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ABSTRACT: The MODIS surface reflectance (SR) product (MOD09) was used to predict PM2.5 concentrations with
a regression model. The predicted results were compared with the MAIAC-AOD model and the ground based
measurements. The output from the MODIS product is regularly employed to predict air pollution and emissions,
while the AOD model is normally used to predict PM2.5 concentrations. This study investigated PM2.5 concentrations
in Northern Thailand by using SR via a linear regression model. The results showed that the highest value of SR was
observed in Band-2 (0.17–0.27), followed by Band-1 and Band-4 (0.10–0.14) and Band-3 (0.07–0.10). Moreover, the
correlation coefficient between SR-band-2 versus the measured PM2.5 from the master stations with PM2.5 sensor was
greater than those of the other bands. The correlation coefficients between the predicted PM2.5 by the MODIS-SR
and by the MAIAC-AOD models and the measured PM2.5 from the master stations varied between 0.3871–0.8588 and
0.3913–0.7802, respectively. The range of prediction efficiency by the SR model was 10.8%–27.2%, which was greater
than the AOD model. It should be concluded that the distribution of spatial PM2.5 concentrations obtained from surface
reflectance and MAIAC-AOD predictions was similar.
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INTRODUCTION

Investigations of PM2.5 concentrations and emissions in
Northern Thailand have been conducted continuously
for the past decade. An extreme level of PM2.5 emission
from biomass burning was happened during the dry
season [1, 2]. The concentrations of PM2.5 in Northern
Thailand during this period regularly exceeded the
Thai Air Quality Standard, and the number of days
when PM2.5 concentrations exceeded the standard in
2017, 2018, and 2019 were 67, 83, and 52 days,
respectively. Furthermore, the high concentration of
PM2.5 is associated with health problems, such as
chronic bronchitis, premature death, as well as eco-
nomic losses [3, 4]. The PM2.5 concentrations and
emission sources in Northern Thailand were investi-
gated using various satellite methodologies [2, 5]. The
Aerosol Optical Depth (AOD) from the MODIS plat-
form was used to investigate PM2.5 concentrations in
upper Northern Thailand [6–8]. However, the uncer-
tainty of PM2.5 investigations using AOD retrievals was
found in several studies because of a lack of AOD data
due to cloud cover [9–11]. The Geo-Informatics and
Space Technology Development Agency (Public Orga-
nization) (GISTDA) used other new AOD retrievals
from the Himawari-8 to monitor the PM2.5. However,
the resolution of 5 km of this satellite still does not fully
represent the site’s measurements [12].

Another possible method is the use of MODIS
surface reflectance product (MOD09), which generates

a clearer result with 500 m-resolution that can be
derived from a finer resolution and a larger spatial
coverage of PM2.5 than the AOD-derived PM2.5. The
surface reflectance (SR) is an estimate of the sur-
face spectral reflectance by atmospheric scattering or
absorption, which is affected by atmospheric gases
and aerosols, as well as PM2.5. The predicted PM2.5
concentrations from the use of the SR method are sig-
nificant when correlated with ground measurements
and MODIS-AOD [13], and they are relatively power-
ful in the determination of spatial-temporal coverage
because of the finer resolution [14]. The Multi-Angle
Implementation of Atmospheric Correction (MAIAC)
is the daily algorithm-based Level-2 gridded (L2G)
aerosol optical thickness over land surfaces produced
from the MCD19A2 instrument, which is derived from
both Terra and Aqua MODIS inputs at 1 km pixel
resolution. The MAIAC-AOD was applied to estimate
the PM2.5 concentrations in many countries in Asia
such as India and China [15, 16] with a significant cor-
relation between predicted PM2.5 concentrations and
measurements; however, there was still uncertainty
as a result of missing AOD. Geographic Information
Systems (GIS) were frequently applied to generate the
spatial distribution of PM2.5 [16, 17] by using the most
accurate interpolation method, which is the Inverse
Distance Weight (IDW) technique, with the highest
correlation and the lowest root mean square error
(RMSE) in comparing between the ordinary kriging
and the surface trend methods [18]. The performance
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Fig. 1 Study domain.

of the SR model using PM2.5 predictions was normally
validated by ground measurements, and the SR mod-
eling performed better than the AOD modeling [13].
The predictive power of the SR model in terms of
spatial-temporal coverage is greater than that of the
traditional AOD [14].

