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ABSTRACT: With the continuous development of modern agriculture, precision fertilization is based on the profit and
loss of soil moisture and nutrients, scientific irrigation and formula fertilization, to achieve full resource efficiency.
Hyperspectral remote sensing and computer vision technology are very important tools in precision fertilization.
The purpose of this study was to estimate soil nutrients in the black soil region using computer vision technology
combined with hyperspectral remote sensing. Soil samples (n=163) were collected from northwestern China. The
content of soil organic matter (SOM), total nitrogen (N), phosphorus (P), potassium (K), and pH were measured. In
the study, measured nutrient component spectrum conversion data was selected to compare global and local spatial
autocorrelation of the soil nutrient elements. Multi-step regression analysis was used to estimate soil nutrients. Finally,
the estimated value was compared with the actual value, and the percentage error was calculated to evaluate accuracy.
The results showed that the prediction model of soil total nitrogen content was the most correct, with a prediction
accuracy of 78.16% and a relative error of 21.84%, It is concluded that computer vision hyperspectral remote sensing
has high estimation accuracy and effective reflection. This study provides a basis for the determination of soil nutrients
estimated by remote sensing and can supplement the implementation of precise fertilization.
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INTRODUCTION

Soil composition is one of the most important limiting
factors affecting crop growth [1]. Crops need to
obtain water and nutrients from farmland soil. Tra-
ditional soil testing and analysis rely on laboratory
chemical analysis, which is not only complex and time-
consuming, but also high cost, which is not conducive
to a large-scale and accurate understanding of soil fer-
tility information and distribution [2]. In hyperspectral
data, each pixel is composed of different ground object
spectra. The amount of data is considerable and the
data information is very rich. This enabled us to restore
ground feature details via hyperspectral data. Hyper-
spectral remote sensing data has the advantage of high
spectral resolution compared to multispectral remote
sensing data, which makes it easier to solve problems
that cannot be solved by a multispectral data field.
Hyperspectral remote sensing plays an important role
in the social economy, national defense and military
affairs [3, 4].

In the early 20th century, hyperspectral remote
sensing technology was used to carry out applied
research and monitoring of soil information, which
showed a clear correlation between soil nutrient con-
tent and the soil reflectance spectrum. Bendor et al [5]
projected six soil indexes, including carbonate, by
analyzing soil in the near-infrared spectrum, and pre-
dicted Fe, A1, Mg in montmorillonite via near-infrared
analysis. Chodak et al [6] studied the relationship

between biochemical substances in forest soil by linear
regression analysis. Zhao et al [7] evaluated the total
nitrogen content in loess areas of China using near
infrared spectroscopy. Song et al [8] predicted SOM
and pH levels in soil, following derivative treatment,
with near infrared spectroscopy, and the correlation
coefficient was greater than 0.8. Li et al [9] predicted
the content of alkali-hydrolyzable nitrogen in soil also
via near infrared spectroscopy. Li et al [10] found that
there was a good correlation between nIR spectrum
and soil nutrients, and it was feasible to estimate soil
organic matter and pH using NIR spectrum. There are
many studies on the estimation of soil physicochemical
parameters at home and abroad [11–13], but when
these models are applied to other fields, relatively large
errors result. Most previous research has analyzed
the relationship between spectral transformation form
and soil nutrient content and established quantitative
estimation regression models. Spectral data processing
is simple but lacks in depth mining and soil spectral
information application, negatively affecting model
estimation accuracy, and comparative analysis of the
data processing system.

The main algorithms used in this study are semi-
variance function and spatial autocorrelation analysis.
Combined with experimental data, comparative anal-
ysis was conducted from the following three aspects:
hyperspectral remote sensing model estimation, the
prediction and estimation analysis of soil content via
computer vision hyperspectral remote sensing model,
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and the spectral characteristics of soil with different
nutrient content.

MATERIALS AND METHODS

Experimental materials and treatment

Data collection

The soil samples were collected from Guanzhong and
all collected soil samples were promptly returned to
the laboratory. The samples were then dispersed as
much as possible in order to have the widest pos-
sible range of nutrient content in the sample cover.
Other soil samples taken from each sampling point
were packaged separately without mixing. The soil
was simply shielded so that our experiments were as
close as possible to field measurements. A total of
163 samples were collected and sealed in plastic bags
in the laboratory for chemical analysis and spectrum
collection.

After the soil samples are returned to the labora-
tory, drying, grinding, passing through 2 mm nylon
screen, sealing and storing, for heavy metal determina-
tion. Soil test and analysis was then conducted accord-
ing to “Technical Specifications for Soil Analysis” [14].

