
R ESEARCH  ARTICLE

doi: 10.2306/scienceasia1513-1874.2022.027
ScienceAsia 48 (2022): 107–114

Meromorphic solutions of some types of q -difference
differential equation and delay differential equation

Minfeng Chena,∗, Zongsheng Gaob, Jilong Zhangb

a School of Mathematics and Statistics, Guangdong University of Foreign Studies, Guangzhou 510006 China
b LMIB & School of Mathematical Sciences, Beihang University, Beijing 100191 China

∗Corresponding author, e-mail: chenminfeng198710@126.com
Received 8 May 2021

Accepted 10 Nov 2021

ABSTRACT: In this paper, we investigate the existence of rational solutions and value distribution of non-rational
meromorphic solutions with the finite order of delay differential equation

w(z+1)−w(z−1)+ a
w′(z)
w(z)

= b,

where a ∈ C\{0}, b ∈ C are constants. In addition, necessary conditions are obtained for q-difference differential
equation

w(qz)−w(z/q)+ a(z)
w′(z)
w(z)

= R(z, w(z))

to admit a non-rational meromorphic solution of zero-order, where |q| 6∈ {0, 1}, a(z) is rational and R(z, w(z)) is rational
in w(z) with rational coefficients in z.

KEYWORDS: value distribution, meromorphic solution, delay differential equation, q-difference differential equation,
zero-order

MSC2010: 30D05 34M10 39A45 39B32

INTRODUCTION AND MAIN RESULTS

Quispel et al [1] have derived the delay differential
equation

w(z+1)−w(z−1)+ a
w′(z)
w(z)

= b, (1)

where a, b are constants, as a reduction of the in-
tegrable Kac-van Moerbeke equation on the basis of
its Lie symmetries. They showed that (1) admits a
Lax representation, and reduces to the first Painlevé
equation in a continuum limit.

In this paper, we continue to study (1) and obtain
some properties of meromorphic solutions of (1), that
is, we obtain the following result.

Theorem 1 Consider the delay differential (1), where
a ∈ C\{0}, b ∈ C are constants. Then
(i) If b ∈ C\{0}, then (1) has no rational solution;
(ii) If b = 0, then (1) admits a non-constant rational

solution of the form

w(z) = −
a
2
+

m(z)
n(z)

,

where m(z) and n(z) are polynomials with
deg m(z) = m, deg n(z) = n and m< n;

(iii) If b ∈C\{0}, suppose that w(z) is a transcendental
meromorphic solution of (1) with finite order, then

w(z) has at most one finite Borel exceptional value
0 unless

w(z) = p exp(kπiz) and
b
a
= kπi, i =

p
−1,

where p is a non-zero constant, k ∈ Z\{0};
(iv) If b ∈ C\{0}, suppose that w(z) is a finite order

transcendental meromorphic solution of (1), and
has only finitely many zeros and poles, then

w(z) = p exp(kπiz) and
b
a
= kπi, i =

p
−1,

where p is a non-zero constant, k ∈ Z\{0}.

Example 1 ([1])

w(z) = −
a
2
(z+ c+1)(z+ c−2)
(z+ c)(z+ c−1)

= −
a
2
+

a
(z+ c)(z+ c−1)

is a rational solution of equation

w(z+1)−w(z−1)+ a
w′(z)
w(z)

= 0,

where a ∈ C\{0} and c ∈ C.
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The difference analogue of the logarithmic deriva-
tive lemma, which was obtained independently by
Halburd et al [2] and by Chiang et al [3], plays a key
role in the value distribution of difference [4–9]. Also,
q-difference analogue of the logarithmic derivative
lemma, which was obtained by Barnett et al [10],
plays an important role in the value distribution of q-
difference [11–14].

