as

d(z)
b(z)bc(z)

eD −
b′(z)
b(z)

≡
dc(z)

bc(z)b2c(z)
eD −

b′c(z)

bc(z)
. (46)

Let H(z) ≡ d(z)
b(z)bc(z)

eD − b′(z)
b(z) . Then (46) implies that

Hc(z) + H2c(z) ≡ 0, H(z) + Hc(z) ≡ 0 and H(z) +
H2c(z) ≡ 0. It follows from Lemma 6 that H(z) is a
meromorphic function of order ¾ 1, a contradiction.
Hence β ′(z) 6≡ 0, and eβ(z) is a transcendental entire
function. By (41) we have

A1(z)e
β(z)+A2(z)e

βc(z) ≡ 1, (47)

where

A1(z) =
d(z)

b(z)bc(z)
� b′(z)

b(z) +
b′c(z)
bc(z)
−β ′(z)

�

, (48)

and

A2(z) =
dc(z)

bc(z)b2c(z)
� b′(z)

b(z) +
b′c(z)
bc(z)
−β ′(z)

�

. (49)

Since T (r, eβ
′
) = m(r, (eβ )′/eβ ) = S(r, eβ ), it follows

from (48) and (49) that A1(z) and A2(z) are small
functions of eβ(z). It follows from above and the
Nevanlinna’s Second Fundamental Theorem, we can
get T (r, eβ ) = S(r, eβ ), a contradiction.
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