Experimental spectrometry

Spectral measurements were taken in a dark room
with controlled lighting conditions. The samples were
placed in a sample dish with a 12 cm diameter and
1.8 cm depth (optically infinitely thick soil sample
depth of 1.5 cm). The surface of the samples was
flattened with a ruler. Light was provided by a 1000 W
halogen lamp, 70 cm from the soil sample surface, and
with a zenith angle of 30°. A sensor probe with 80° field
of view was placed vertically above the soil sample,
15 cm from the surface. We used a 2.1 cm diameter
circular probe receiving spectrum, to obtain the soil
reflection spectrum.

Computer vision and hyperspectral remote sensing
estimation

Preprocessing methods of hyperspectral data

Spectral pre-treatment has a significant impact on
model prediction accuracy [15]. Different methods
have varying degrees of success in removing noise,
reducing errors, and extracting valid spectral infor-
mation. Experiments were conducted to optimize the
appropriate spectral pretreatment method [16].
(1) Smoothing. The purpose of smoothing is to elim-

inate high frequency random errors and improve
the signal-to-noise ratio of the analytic signal.
Commonly used signal smoothing methods in-
clude moving average convolution smoothing, fast
Fourier transform (FFT), wavelet demonizing, and
Kalman filtering. When a moving average method
is used, it is very important to select the smoothing
window width. Currently, there is no fixed method

to determine the smooth window width, which
needs to be verified several times. In this method,
the least square fitting coefficient is used as the
corresponding function of digital filtering to con-
volute and smooth the original spectrum [17, 18].

(2) Differential. The first and second derivatives can
eliminate baseline drift, strengthen the spectral
band characteristics, and overcome the spectral
band overlap. They are widely used in baseline
correction and spectral resolution pre-processing
in near-infrared spectroscopy analysis. The higher
the differential order, the narrower the differen-
tial peak width was. Differential spectra with
narrow peak widths have a stronger emphasis on
absorption [19]. For some peaks with a mutual
interference effect, the differential spectrum also
has the following effects.

When the peaks are close to each other and
the spectrum appears as a single peak, the dif-
ferential spectrum separates the peaks. For the
small peaks hidden in the wide absorption band
with strong absorption, the differential spectrum
has an effect [20]. The differential spectrum plays
an important role, and has an obvious influence
on the baseline change. The first-order differential
removes the wavelength independent drift and the
second-order differential removes the wavelength
dependent drift. This characteristic is effective
in eliminating the rising trend caused by water
absorption in near infrared spectroscopy [21].

(3) Variable standardization. Variable standardization
(SNV) correction can be used to correct spectral
errors due to scattering between samples. Accord-
ing to SNV correction, the absorbance values at
each wavelength point in each spectrum should
satisfy a certain distribution [22]. Therefore, it
is not necessary to calibrate each spectrum with
an “ideal” spectrum. The SNV is the original
spectrum minus the mean of the spectrum, divided
by the standard deviation of the spectral data,
which essentially normalizes the original spectral
data [23].

The mean value of the normalized spectral data
is 0 with a standard deviation of 1. Since SNV cor-
rection is only used to eliminate the effects of lin-
ear shifts in the sample spectrum, the spectral data
must also be expressed as a function. As a highly
practical spectral data pre-processing method, SNV is
widely used in solid sample reflection spectral data pre-
processing [24].

The change trends of the spatial autocorrelation
characteristics of soil nutrient indicators with spatial
distance are discussed. Additionally, the characteristics
of Moran’s I in different directions with spatial distance
is analyzed. In order to reveal the spatial relation-
ship of the research object geographical location, it is
necessary to first define the adjacency relationship of
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spatial objects. The first step in spatial autocorrelation
analysis is to establish the normalized spatial weight
matrix W(n×n) to represent the location relationship of
soil samples in the study area.