Halburd et al [15] investigated the differential-
difference equation

w(z+1)−w(z−1)+ a(z)
w′(z)
w(z)

= R(z, w(z)), (2)

where a(z) is rational and R(z, w(z)) is rational in w(z)
and meromorphic in z. In this paper, we study q-
difference differential equation

w(qz)−w(z/q)+ a(z)
w′(z)
w(z)

= R(z, w(z))

=
P(z, w(z))
Q(z, w(z))

, (3)

where |q| 6∈ {0, 1}, a(z) is rational and R(z, w(z)) is
rational in w(z) with rational coefficients in z. Now,
we state the main findings as follows.

Theorem 2 Let w(z) be a transcendental meromorphic
solution of zero-order of (3), where a(z) is rational in z,
P(z, w(z)) is a polynomial in w(z) having rational coef-
ficients in z, and Q(z, w(z)) 6≡ 0 is a monic polynomial
in w(z) with roots that are rational in z and not roots of
P(z, w(z)). Then

degw(P(z, w)) = degw(Q(z, w))+1¶ 3, (4)

or the degree of R(z, w(z)) as a rational function in w(z)
is either 0 or 1.

Considering a meromorphic function w(z) in the
complex plane, we assume that the reader is familiar
with the standard symbols and fundamental results
of Nevanlinna theory [16, 17]. In addition, we use
notations ρ(w), λ(w) and λ

�

1
w

�

to denote the order
of growth, the exponent of convergence of the zero-
sequence and the pole-sequence of meromorphic func-
tion w(z), respectively. And we denote by S(r, w) any
quantify satisfying S(r, w) = o(T (r, w)), as r → ∞,
outside of a possible exceptional set of finite logarith-
mic measure.

LEMMAS

Lemma 1 ([10], Theorem 1.2) Let f (z) be a non-
constant zero-order meromorphic function, and q ∈
C\{0}. Then

m
�

r,
f (qz)
f (z)

�

= o(T (r, f )) (5)

on a set of logarithmic density 1.

Lemma 2 ([14], Theorem 1.1) Let f (z) be a non-
constant zero-order meromorphic function, and q ∈
C\{0}. Then

T (r, f (qz)) = (1+ o(1))T (r, f (z)) (6)

on a set of logarithmic density 1.

Remark 1 Equation (6) implies that

T (r, f (qz)) = T (r, f (z))+ S(r, f ).

Lemma 3 ([18], Lemma 4) Let c1 > 1, c2 > 1 andρ¾
0. If T : R+→ R+ is an increasing function such that

limsup
r→∞

log T (r)
log r

= ρ,

then the logarithmic density of the set

E := {r : T (c1r)¾ c2T (r)}

satisfies

log dens(E)¶
ρ log c1

log c2
.

The following lemma plays a key role in the proof
of Theorem 2. A q-difference differential polynomial
in w(z) is defined by

P(z, w(z)) =
∑

λ∈I

aλ(z)w(z)
λ0,0 w(q1z)λ1,0 · · ·

· · ·w(qνz)λν,0 w′(z)λ0,1 · · ·w(µ)(qνz)λν,µ ,

where q1, . . . , qν are distinct complex constants and
|qi | 6∈ {0,1}(1¶ i ¶ ν), I is a finite index set consisting
of elements of the form λ = (λ0,0, · · · ,λν,µ) and the
coefficients aλ(z) are rational functions of z for all
λ ∈ I .

Lemma 4 Let w(z) be a transcendental meromorphic
solution of

P(z, w(z)) = 0, (7)

where P(z, w(z)) is q-difference differential polynomial
in w(z) with rational coefficients, and let b1, . . . , bl be
rational functions satisfying P(z, b j) 6≡ 0 for all j ∈
{1, . . . , l}. Denote K = max

1¶i¶ν
{|qi |, 1/|qi |}. If there exists

s > 0 and τ ∈ (0, 1) such that

l
∑

j=1

n

�

r,
1

w− b j

�

¶ lτn(K s r, w)+O(1), (8)

then ρ(w)> 0.

