
R ESEARCH  ARTICLE

doi: 10.2306/scienceasia1513-1874.2022.030
ScienceAsia 48 (2022): 188–195

Variation in leaf anatomical traits of Betula albosinensis at
different altitudes reflects the adaptive strategy to
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ABSTRACT: The ability of plants to adapt to environmental variability and self-regulate in complex habitats often
reflected in leaf anatomical changes. In an assessment of 19 characteristics of Betula albosinensis leaves, samples were
taken from trees grown along an altitudinal gradient on the eastern edge of the Qinghai-Tibet Plateau and distributed
at three altitudes: 2434 m, 2824 m, and 3060 m. Anatomical characteristics of the leaves’ blade, mesophyll, and
midrib were studied using paraffin slice technology. We found that altitudes and changes in altitude affected the leaf
anatomy. As altitude increased, the blade and the mesophyll became thinner, and the transport tissues of the midrib
became relatively underdeveloped. However, intra-altitudinal variation was the main source of phenotypic variance.
Pearson correlation and principal component analysis revealed that each trait had different ecological dimensions, and
that there were trade-offs and covariance relationships between traits. In summary, to adapt to the local altitudinal
conditions, Betula albosinensis may exhibit multiple responses, such as reducing investment in leaves, which can boost
short-term growth rates, and the “quick investment and return” strategy. Our findings are useful in understanding
anatomical adaptations and their trade-offs to environmental variation.
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INTRODUCTION

Epidermis, mesophyll, and veins are the three main
sections of leaves. Epidermal cells are largely respon-
sible for insulation, water retention, and resistance to
herbivores and diseases [1]. The mesophyll palisade
tissue contains most of the photosynthetic chloroplasts,
and the spongy tissue influences carbon and water
exchange between the leaf and the atmosphere. The
morphological characteristics of mesophyll can intu-
itively represent a plant’s photosynthesis and water
consumption efficiency [2]. Leaf veins contain vascular
bundles composing of xylem and phloem wrapped
around with vascular bundle sheath cells and respon-
sible for material transport, mechanical support, and
herbivore and disease resistance [3]. The ergastic
content of the midrib vascular bundles can change cell
osmotic pressure and alleviate stress: plants with well-
developed vascular systems tend to be more resistant
to stress. The midrib characteristics directly affect the
growth and development of plants and, thus, their
productivity [4]. The epidermis, the mesophyll, and
the leaf veins all respond to environmental changes
in different ways and with different sensitivities, and
leaves adapt to environmental changes by mediat-
ing the covariance and trade-offs between different
anatomical traits [5–8].

Leaves are typically a plant organ with the most
surface area exposed to the environment [9], as well
as the most often exchanging materials and energy
with it. Leaves are sensitive to ecological factors and

have strong plasticity. Under different environmental
pressures, the anatomical characteristics of leaves have
evolved special characteristics that are compatible with
heterogeneous habitats [10]. Drought stress has been
shown to thicken the stratum corneum and palisade
tissue of Populus euphratica [11], but decrease leaf
thickness in Eucalyptus robusta [12]. In Salix matsu-
dana, leaf and upper epidermis thickness decreased as
air pollution levels rose, but the opposite trend was
observed in Syringa oblata [13]. Anatomical changes
within a single species can clarify plant response mech-
anisms to the environment [14], but there are currently
relatively few studies on the changes in leaf anatomical
traits along the gradient of natural environment and
the response of midrib to the environment.

Elevation is a dominant environmental factor af-
fecting differentiation of mountain vegetation and
plant interactions with light, precipitation, tempera-
ture, and radiation. As a response to life at high ele-
vations, Polygonum paleaceum [15], Carum carvi [16],
and Populus euphratica [17] produced thicker cell
walls, upper and lower epidermis, spongy tissue, and
palisade tissue. However, some studies have found the
opposite trends. For example, at higher elevations,
Meconopsis integrifolia exhibited reduced leaf thick-
ness [18]; and the palisade and spongy tissues of Picea
likiangensis [19] and Campylotropis polyantha [20]
became thinner.