As a result of the investigation of PM2.5 concen-
trations using the SR method, valuable data were
collected from the higher spatial distribution resolution
(500 m-resolution). Therefore, this study aimed to de-
termine the concentrations of PM2.5 using the satellite
SR method from the MOD09 of the MODIS instrument
via the regression correlation model. The predicted
PM2.5 concentrations from the SR regression model
were directly compared with the MAIAC-AOD (1 km-
resolution) to investigate the correlation efficient. The
possibility and efficiency of using the SR product to
investigate the concentration of PM2.5 from this study
would be useful in the areas where PM2.5 monitoring
sensors are not available.

MATERIALS AND METHODS

Study domain

The eight provinces in upper Northern Thailand in-
cluding Chiang Rai, Chiang Mai, Mae Hong Son,
Lampang, Lamphun, Phrae, Nan, and Phayao are lo-
cated between latitudes 18.28° N–20.46° N and longi-
tudes 97.32° E–101.40° E. The study domain covered
90 690 km2 with a total population of 5.84 million.
The main geographical features are mountainous areas
with a variety of forests and agricultural farms. The
average daily PM2.5 concentrations in most of the
provinces in the domain regularly exceed the daily
ambient air quality standard (50 µg/m3) for many
days during the dry season [7, 19]. The 14 ground-
based monitoring stations of the Pollution Control
Department (PCD) are located in all provinces except
Uttaradit (Fig. 1 and Table S1).

Best correlated band 

SR-Regression 
model 

SR-Predicted PM2.5 

AOD-Predicted 
PM2.5 

AOD-Regression 
model 

MOD09 Surface 
reflectance

MAIAC-AOD from 
MCD19A2

Measured PM2.5r r

r

Remark:          is the correlation coefficientr

Fig. 2 Data analysis flowchart.

Data collection and regression model analysis

The daily SR, a resolution of 500-m and 5-min in the
format of an HDF file, was collected from MOD09 of
the MODIS Terra/Aqua instrument via the website of
Level-1 and Atmosphere Archive & Distribution Sys-
tem and Distributed Active Archive Center (LAADS
DAAC). It consisted of four combined bands, namely
Bands 1–4, at the wavelengths of 646, 855, 466, and
553 nm, respectively. Because of the limited time
the satellite passes through the study area during the
day; therefore, the average weekly SR data were used
to compare with the PM2.5 measurements. The daily
PM2.5 measurements from February to May 2018 and
2019 were obtained from the four PCD monitoring
master stations, 35T, 36T, 40T, and 75T. The measured
PM2.5 concentrations were averaged weekly between
10 a.m. and 2 p.m., which corresponded to the time
when the satellite passed through the study area; and
February to May is the period of haze in the study area.

The regression model was chosen based on the
strongest correlations between each SR band and the
PM2.5 measurements. The best regression model could
be used to predict PM2.5 concentrations for other PCD
monitoring stations where PM2.5 monitoring instru-
ments are not available. The performance of the
regression model was evaluated by the MAIAC-AOD
product (1 km-resolution) gathered from the LAADS
DAAC, and the correlation coefficient (r) between the
predicted SR-PM2.5 and MAIAC-AOD was found to be
higher than 0.6, which is considered as a significant
correlation for this study [13, 14]. The flowchart of
the data analysis is shown in Fig. 2.

The daily variation of PM2.5 concentrations ob-
tained from the master stations started to increase and
exceeded the air quality standard during the study
period. Furthermore, an even higher concentration of
PM2.5 was found in March 2019, which was three times
higher than the air quality standard (Fig. 3).

Temporal and spatial distribution

The variations of the predicted PM2.5 concentrations
from the SR model were analyzed. A layer map of pre-
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Fig. 3 Daily variations of PM2.5 concentrations obtained from
the master stations during January-May of 2018 and 2019.
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Fig. 4 Variations in surface reflectance of Bands 1 to 4
obtained from the 35T, 36T, 40T, and 75T master stations.
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Fig. 5 MAIAC values from February to May of the years 2018
and 2019 obtained from the master stations.

dicted PM2.5 concentrations was applied to the layer of
the study domain. Then the concentrations of PM2.5 in
the areas without monitoring stations were predicted
by the Inverse Distance Weight (IDW) technique in
the GIS program [20]. Similarly, the concentrations
and distribution of PM2.5 from the MAIAC-AOD results
were analyzed.