Proof : Suppose that ρ(w) = 0. We first show that the
assumption P(z, b j) 6≡ 0 implies that

m

�

r,
1

w− b j

�

= S(r, w), (9)
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on a set of logarithmic density 1. This result is
an extension of Mohon’ko’s Theorem [19] and its
q-difference analogue [10] for differential-difference
equations with meromorphic solutions of zero-order.

By substituting w= g + b j into (7) we obtain

Q(z, g)+R(z) = 0, (10)

where
Q(z, g) =

∑

λ∈I

aλ(z)Gλ(z, g) (11)

is a q-difference differential polynomial in g(z) such for
all λ in the finite index set I , Gλ(z, g) is a non-constant
product of derivatives and q-shift of g(z). Also R(z) 6≡
0, since P(z, b j) 6≡ 0 for all j ∈ {1, . . . , l}, is a rational
function. The coefficients aλ(z) in (11) are all rational.
By defining E1 = {θ ∈ [0, 2π) : |g(r eiθ )|¶ 1} and E2 =
[0, 2π)\E1, we have

m

�

r,
1

w− b j

�

= m
�

r,
1
g

�

=

∫

θ∈E1

log+
�

�

�

�

1
g(r eiθ )

�

�

�

�

dθ
2π

. (12)

Furthermore, for all z = r eiθ such that θ ∈ E1,
�

�

�

�

Q(z, g)
g

�

�

�

�

=
1
|g|

�

�

�

∑

λ∈I

aλ(z)g(z)
λ0,0 g(q1z)λ1,0 · · ·

· · · g(qνz)λν,0 g ′(z)λ0,1 · · · g(µ)(qνz)λν,µ

�

�

�

¶
∑

λ∈I

|aλ(z)|
�

�

�

�

g(q1z)
g(z)

�

�

�

�

λ1,0

· · ·

· · ·
�

�

�

�

g(qνz)
g(z)

�

�

�

�

λν,0
�

�

�

�

g ′(z)
g(z)

�

�

�

�

λ0,1

· · ·
�

�

�

�

g(µ)(qνz)
g(z)

�

�

�

�

λν,µ

,

since degg(Gλ) ¾ 1 for all λ ∈ I with λ =
(λ0,0, . . . ,λν,µ). Using (10) we have

log+
�

�

�

�

1
g(z)

�

�

�

�

¶ log+
�

�

�

�

R(z)
g(z)

�

�

�

�

+ log+
�

�

�

�

1
R(z)

�

�

�

�

¶ log+
�

�

�

�

Q(z, g)
g(z)

�

�

�

�

+ log+
�

�

�

�

1
R(z)

�

�

�

�

.

By using (12) with q0 = 1, and applying the lemma on
the logarithmic derivative, Lemma 1 and Lemma 2, we
have

m
�

r, 1
w−b j

�

¶
∫

θ∈E1

log+
�

�

�

�

Q(z, g)
g(reiθ )

�

�

�

�

dθ
2π
+O(log r)

¶
ν
∑

n=0

µ
∑

m=0

λn,mm

�

r,
g(m)(qnz)

g(z)

�

+O(log r)

¶
ν
∑

n=0

µ
∑

m=0

λn,m

�

m

�

r,
g(m)(qnz)

g(qnz)

�

+m
�

r,
g(qnz)
g(z)

�

�

+O(log r) = S(r, w), (13)

on a set of logarithmic density 1. It follows from (8)
that

l
∑

j=1

N
�

r, 1
w−b j

�

¶ l(τ+ ε)N(K s r, w)+O(log r), (14)

where ε > 0 is chosen such that τ+ ε < 1. By the first
main theorem of Nevanlinna theory, we have

lT (r, w) =
l
∑

j=1

�

m
�

r, 1
w−b j

�

+N
�

r, 1
w−b j

��

+O(log r).