Betula albosinensis is endemic to China, widely
distributed in southwest, northwest, and north China
from 1800 m to 3200 m above sea level. This tree
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species is highly adaptable to its surroundings, with
few requirements for soil type, terrain, or topogra-
phy, allowing it to thrive in a variety of environ-
ments. Betula albosinensis is a pioneer tree species
in locations with exceptionally bare soil, as well as a
critical species for secondary succession following the
collapse of subalpine forests. It performs ecological
services, such as soil and water conservation, and is
a major factor maintaining the regional ecological bal-
ance [21]. Through a comparative analysis of Betula
albosinensis leaf anatomical traits at three elevations
(2434 m, 2824 m, and 3060 m), we attempted to
discuss the following three questions: (1) Were the
Betula albosinensis leaf anatomical traits responded to
changes in altitude?; (2) Did changes in altitude affect
the anatomical traits of Betula albosinensis leaves?;
and (3) Did plants’ trade-offs reflect strategies and
mechanisms for adjusting to changes of altitude?

MATERIALS AND METHODS

Study sites

Our study sites were located in the Bailongjiang
National Forest Ecosystem Research Station in
Gansu Province, China (104°02′15′′–104°22′05′′ E,
33°34′10′′–33°46′25′′ N, 1790–4536 m) on the eastern
edge of the Qinghai-Tibet Plateau. This region is
situated at the confluence of the temperate monsoon,
subtropical monsoon, and plateau mountainous
climate zone and the boundary between China’s semi-
humid and semi-arid regions. The average annual
temperature is 4.3 °C, and the average temperatures
in the hottest month (July) and the coldest month
(January) are 20.8 °C and −13.3 °C, respectively. The
annual average frost-free period is about 96.7 days.
The annual average precipitation is 951.0 mm, which
is concentrated from July to September when 70%
(918.8 mm) falls as rain, and the air relative humidity
is 82%. The average sunshine duration is 1398.4 h
per year, and the daily illumination rate is 32% [21].

Field sampling

According to a comprehensive survey conducted in the
research region in August 2019, the distribution and
growth of Betula albosinensis were discovered at three
altitudes: 2434 m, 2824 m, and 3060 m; therefore,
the transects were set at these three elevations. At
each elevation, 10 healthy Betula albosinensis individ-
ual trees at a distance of at least 10 m apart were
randomly selected, and the well-growing branchlets of
the current year from the east, south, west, and north
were cut with pruning clippers. Then 3 fully expanded
mature leaves between the fifth leaf from the tip of
the branchlets and the base were selected for a total
of 360 leaf samples. We cut 5×7 mm squares from
the middle and along the midrib of each blade with
a scalpel. The cut samples were immediately fixed in
FAA (5 ml of 37% formalin, 5 ml of glacial acetic acid,

and 90 ml of 50% ethanol mixed with 5 ml glycerin),
placed in a cryopreserving box, and returned to the
laboratory.

Paraffin section production

We removed the fixed samples from the FAA solution
with tweezers, dehydrated them using an increasing
ethanol solution gradient (50%–100%, every 10% for
1 h), followed by an increasing xylene solution gradi-
ent (ethanol:xylene; 2:1, 1:1, 1:2, pure xylene, each
solution for 1 h), and finally immersed them in paraf-
fin. We then made 10 µm transverse sections (Lycra,
Germany). The sections were dried, dewaxed, dyed
(safranin O and fast green solution), and stuck with
the paraffin microtomy (neutral gum).

Leaf and midrib anatomical structural parameters

Measured parameters included as follows: blade thick-
ness (BT), blade upper epidermis thickness (BUET),
blade lower epidermis thickness (BLET), blade upper
epidermis cell length (BUECL), blade upper epidermis
cell width (BUECW), blade lower epidermis cell length
(BLECL), blade lower epidermis cell width (BLECW),
palisade tissue thickness (PTT), spongy tissue thick-
ness (STT), palisade tissue thickness-spongy tissue
thickness ratio (P/S), palisade tissue thickness-blade
thickness ratio (CTR), and spongy tissue thickness-
blade thickness ratio (SR). The parameters measured
in the cross-section of the midrib of the leaf in-
clude: midrib parenchyma tissue thickness (MPTT),
midrib upper epidermis cell length (MUECL), midrib
upper epidermis cell width (MUECW), midrib lower
epidermis cell length (MLECL), midrib lower epider-
mis cell width (MLECW), midrib phloem thickness
(MPT), and midrib xylem thickness (MXT), in which
P/S=PTT/STT, CTR=PTT/BT, SR=STT/BT