RESULTS AND DISCUSSION

Surface reflectance (SR)

The SR value of Bands 1–4 from the MOD09 in-
strument fluctuated between 0.07–0.27 during the
33 weeks of sampling from February to May of 2018
and 2019, with the mean values of 0.13, 0.23, 0.09,
and 0.12, respectively. The highest value of SR was
observed in Band-2 (0.17–0.27), followed by Band-
1 and Band-4 (0.10–0.14) [21], and Band-3 (0.07–
0.10), as shown in Fig. 4. In addition, the correlation
coefficient between SR-Band-2 versus the PM2.5 mea-
surements was higher than the values of other bands,
and also higher than the value between MAIAC-AOD
versus PM2.5 measurements (Table 1). Therefore, the
SR-Band-2 provided a good result which matched the
PM2.5 predictions in this study.

MAIAC-AOD

The MAIAC-AOD values varied between 0.06–1.90
during 2018–2019, with the highest AOD values ob-
served in March (Fig. 5). The normal AOD values from
MODIS varied between 0.1–1.2 and were significantly
higher during March to April 2014–2017 [22]. The
advantage of using SR to predict PM2.5 concentrations
is the finer resolution and the higher number of sample
sizes that the AOD provides. Moreover, during the
study period, there were 31 out of 120 days when the
surfaces were either over bright or under cloud cover,
and the MAIAC-AOD results could not be accurately
retrieved [15, 23]. Hence, 25.8% of the results were
missing.

Linear regression model estimation

The best regression model was adopted by selecting the
highest correlation coefficient value of the trained SR-
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Table 1 Comparison of the correlation coefficients between SR and MAIAC-AOD results versus measured PM2.5.

Station Linear correlation equations of Correlation coefficient between

SR-Band-2 vs. measured PM2.5 SR-Band-2 vs. measured PM2.5 MAIAC-AOD vs. measured PM2.5

35T y = 1623x −266 0.8710 0.7802
36T y = 1219x −181 0.7964 0.7042
40T y = 1137x −179 0.5887 0.5806
75T y = 1166x −183 0.5645 0.3913
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Fig. 6 Weekly variations between the predicted SR-PM2.5 vs. the measured PM2.5 and the predicted AOD-PM2.5 vs. the
measured PM2.5 of the master stations: (a) 35T; (b) 36T; (c) 40T; and (d) 75T.

Band-2 result compared with the PM2.5 measurements
at the same co-location of the master stations 35T,
36T, 40T, and 75T which showed the highest correla-
tion coefficient values of 0.8631, 0.7985, 0.6600, and
0.7854, respectively. Then, the PM2.5 concentrations
for the other locations with no PM2.5 monitoring sen-
sors (Table S1) was predicted by EQ. (1) using the
Band-2 value.

PM2.5 = −268.89+1633.48 X (1)

where X is the SR-Band-2 surface reflectance value.

Temporal distribution and model validation

Fig. 6 shows the pattern of predicted PM2.5 concen-
trations from the master stations which revealed the
pattern of the predicted SR-PM2.5 and the predicted
AOD-PM2.5 models. The variation of PM2.5 from both
models was similar to the master stations’ data, and the
peak PM2.5 concentration was found in March 2019.

Table 2 Correlation coefficients (r) between measured PM2.5, predicted SR-PM2.5, and predicted AOD-PM2.5.

Station r between predicted SR-PM2.5 r between predicted AOD-PM2.5 % Difference of model prediction
vs. measured PM2.5 vs. measured PM2.5 compared with data of the master stations

SR-PM2.5 AOD-PM2.5

35T 0.8588 0.7802 27.2 1.7
36T 0.7985 0.7170 13.7 0.0
40T 0.5888 0.5806 17.5 41.7
75T 0.3871 0.3913 10.8 58.8
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14 Feb 2019 (SR) 14 Mar 2019 (SR) 11 Apr 2019 (SR) 16 May 2019 (SR)

14 Feb 2019 (AOD) 14 Mar 2019 (AOD) 11 Apr 2019 (AOD) 16 May 2019 (AOD)

(b)

Fig. 7 Comparison of predicted PM2.5 distribution from SR and MAIAC-AOD during February-May of: (a) 2018; and (b) 2019.

The predicted PM2.5 concentrations from both models
were validated against the measured values of the
master stations. The correlation coefficients between
the predicted SR-PM2.5 and the measured PM2.5 from
the 35T, 36T, 40T, and 75T stations were 0.8588,
0.7985, 0.5888, and 0.3871, respectively; while the
correlation coefficients between the predicted AOD-
PM2.5 and the measured PM2.5 were 0.7802, 0.7170,
0.5806, and 0.3913, respectively. The overall corre-
lation coefficient of prediction by SR was higher than

that of the AOD. The prediction efficiency of the SR
model was in the range of 10.8%–27.2%. The missing
AOD data due to the irretrievability caused by cloud
cover was the main reason for the lower correlation
rate [24] as shown in Table 2.