(15)
It follows from (9), (14) and (15) that

lT (r, w)¶ l(τ+ ε)N(K s r, w)+ S(r, w)
¶ l(τ+ ε)T (K s r, w)+ S(r, w). (16)

By Remark 1 and an observation due to Berg-
weiler et al [20], it follows that

T (K s r, w(z)) +O(1) = T (r, w(K sz)) = T (r, w) + S(r, w)

on a set of logarithmic density 1. By combining (16),
we have

T (r, w)¶ (τ+ ε)T (r, w)+ S(r, w),

since τ+ε < 1, the above inequality is a contradiction.
Then we conclude that ρ(w)> 0. 2

PROOF OF Theorem 1

Proof : Suppose that w(z) is a rational solution of (1).
Denote

w(z) = h(z)+
m(z)
n(z)

, (17)

where h(z), m(z) and n(z) are polynomial with
deg h(z) = l, deg m(z) = m, deg n(z) = n with m < n.
Set

h(z) = c0z l + · · ·+ cl ,

m(z) = a0zm+ · · ·+ am,

n(z) = b0zn+ · · ·+ bn,

(18)

where c0, . . . , cl , a0(6= 0), . . . , am, b0(6= 0), · · · , bn are
constants.

(i) If b ∈C\{0}, in what follows, we consider three
cases.

Case 1: l > 0. By (17) and (18), when z is large
enough, w(z) can be written as

w(z) = c0z l(1+ o(1)). (19)

Then

w(z+1) = c0(z+1)l(1+ o(1)),

w(z−1) = c0(z−1)l(1+ o(1)),

w(z+1)−w(z−1) = 2c0lz l−1(1+ o(1)),

w′(z) = c0lz l−1(1+ o(1)).

(20)
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By substituting (19) and (20) into (1), it follows that

c0z l(1+ o(1))2c0lz l−1(1+ o(1))+ ac0lz l−1(1+ o(1))

= bc0z l(1+ o(1)),

that is,

2c2
0 lz2l−1(1+ o(1)) = bc0z l(1+ o(1)),

from which it follows that

2l −1= l and 2c2
0 = bc0.

So l = 1 and b = 2c0. Then w(z) can be rewritten as

w(z) = c0z+ c1+ o(1), c0 6= 0, (21)

and

w(z+1)−w(z−1)

= c0(z+1)+ c1+ o(1)− [c0(z−1)+ c1+ o(1)]
= 2c0+ o(1),

w′(z) = c0+ o(1). (22)

Substituting (21) and (22) into (1) yields

(c0z+ c1+ o(1))(2c0+ o(1))+ a(c0+ o(1))
= b(c0z+ c1+ o(1)).

Since b = 2c0, from the above equality, we conclude
that a = 0, a contradiction.

Case 2: l = 0, c0 6= 0. By (17) and (18), when z is
large enough, w(z) can be written as

w(z) = c0+
m(z)
n(z)

= c0+ o(1). (23)

By calculation and m< n, we see that

m(z+1)n(z−1)−m(z−1)n(z+1)

= 2(m− n)a0 b0zm+n−1(1+ o(1)),
m′(z)n(z)−m(z)n′(z)

= (m− n)a0 b0zm+n−1(1+ o(1)),

n(z+1)n(z−1) = b2
0z2n(1+ o(1)),

n2(z) = b2
0z2n(1+ o(1)).

(24)

Then

w(z+1)−w(z−1)

=
m(z+1)n(z−1)−m(z−1)n(z+1)

n(z+1)n(z−1)

= 2(m− n)
a0

b0
zm−n−1(1+ o(1)),

w′(z) =
m′(z)n(z)−m(z)n′(z)

n2(z)

= (m− n)
a0

b0
zm−n−1(1+ o(1)).

(25)

Substituting (23)–(25) into (1) yields

(c0+ o(1))2(m− n)
a0

b0
zm−n−1(1+ o(1))+

a(m− n)
a0

b0
zm−n−1(1+ o(1)) = b(c0+ o(1)),

that is,

(a+2c0)(m− n)
a0

b0
zm−n−1(1+ o(1)) = b(c0+ o(1)).