Image processing and data acquisition

The data were observed and photographed under an
inverted integrated microscope (Revolve, USA), in
which the blade and mesophyll indexes were observed
with a 10-fold mirror; and the midrib indexes were
photographed with a 4-fold mirror. The exported
images of leaf cross section parameters were measured
by measurement software (Image Pro Plus, USA). For
each parameter, the average of three random measure-
ments (equidistance) from left to right on each image
was used as the parameter value of the image, with an
average of 120 measurements per altitudinal transect.
The xylem and phloem are composed of multi-layer
cells. The distance between the uppermost cell upper
epidermis and the lowermost cell lower epidermis is
taken as a measure value. The repetition of these two
parameters is the same as other parameters.

Data analysis

Data were collated and analysed using SPSS 17.0
(SPSS Inc., USA). Comparison of the changed char-
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acteristics of Betula albosinensis leaf anatomical traits
with altitude gradient was done with One-way ANOVA,
and the significance of differences of characters among
different altitudes was tested by least significant dif-
ference (LSD) multiple comparisons. Variance analysis
was used to calculate the variance components of inter-
altitude, intra-altitude, and random errors. The pheno-
typic differentiation coefficients, Vst = δ2

t/s/(δ
2
t/s +δ

2
s )

[25], where δ2
t/s is the variance between altitudes and

δ2
s is the variance within altitude, were calculated

for each trait to test the significance inter- and intra-
altitudinal variance components. Pearson correlation
analysis was used to analyze trade-offs and synergies
between anatomical traits (Origin Lab, USA). Plotting
was done in Origin2019b (Origin Lab, USA) and R
(version 4.0.3, USA).

RESULTS

Anatomical traits of Betula albosinensis leaf
transverse sections

The upper and lower epidermises are made up of a
single layer of closely packed irregular rectangular
cells with somewhat wavy cell walls. The mesophyll
divides into palisade tissue and spongy tissue with 1–2
palisade cell layers and 3–5 spongy cell layers. There
are 1 to 3 vascular bundles in the midrib, the phloem
in the midrib is near the leaf surface, and the xylem is
in the outer layer of the phloem (Fig. 1).

Effects of altitude on leaf anatomical
characteristics

One-way ANOVA showed that altitude had signifi-
cant effects on BUET, BUECL, and STT (p < 0.05)
(Table S1). The anatomical traits BT, BUET, BLET,
BUECL, BUECW, and BLECL significantly decreased
with increasing altitude, as did the mesophyll anatom-
ical characters STT and SR; while CTR significantly
increased. The greatest P/S and MUECL were at
2824 m elevation (Fig. 2). Among the anatomical
characteristics of the midrib, MPTT decreased signif-
icantly with increasing altitude (p < 0.05).

Inter- and intra-altitudinal variation of leaf
anatomical characters

The coefficients of Betula albosinensis leaf phenotypic
differentiation varied from 0.68% to 65.51%. The
mean trait variance between and within altitudes ac-
counted for 22.86% and 73.16% of the total trait vari-
ance, respectively, indicating that phenotypic variation
was mainly due to variance within an altitude. BT and
MPTT had generally high variance, while CTR and SR
had very low variance. Only MPTT and MUECL had
higher inter-altitudinal, rather than intra-altitudinal,
variance. Thus, MPTT and MUECL had high altitudinal
plasticity, possibly related to ecological adaptability
(Table S2).

Correlation among anatomical traits

Pearson correlation analysis of leaf anatomical traits
showed that 23 out of the 171 trait combination
groups were extremely and significantly correlated
(p < 0.001), and 37 groups were significantly corre-
lated (p < 0.05). Among these, BT was positively
correlated with STT and PTT, as well as P/S with CTR
and other traits (p < 0.001). SR was significantly and
negatively correlated with P/S and CTR, as was MPTT
with compound traits (p < 0.001) (Fig. 3).