W =
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(1)

where wi j represents the degree of adjacency between
sample i and sample j in the region. For the small-scale
spatial autocorrelation analysis of small watersheds in
the black soil region, the k-nearest weight matrix is
used to ensure that each object has k neighbors. When
region j belongs to one of the nearest k neighbors of
region i, wi j is 1, otherwise it is 0. The global Moran’s
I is I , and the formula is as follows:
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where n is the number of spatial data; x i and x j
are the attributed values of spatial elements in zone
i and zone j respectively; x is the average value of all
spatial data; wi j is the element of spatial weight matrix,
which is generally a symmetric matrix where wi j = 0.
For global Moran’s I, the significance level of spatial
autocorrelation of spatial elements is generally tested
using the standardized statistic Z(I):

Z(i) =

�

I −E(I)
Var(I)

(3)

where Var(I) and E(I) are Moran’s I theoretical vari-
ance and the theoretical expectation of I , respectively.
The inference of Moran index is based on a random
sequence. It recalculates the statistics multiple times
to produce a reference distribution. By comparing the
comparison statistics with the reference analysis, the
significance level of the spatial autocorrelation of soil
nutrient elements in the study area can be investigated.

Hyperspectral image classificationprocess

In remote sensing images, similar types of ground ob-
jects have consistent or similar characteristics. Based
on this, remote sensing image classification technology
is becoming highly-developed. Remote sensing image
classification is based on the similarity of pixel features
to isolate different features [25]. In remote sensing
image classification studies, the role of hyperspec-
tral image classification is self-evident. According to
whether a priori condition is required for classification,
hyperspectral image classification algorithms can be

Fig. 1 Clustering iterative process of SOM.

divided into either supervised classification or unsuper-
vised classification [26].

The principle of the algorithm is to adopt the
centers of several clusters, with each center represent-
ing a category. According to a specific measurement
method, the samples are separated into the center
of each cluster to form a preliminary classification
state. Subsequently, discriminant rules are used to
determine whether the classification is correct, and
if not, iterative division continues until it is correct
[27, 28].

Take SOC as an example. Set the number of clus-
ters to 5, and the lower limit of the distance between
starting centers is 6429.972. Repeatedly adjust the
distribution of each data point and carry out iterations.
After 18 iterations, the cluster centers are constant.
The iterative change process of the cluster centers is
shown in Fig. 1.

Variation characteristics

The semi-variance function obtains the continuous
model by fitting the sample data. The fitting effect
and spatial dependence of each nutrient element in the
soil at any spatial distance are determined by the semi-
variance function model parameters [29]. The nugget
value represents the sampling error and the variation
within the minimum sampling distance, and the base
value represents the total variation of the index at the
current scale. The maximum fitting coefficient and
least square sum of the fitting residuals can be used to
evaluate the fitting effect of the variogram model [30].
The ratio of nugget value to abutment value is the
spatial heterogeneity ratio, which indicates variability
on a regional scale. This parameter judges the degree
and scale of the indicators’ spatial variation and the
rest of the variation is system variation. The number
of study area sample points and model fitting effect
are different, and the spatial position of sample points
within the study area also affects the fitting effect [31].

www.scienceasia.org

http://www.scienceasia.org/
www.scienceasia.org


290 ScienceAsia 48 (2022)

Spatial autocorrelation analysis

Spatial autocorrelation analysis is a type of spatial sta-
tistical method, generally used to reveal the structural
form and spatial aggregation characteristics of spatial
variables. According to this method, the global and
local spatial autocorrelations of soil nutrient element
indicators in the study area were carried out. Spatial
autocorrelation analysis is also an important indicator
when testing the correlation between the attribute
values of each index and the points on their adjacent
spatial positions. Moran’s I index is a commonly used
spatial autocorrelation indicator. If Moran’s I index is>
0, it indicates that the point has an equivalent change
trend with points in its adjacent space, indicating that
the spatial phenomenon has clustering. When Moran’s
I index is less than 0, the opposite is true.
(1) Global spatial autocorrelation analysis. Global

spatial autocorrelation is a statistic that describes
whether there are spatial aggregation characteris-
tics of geographical spatial elements on an overall
scale. The variance trend in the spatial autocor-
relation characteristics of soil nutrient indicators
with spatial distance is discussed. Additionally, the
characteristics of Moran’s I in different directions
with spatial distance are analyzed. In order to re-
veal the spatial relationship of the research object
geographical location it is necessary to define the
adjacency relationship of spatial objects. The first
step in spatial autocorrelation analysis is to estab-
lish the normalized spatial weight matrix W(n×n) to
represent the location relationship of soil samples
within the study area.

(2) Local spatial autocorrelation analysis. To ascertain
the soil pH and water content in significant global
spatial autocorrelation, the spatial autocorrelation
of the research object at 0°, 45°, 90° and 135° was
analyzed. This can further quantify the degree of
difference and significance between specific spa-
tial elements and surrounding elements.