Since m < n and b, c0 6= 0, the above equality is a
contradiction.

Case 3: l = 0, c0 = 0. Because m< n, we see that

w(z) =
m(z)
n(z)

=
a0

b0
zm−n(1+ o(1)). (26)

By substituting (24)–(26) into (1), we have

a0

b0
zm−n(1+ o(1))2(m− n)

a0

b0
zm−n−1(1+ o(1))

+ a(m− n)
a0

b0
zm−n−1(1+ o(1)) = b

a0

b0
zm−n(1+ o(1)),

that is,

a(m− n)
a0

b0
zm−n−1(1+ o(1)) = b

a0

b0
zm−n(1+ o(1)).

Since m < n and ab 6= 0, the above equality is a
contradiction.

(ii) If b= 0, suppose that l > 0 or l = 0 and c0 = 0,
we can conclude that (1) has no non-constant rational
solution by using the same method of proof of Case 1
or Case 3, respectively. Suppose that l = 0 and c0 6= 0,
substitute (23)–(25) into (1) yields

(c0+ o(1))2(m− n)
a0

b0
zm−n−1(1+ o(1))+

a(m− n)
a0

b0
zm−n−1(1+ o(1)) = 0,

that is,

(a+2c0)(m− n)
a0

b0
zm−n−1(1+ o(1)) = 0.

Since m< n and a0, b0 6= 0, then we have c0 = −
a
2 .

(iii) If b ∈ C\{0}, denote

P(z, w) := w(z)[w(z+1)−w(z−1)]+aw′(z)−bw(z) = 0.

Then, we have

P(z,α) = −bα 6= 0, α ∈ C\{0}.

An application of the estimate (2.3) of Lemma 2.1 in
[15], yields

m
�

r,
1

w−α

�

= S(r, w).
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Then

N
�

r,
1

w−α

�

= T (r, w)+ S(r, w)

for all α ∈ C\{0}. Thus w(z) has at most one finite
Borel exceptional value 0. Suppose that w(z) has two
Borel exceptional values 0 and∞, by Theorem 2.11 of
[21], we see that w(z) is of regular growth, then w(z)
can be written as

w(z) = p(z)eh(z), (27)

where p(z) is a meromorphic function, and h(z) is
polynomial such that

σ(p(z)) =max{λ(w),λ(1/w)}< deg h(z).

By (27), we obtain

w(z+1) = p(z+1)eh(z+1) = p+(z)e
h(z),

w(z−1) = p(z−1)eh(z−1) = p−(z)e
h(z),

w′(z) = (p′(z)+ p(z)h′(z))eh(z),

(28)

where p+(z) = p(z + 1)eh(z+1)−h(z), p−(z) =
p(z−1)eh(z−1)−h(z). Substituting (27) and (28)
into (1) yields

p(z)(p+(z)− p−(z))e
h(z)

= bp(z)− a(p′(z)+ p(z)h′(z)). (29)

If p+(z)− p−(z) 6≡ 0, rewrite (29) as

eh(z) =
bp(z)− a(p′(z)+ p(z)h′(z))

p(z)(p+(z)− p−(z))
.

Since σ(eh(z)) = deg h(z) and

σ

�

bp(z)− a(p′(z)+ p(z)h′(z))
p(z)(p+(z)− p−(z))

�

¶max{deg h(z)−1,σ(p(z))},

which contradicts with σ(p(z)) < deg h(z). Thus
p+(z)−p−(z)≡ 0, then a(p′(z)+p(z)h′(z))−bp(z)≡ 0.
By p(z) 6≡ 0 and a(p′(z) + p(z)h′(z)) − bp(z) ≡ 0, it
follows that p′(z)/p(z) ≡ b/a − h′(z), that is, p(z) =
c ebz/a−h(z), where c is a non-zero constant. Since
1 ¶ deg h(z) and σ(p(z)) < deg h(z), we have h(z) =
bz/a+c1 and p(z)≡ p, where p is a non-zero constant,
c1 is a constant. It follows from p+(z)− p−(z)≡ 0 and
p(z)≡ p that p(z+1)eh(z+1)−h(z) ≡ p(z−1)eh(z−1)−h(z),
then e2b/a = 1, that is, b/a = kπi, k ∈ Z\{0}. So
w(z) = p exp(kπiz).