Principal component analysis of leaf anatomical
traits

Four principal components containing 83.20% of the
total variance were selected. The first principal com-
ponent accounted for 44.54% of the total variance was
negatively correlated with traits related to leaf pho-
tosynthetic capacity (SR and CTR) and positively cor-
related with traits related to leaf protection and stor-
age (BT and MUECL) (Fig. 4A). The second principal
component accounted for 22.90% of the total variance
was negatively correlated with traits representing vein
storage and transport capacity (MXT and MPT) and
positively correlated with leaf photosynthetic capacity
traits (PTT and BUECL) (Fig. 4B). The variance con-
tribution of the third principal component was 8.50%,
which was significantly correlated with MPTT, repre-
senting leaf support and material transport (Fig. 4C).
The variance contribution of the fourth principal com-
ponent was 7.26%, which was positively correlated
with characteristics of vein protection (MUECW and
MLECL) (Fig. 4D).

DISCUSSION

Effects of altitude on leaf anatomical
characteristics

The leaves are a plant’s defensive organ and a crucial
barrier against harmful external environments. We
found that the thicknesses of the blade, upper and
lower epidermises decreased with increasing altitude,
which were in contrast to earlier investigations. One
possible explanation is that as altitude increases, par-
tial pressure of CO2 decreases; and thin leaves will
shorten the CO2 diffusion path leading to photosyn-
thesis improvement [22] and be more adaptable to
changes in habitat. The decrease in blade upper and
lower epidermis cell length could be attributed to a
loss in water control capabilities of leaf epidermal
cells as UV-B levels rise with altitude. Some studies
have shown that water-limited plants develop flatter
epidermal cells, which reduce water loss [23] or in-
crease the density of paraxial and lateral chloroplasts
distribution, and increase light energy use rate [24].
Blade upper epidermis cell width was not significantly
decreased among different altitudes. This may be as-
sociated with adaptation to the environment in gener-

www.scienceasia.org

http://www.scienceasia.org/
www.scienceasia.org


ScienceAsia 48 (2022) 191

250μm 150μm

250μm

250μm

150μm

1

3
4

1
2
3
4

1
2
3
4

A                                                                 B

C                                                                 D

E                                                                 F

150μm

2

6
7

5

6
7

5
6
7

5

Fig. 1 Anatomical images of Betula albosinensis: A and B, at 2434 m elevation; C and D at 2824 m elevation; E and F, at
3060 m elevation; the image is one of all images at an altitude: 1-upper epidermis; 2-palisade tissue; 3-spongy tissue; 4-lower
epidermis; midrib; 5-parenchyma; 6-phloem; 7-xylem.

ations of life, so relatively stable genetic characteristics
were formed.

Photosynthesis mostly occurs in the mesophyll.
Previous studies [25] have combined Kubelka-Mun
theory with models of leaf photosynthesis to clarify
how the differentiation of mesophyll into palisade
and spongy tissues, which may be an adaptation of
mesophyll to light gradients. Photosynthetic efficiency
is also affected by leaf thickness and cell morphology
of palisade and spongy tissues [26]. The spongy
tissue, with loosely arranged cells, is closer to the
epidermis and carries out gas exchange and water
transpiration. In this study, the change of palisade
tissue thickness among altitudes was not significant,
consistent with the results of Tang Tan et al [27]. It
may be that leaf palisade cells take on a protective
role at higher altitudes because shortwave radiation
is higher. The traits may be less plastic, and possibly
under stabilizing selection, in order to prevent tissue
burns caused by excessive leaf temperatures. We found
that spongy tissue thickness significantly decreased
with increased altitude, and that the cell walls of the
smaller leaf spongy tissue were more elastic. This
may help maintain turgor pressure and stomata func-
tion. At high elevations, plants must avoid mechanical
damage to leaves caused by low atmospheric moisture
and increased wind speed [28]. In our study, the

palisade tissue thickness-spongy tissue thickness ratio
increased significantly with altitude, indicating that
the net photosynthetic rate of Betula albosinensis was
high [29]. This may be due to high leaf oxidase activity,
which allows Betula albosinensis to withstand the short
growing season caused by low temperature. We further
found that the palisade tissue thickness-blade thickness
ratio increased significantly, while the spongy tissue
thickness-blade thickness ratio decreased significantly,
with altitude. Because the palisade tissue accounts for
a large proportion of the leaf, the plants may be more
water use efficient, as found by Xu Yang et al [30].