Multiple stepwise regression quantitative
estimation

The selected spectral conversion data was analyzed via
multi-step regression with soil. As a result, (1/lgr)
showed the best fitting effect on the premise that
the band selected by multicollinearity elimination and
significance test was removed. The maximum values
of the coefficient of determination RPD (Residual Pre-
dictive Deviation) were 0.51 and 1.41, respectively,
and the minimum RMSEC (Root Mean Square Error
of Calibration) was 6.28. The model proved to have
rough stability and estimation ability. The other 11
model groups had little variation in estimation ability,
and coefficient of determination < 0.5, in the range
0.42 to 0.47, RPD in the range 1.31 to 1.37, and the
number of selected bands in the range 3–5.

Fig. 2 Soil nutrient content.

Table 1 Statistical characteristics of soil nutrients and con-
ventional elements.

Element Min Max Average Standard Coefficient of
(g/kg) (g/kg) (g/kg) deviation variation (%)

C:N 8.07 23.49 12.25 3.55 28.98
SOM 7.49 32.75 27.93 6.85 24.53
pH 6.91 9.00 8.08 0.43 5.32
Al 44.67 77.64 61.34 7.62 12.42
Fe 15.64 49.77 32.07 6.31 19.68
Mg 6.37 20.08 10.16 2.27 22.34
Si 194.81 331.66 272.64 23.88 8.76
Mn 0.28 1.54 0.69 0.20 28.99

RESULTS AND DISCUSSION

Statistics of soil nutrient content in the black soil
area

Based on traditional statistical theory, the soil prop-
erties of 163 valid samples were analyzed, including
maximum, minimum, average, and standard devia-
tion, and coefficient of variation. Soil nutrient content
is shown in Fig. 2.

The coefficient of variation in Table 1 can be used
to measure the spatial variation intensity of soil prop-
erties. Generally, the variation coefficient is considered
small in the range of 0–10%, moderate in the range of
10–100%, and highly variable over 100%. It can be
seen from the table that apart from a small variation in
soil Si and pH value, the remaining soil composition
was determined as medium variation, and the coef-
ficient of variation of soil nutrient composition, total
carbon and carbon-nitrogen ratio were larger than that
of conventional soil elements. This is possibly due to
both human activities and natural factors. There is
a resulting loss of nutrients and altered ratio of total
carbon and carbon to nitrogen in some areas, which
affects the distribution of soil nutrients and the total
carbon and carbon-nitrogen ratio [32, 33]. The main

www.scienceasia.org

http://www.scienceasia.org/
www.scienceasia.org


ScienceAsia 48 (2022) 291

Fig. 3 RPD comparison of model validation.

factor in the moderate variability of soil conventional
elements in the study area is animal husbandry, with
human activities exhibiting a lesser effect [34]. The
variability of soil conventional elements is greatly af-
fected by structural factors such as topography, parent
material, and climate [35, 36]. These conventional ele-
ments are the basic elements of minerals, so variability
is low.

Comparison of hyperspectral remote sensing
model estimation results

The results of the optimum model for estimating soil
properties in the full band of soil visible near infrared
spectroscopy. Computer vision technology, BPNN
(Back-Propagation Neural Network) and SVM were
compared longitudinally, and the RPD comparison was
verified by the best estimation models of 10 types of
soil characteristic content, as shown in Fig. 3.

It can be seen from Fig. 3 that three computer
vision technology models, along with BPNN and SVM
can be used to estimate soil TN, TC, C:N, SOM, pH,
Al, Fe and Mg, but not Si and Mn. The BPNN model
lacks the ability to estimate Si and Mn elements, while
computer vision technology and SVM can do so approx-
imately. It is evident that spectral estimation models
constructed by these three methods are applicable for
most soil properties in this study area [37].

After comparing the accuracy of the three models,
there were 4 BPNN models with RPD¾ 2, 7 with 1.4¶
RPD < 2, and 6 with RPD < 1.4; 4 with RPD ¾ 2, 9
with 1.4 ¶ RPD < 2, and 4 with RPD < 1.4; 5 with
RPD¾ 2 by computer vision technology. In conclusion,
the accuracy of the computer vision technology model
was equivalent to the SVM model, but the number
of computer vision technology models with precision
RPD ¾ 2 was one more than SVM model. The worst
performing model was BPNN, and the model precision
of RPD < 1.4 was 6. BPNN is a classical model that
deals with linear problems, while SVM and computer
vision technology are better at solving nonlinear prob-
lems.

Fig. 4 Correlation between predicted and measured values
of soil total nitrogen content.