(iv) Suppose that w(z) has only finitely many
zeros and poles, and is a finite order transcendental
meromorphic solution of (1), then 0 and ∞ are two
Borel exceptional values of w(z), the conclusion fol-
lows immediately by Theorem 1 (iii). 2

PROOF OF Theorem 2

Proof : Suppose that (3) has a transcendental mero-
morphic solution of zero-order. By (3) and an identity
due to Valiron [22] and Mohon’ko [23] (see also [17],
Theorem 2.2.5), we have

T
�

r, w(qz)−w(z/q)+ a(z)
w′(z)
w(z)

�

= T (r, R(z, w(z)))
= degw(R(z, w(z)))T (r, w(z))+O(log r).

By applying the lemma on the logarithmic derivative
and an observation due to Bergweiler et al [20], we
have for all sufficiently large r > 0,

degw(R(z, w(z)))T (r, w(z))

¶ T (r, w(qz))+ T (r, w(z/q))+ T
�

r, w′(z)
w(z)

�

+O(log r)

¶ T (r, w(qz))+T (r, w( z
q ))+N(r, w)+N(r, 1

w )+S(r, w)

¶ T (|q|r, w(z))+ T ( r
|q| , w(z))+2T (r, w(z))+ S(r, w)

¶ (2+ ε)T (Kr, w(z))+2T (r, w(z)),

that is,

(degw(R(z, w(z)))−2)T (r, w(z))
¶ (2+ ε)T (Kr, w(z)), (30)

with K =max{|q|, 1/|q|} and ε > 0. Let

G = {r > 0 : inequality (30) is true}.

Then the logarithmic density of G satisfies

log dens(G) = lim sup
r→∞

∫

[0,r]∩G
dt
t

log r
= 1.

By Lemma 3 and inequality (30), it follows that

log dens(G)¶
ρ(w) log K

log
�

degw(R(z,w(z)))−2
2+ε

� ,

and so

log
�

degw(R(z, w(z)))−2
2

�

¶ ρ(w) log K , (31)

by letting ε → 0. Hence, if (3) has a non-rational
meromorphic solution of zero-order, then it follows
from (31) that

degw(R(z, w(z)))¶ 4.

In what follows, similar to the proof of Theorem
1.1 in [15], we consider five cases.

Case 1: Suppose that the denominator of
R(z, w(z)) has at least two distinct non-zero rational
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roots for w(z) as a function of z, say b1(z) 6≡ 0 and
b2(z) 6≡ 0. Then we written (3) as

w(qz)−w(z/q)+ a(z)
w′(z)
w(z)

=

P(z, w(z))
(w(z)− b1(z))(w(z)− b2(z))Q̂(z, w(z))

, (32)

where P(z, w(z)) 6≡ 0 and Q̂(z, w(z)) 6≡ 0 are polyno-
mials in w(z) of at most degree 4 and 2, respectively.
We do not rule out the possibility that Q̂(z, b1(z)) ≡ 0
or Q̂(z, b2(z)) ≡ 0. We also assume that P(z, w(z))
and Q̂(z, w(z)) are two mutually prime polynomials in
w(z). Then neither b1(z), nor b2(z) is a solution of
(32), and so they satisfy the first condition of Lemma 4.
Assume that ẑ ∈ C is any point satisfying

w(ẑ) = b1(ẑ), (33)

and such that none of the coefficients of (32) have a
zero or pole at ẑ and P(ẑ, w(ẑ)) 6= 0. Let p denote the
order of the zero of w(z)−b1(z) at ẑ. We call such a ẑ a
generic root of w(z)−b1(z) of order p. Without further
comment, we only consider generic roots. Since the
coefficients are rational and thus have finitely many
zeros or poles, the contribution can be included in a
bounded error term, leading to an error term of the
type O(log r). It follows from (32) that either w(qz) or
w(z/q) has a pole at z = ẑ of order at least p. Without
loss of generality, we assume that w(qz) has such a pole
at z = ẑ. By q-shifting the (32), we have

w(q2z)−w(z)+ a(qz)
qw′(qz)
w(qz)