The midrib is the primary transport and support
area of leaves, importing inorganic salts and water and
exporting photosynthetic products [31]. In this ex-
periment, midrib parenchyma cell thickness decreased
with increased altitude. This underdeveloped trans-
port tissue, conducive to water storage, heat preserva-
tion, and nutrient transmission; may compensate for
low oxygen and carbon dioxide partial pressure [32]
allowing plant physiological activities to proceed nor-
mally. Midrib upper epidermis cell length decreased
with increasing elevation, which may relate to a de-
crease in cell water control ability [24]. The remaining
five midrib traits did not change significantly among
altitude, which indicated the plasticity associated with
losses in maintenance, signal recognition, and trans-
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Fig. 2 Distributions of leaf anatomical characteristics of Betula albosinensis at three altitudes. The solid black line on the
column represents the standard deviation. Different lowercase letters indicate significant differences at 0.05 level.
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mission [33]making these traits insensitive to altitudi-
nal changes.

Trade-offs between leaf anatomical traits

The phenotypic differentiation of leaf features can be
strongly influenced by the environment [34]. The vari-
ability and complexity of environmental factors may be
the main contributors to the conservative phenotypic
variance of Betula albosinensis, which has long lived at
low temperatures and high light exposure. Some traits,
including blade and upper epidermis thickness, had
high variance, which may implicate them as key traits

for coping with adverse environments [35] enabling
plants to maintain necessary physiological functions
under resource constraints. The phenotypic differen-
tiation coefficients of palisade tissue thickness, midrib
phloem thickness, and midrib xylem thickness were
low, which may be related to optimal resource utiliza-
tion strategies [36]. The average phenotypic differ-
entiation coefficient decreased from the leaves (26.5),
to the mesophyll (20.93), to the main vein (24.1).
Altitude had significant effects on midrib parenchyma
tissue thickness (p < 0.05), and the variance between
altitudes was greater than that within altitudes, in-
dicating that these two traits may be responding to
elevation, while the remaining seventeen traits may be
responding to the respective microenvironments.

Under a limited resource environment, there are
several trade-offs among Betula albosinensis traits. Leaf
thickness, epidermal, and mesophyll characteristics
had synergistic connections, which decreased the dis-
tance between stomata and leaf epidermis, possibly
to enhance the rate of gas and nutrient turnover.
The correlation between leaves and spongy tissue was
the largest, so it can be inferred that the change of
leaf thickness was mainly caused by the change of
spongy tissue thickness [37]. Palisade tissue thickness
and spongy tissue thickness were also synergistic; the
palisade tissues are closely arranged and directly ex-
posed to solar radiation, forming a barrier between the
spongy tissues and the outside environment. Spongy
tissue has loose tissue with spaces for gas exchanges,
which may improve photosynthesis by accelerating the
gas exchange rate. The trade-offs among blade thick-
ness, palisade tissues thickness-spongy tissue thickness
ratio, and palisade tissue thickness-blade thickness ra-
tio indicated that the photosynthetic rate and drought
tolerance of Betula albosinensis were high. There was
a trade-off between blade upper epidermis cell length
and midrib phloem thickness, which indicated that less
investment was put into leaf construction, and more
into the veins to supplement water and to resist high
temperatures, sunlight, and physical damages [38].
There were no significant correlations between blade
upper epidermis cell width and palisade tissue thick-
ness, spongy tissue thickness, midrib phloem thickness,
and PCA showing the first four axes corresponded to
different ecological strategy dimensions.

Kitajima et al [39] believed that leaf anatomical
traits could be used as leaf economic spectrum traits,
and there are obvious synergies and trade-offs among
leaf anatomical characteristics of Betula albosinensis
possibly to resist adverse environments consistent with
leaf economic spectrum. With increasing elevation,
Betula albosinensis increased investment in photosyn-
thesis and respiration and correspondingly reduced
the input to leaf construction. This strategy of “quick
investment-return” reflects the economic spectrum of
Betula albosinensis leaves on the eastern edge of the
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Qinghai-Tibet Plateau. Whether the relationship be-
tween leaf anatomical traits at these sites can be
extended to the entire region, species or the global
ecosystem needs to be systematically verified. Relevant
research can help further reveal adaptative strategies
of plants to the environment.