Table 2 Validation of model for predicting soil characteristic
parameters.

Characteristic Predicted Measured Relative Prediction
parameter value value error accuracy

TN (g/kg) 0.58 0.65 21.88 78.16
TP (g/kg) 1.03 1.13 24.31 75.64
TK (g/kg) 21.74 19.39 29.72 70.28

Prediction and estimation of soil content based on
the computer vision hyperspectral remote sensing
model

In order to verify the accuracy of the above models in
estimating main nutrient content and real-time mon-
itoring values, the soil total nitrogen, total phospho-
rus and total potassium content estimated by spectra
were compared to the measured values of 25 samples
corresponding to field synchronous measurement, as
shown in Fig. 4. We then examined the correlation
between the predicted and measured values of soil
total nitrogen content.

According to Fig. 4, through the analysis and com-
parison of the predicted and measured values of soil
total nitrogen content, it was concluded that a correla-
tion did exist, and the determination coefficient R2 =
0.6143. The validation of the model for predicting soil
characteristic parameters is shown in Table 2.

It can be seen from Table 2 that the prediction
accuracy of the model refers to its fitting degree, that
is, the integrity of the fitting degree between the
simulated actual values generated by the prediction
model. Prediction accuracy is an important indicator
in ascertaining whether the prediction method is appli-
cable to the predicted object. The relative error reflects
the credibility of the prediction results [38].

Spectral characteristics of soil with different
nutrient content

Soil is the main source of nutrients needed for crop
growth. Therefore, it is necessary to consistently judge
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Fig. 5 Spectral curves of soils with different N, P and K
contents.

soil nutritional status, and provide scientific guidance
for the application of fertilizer. The results of the
soil hyperspectral test and the varying increases in N,
P and K content show that the N, P and K content
soil spectral curves initially increase and then decrease
within the entire frequency band (350–2500 nm).
With the presence of N, P and K in soil, the spectral
reflectance of soil decreases, and there is a good neg-
ative correlation between the soil nutrient elements
and spectral reflectance. Therefore, it is feasible to
use hyperspectral reflectance to study and explain the
content of nitrogen, phosphorus and potassium in soil,
which has potential application value. Fig. 5 shows
the spectral curves of soils with different N, P and K
content.

Typical spectral soil characteristics are analyzed
in Fig. 5. The variation in visible and near-infrared
regions is relatively mild, without obvious peaks and
valleys. It increases slowly between 350–800 nm
to form a slanted line, and the spectral reflectance
increases with increases in wavelength. Within the
band 800–2500 nm, the spectral curve tends to be
gentle, and the reflectance changes slightly between
0.25–0.28. The results show that there are absorption
characteristics at 1300 nm, 1700 nm and 2167 nm,
and there are obvious water vapor absorption bands
near 1400 nm, 1800 nm and 2400 nm. All soil spectral
curves close to the shortwave direction, and most soil
spectral reflectance, are not high up in the visible
light range, and there is a strong positive correlation
between the bands [39].

The results show that the spectral reflectance of
different soil textures varies. For soil composed of finer
particles, the spectral curve is smoother with a higher
reflectance; while in coarser soil, the spectral curve
fluctuates significantly, especially at 1300 nm, 1800 nm
and 2200 nm [40].

CONCLUSION

The relationship between soil spectral characteristics
and soil spectral properties cannot be estimated by a
simple SVM model. Although the estimation ability
of the computer vision technology model and SVM
model is similar, the estimation accuracy of the com-
puter vision technology model is higher overall. This
is because the SVM model falls easily into the local
minimum value and appears to over fit. Computer
vision technology can solve small sample problems,
over fitting, and high-dimensional pattern recognition.
Consequently, it possesses the best model estimation
ability.

It was feasible to predict soil total nitrogen by
eliminating the influence of soil type and other factors
on the spectrum through mathematical methods. The
results show that there is a nonlinear relationship be-
tween the spectrum and total phosphorus content, and
the computer vision method has outstanding nonlinear
mapping ability. It is reasonable to predict the soil
type after already determining it. Our results were
consistent with those of other studies.

The comparison of the accuracy of the computer
vision, BPNN and SVM models in estimating the con-
tents of all spectral bands and 10 types of soil prop-
erties showed the computer vision model has the best
estimation ability. The SVM model took second place,
and the BPNN model had the lowest estimation abil-
ity. Therefore, the BPNN model has some limitations
with estimation, while the SVM and computer vision
models can better deal with the nonlinear relationship
between spectrum and soil properties.
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