The pattern of predicted SR-PM2.5 concentrations
from the PCD monitoring stations with no PM2.5 sen-
sors varied between individual weeks. However, the
level of SR-PM2.5 was extremely high and exceeded
the daily air quality standard (50 µg/m3) for March–
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April of 2018 and 2019, and the PM2.5 concentra-
tions of 2019 were clearly higher than those of 2018.
Nonetheless, the trend of PM2.5 concentrations from
this study was in line with the PM10 concentrations of
this area [25]. Because the value of SR is determined
by the scattering or absorption of aerosols in the at-
mosphere [26] and the concentrations of PM2.5 during
the remaining eight months of the year are low, PM2.5
concentrations can be predicted if the SR is available.
The correlation coefficients (r) between predicted SR-
PM2.5 and AOD-PM2.5 for the remaining nine stations
with no PM2.5 sensors varied between 0.5175–0.7721,
with high correlations (r > 0.7) found in the provinces
of Lampang (Stations 37T and 39T), Lamphun (Station
68T), and Phrae (Station 69T), as shown in Fig. S1.

Spatial distribution

The high concentrations of both SR-predicted PM2.5
and AOD-predicted PM2.5 mostly occurred during
March and April of 2018 and 2019. It was found that
extremely high PM2.5 concentrations that exceed the
Daily Thai Air Quality Standard (50 µg/m3) covered
all the nine provinces in the area on 14 March of 2018
and 2019. It was also found that there were severe
concentrations of PM2.5, which were 2–3 times higher
than the standard quality, covering more than half of
the study area on 14 March 2019. However, in both
years, these levels clearly decreased in May as shown
in Fig. 7 [19].

CONCLUSION

We adopted the best fit model for the prediction of
PM2.5 concentrations using MODIS SR instrument in
the areas with no PM2.5 monitoring sensors of Northern
Thailand during February–May of 2018 and 2019.
The SR product from MODIS, MOD09, was applied
to predict the PM2.5 concentrations instead of using
the traditional AOD method. The results from the SR
predictions were validated by the ground PM2.5 con-
centration monitoring measurements and the MAIAC-
AOD model. A good correlation between the predicted
PM2.5 concentrations with the SR ground measure-
ments and the MAIAC-AOD model was found. The best
fit SR model was applied to predict the concentration
of PM2.5 for the remaining monitoring stations without
PM2.5 sensors. The spatial distribution of the predicted
PM2.5 concentrations from SR was not much different
from the predicted by the MAIAC-AOD model. Thus,
the SR model approach, which is different from the tra-
ditional PM2.5 estimation by AOD, can provide useful
information for the monitoring and the control of PM2.5
concentrations. However, to obtain greater accuracy of
PM2.5 predictions using the SR method, it may be nec-
essary to consider other types of relevant information
such as meteorology or the planetary boundary layer.

Appendix A: Supplementary data

Supplementary data associated with this article can be
found at http://dx.doi.org/10.2306/scienceasia1513-1874.
2022.001.
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Fig. S1 Comparisons of predicted PM2.5 concentration between the surface reflectance Band-2 (SR-PM2.5 and MAIAC-AOD).
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Fig. S1 continued . . . .
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Table S1 Information of PCD monitoring stations in the study domain.

Province Station code Station name Latitude (° N) Longitude (° E)

Chiang Mai
35T Provincial office 18.8377 98.9729
36T Yupparaj Wittayalai School 18.7883 98.9932

Chiang Rai
57T Provincial office of Natural Resources and Environment 19.9023 99.8234
73T Provincial Public Health Office, Mae Sai 20.4271 99.8833

Mae Hong Son 58T Provincial office of Natural Resources and Environment 19.3045 97.9715

Lamphun 68T Meteorological Office 18.5668 99.0388

Lampang

37T Meteorological Office 18.1642 99.3025
38T Sobpad, Mae Moh 18.2495 99.7627
39T Tha-see, Mae Moh District 18.4247 99.7531
40T Provincial Waterworks Authority, Mae Moh 18.2820 99.6590

Phayao 70T Phayao Provincial Administrative Organization 19.1670 99.8962

Phrae 69T Meteorological Office 18.1128 100.1622

Nan
67T Nan Municipality 18.7861 100.7795
75T Chaloem Pra Kiat Hospital 19.5751 101.0812
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