Altitude affects the anatomical structure of plant
leaves through multiple environmental factors. At dif-
ferent altitudes, Betula albosinensis adopted different
strategies. First, in order to enhance plant defence
capabilities, the blade, the mesophyll, and the midrib
tended to be flat and closely arranged. Second, the
Qinghai-Tibet Plateau only allows a 2–4 month grow-
ing season, which benefits such a “rapid investment-
benefit” strategy to amass nutrients, boost growth
rates, and minimize nutrient use efficiency in a short
growing season. Third, these adaptive balance and
allocation strategies of material energy in plants allow
them to meet the goals of survival, growth, and repro-
duction despite changing environmental conditions.

Appendix A: Supplementary data

Supplementary data associated with this article can be
found at http://dx.doi.org/10.2306/scienceasia1513-1874.
2022.030.
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Appendix A. Supplementary data

Table S1 One-way ANOVA of Betula albosinensis leaf anatomical traits with elevation.

Leaf traits Quadratic sum Mean square F P

BT 32401.01 16200.50 3.38 0.06
UET 1069.70 534.85 4.01 0.04
LET 307.08 153.54 3.39 0.06
BUECL 1054 .48 527.24 4.27 0.03
BUECW 218.36 109.18 2.21 0.14
BLECL 663.70 331.85 3.21 0.06
BLECW 41.765 20.88 0.64 0.54
PTT 2361.98 1180.99 0.77 0.48
STT 10264.74 5132.37 5.96 0.01
P/S 1.35 0.67 2.74 0.09
CTR 0.04 0.01 2.95 0.08
SR 0.02 0.01 3.28 0.06
MPTT 104258.78 52129.37 8.02 <0.01
MUECL 762.63 381.31 12.62 <0.0001
MUECW 130.28 65.14 1.68 0.21
MLECL 158.09 79.04 2.48 0.12
MLECW 10.76 5.38 0.34 0.72
MPT 207.54 103.77 0.19 0.83
MXT 1274.18 637.09 0.40 0.67

Table S2 Partitioning of phenotypic variance of Betula albosinensis leaf anatomical characteristics.

Leaf anatomical Variance component Percentage of total variance component Phenotype

traits (µm) Among Within Random Among Within Random differentiation
altitudes altitude errors altitudes altitude errors coefficient (%)

BT 32401.01 71987.21 5438.66 29.50 65.55 4.95 31.04
BUET 1069.70 2002.35 19.02 34.61 64.78 0.62 34.82
BLET 307.08 677.49 0.31 31.18 68.79 0.03 31.19
BUECL 1031.07 1853.03 23.41 35.46 63.73 0.81 35.75
BUECW 168.26 741.65 50.11 17.53 77.25 5.22 18.49
BLECL 663.70 1853.03 156.24 24.83 69.32 5.85 26.37
BLECW 41.77 490.27 0.95 7.84 91.98 0.18 7.85
PTT 157.46 22875.42 2204.52 0.62 90.64 8.74 0.68
STT 9796.90 12895.97 467.84 42.30 55.68 2.02 43.17
P/S 1.32 3.69 0.03 26.21 73.19 0.60 26.37
CTR 0.04 0.94 0 3.79 96.21 0.00 3.79
SR 0.02 0.05 0 30.56 69.44 0.00 30.56
MPTT 104258.76 97433.39 50.65 51.68 48.29 0.25 51.74
MUECL 762.62 453.12 420.69 46.60 27.69 25.71 62.73
MUECW 130.28 581.53 98.67 16.07 71.75 12.17 18.30
MLECL 158.09 477.16 26.26 23.90 72.13 3.97 24.81
MLECW 10.76 237.93 1.60 4.30 95.06 0.64 4.33
MPT 207.54 8226.49 46.23 2.45 97.01 0.55 2.46
MXT 1274.18 23624.05 872.97 4.94 91.67 3.39 5.12
Mean 8023.19 12969.20 519.90 22.86 73.16 3.98 24.18

www.scienceasia.org

http://www.scienceasia.org/
www.scienceasia.org