=

P(qz, w(qz))

(w(qz)−b1(qz))(w(qz)−b2(qz))Q̂(qz, w(qz))
, (34)

which implies that w(q2z) has such a pole of order one
at z = ẑ provided that

degw(P)¶ degw(Q̂)+2. (35)

Suppose that (35) holds, by iterating (32) one more
step, we have

w(q3z)−w(qz)+ a(q2z)
q2w′(q2z)

w(q2z)
=

P(q2z, w(q2z))

(w(q2z)−b1(q2z))(w(q2z)−b2(q2z))Q̂(q2z, w(q2z))
.

(36)

If p > 1, then w(q3z) must have a pole of order at
least p at z = ẑ. Hence, we can pair up the zero
of w(z) − b1(z) at z = ẑ together with the pole of
w(z) at z = qẑ without possibility of a similar iteration
process starting from another point, say z = q3ẑ, and

resulting in pairing the pole at z = qẑ with another
root of w(z) − b1(z), or of w(z) − b2(z). Therefore,
we have found a pole of order at least p which can
be uniquely associated with the zero of w(z)− b1(z)
at z = ẑ. If p = 1, it may in principle be possible that
there is another root of w(z)− b1(z) or of w(z)− b2(z)
at z = q3ẑ, which needs to be paired with the pole of
w(z) at z = q2ẑ. But since now all of the poles in the
iteration are simple, we still pair up the root of w(z) at
z = ẑ and the pole of w(z) at z = qẑ. If there is another
root of w(z)−b1(z) at z = q3ẑ such that w(q4ẑ) is finite,
we can pair it up with pole of w(z) at z = q2ẑ. Thus for
any p ¾ 1, there is a pole of order at least p which can
be paired up with the root of w(z)− b1(z) at z = ẑ. By
adding up all points ẑ such that (33) holds, similarly,
for b2(6≡ b1), it follows that

n
�

r, 1
w−b1

�

+ n
�

r, 1
w−b2

�

¶ n(Kr, w) + O(1), (37)

with K =max{|q|, 1/|q|}. Hence, it satisfies the second
condition of Lemma 4, so ρ(w)> 0, a contradiction.

Suppose that

degw(P)> degw(Q̂)+2.

If degw(P) = 3, it follows that degw(Q) = 2, and the
assertion (4) holds. If

4= degw(P)> degw(Q̂)+2= 2, (38)

and ẑ is a generic root of w(z)− b1(z) of order p. It
follows from (32) that either w(qz) or w(z/q) must
have a pole at z = ẑ of order at least p, and we suppose
as above that w(qz) has the pole at z = ẑ. Then, it
follows that w(q2ẑ) has a pole of order 2p, and w(q3ẑ)
has a pole of order of 4p. Hence we can pair the root
of w(z)− b1(z) at z = ẑ and the pole of w(z) at z = qẑ
the same way as in the case (35). Similarly, for the
roots of w(z)− b2(z), and so (37) holds. By Lemma 4,
ρ(w)> 0, a contradiction.

Suppose that

4= degw(P)> degw(Q̂)+2= 3, (39)

and that ẑ is a point satisfying (33), and of order
p. Since degw(Q̂) = 1, without loss of generality, we
assume that

Q̂ = w(z)− b3(z),

where b3(z) is rational in z. Assume that b3(z) 6≡ b j(z),
for j ∈ {1,2}. It follows by the assumption Q(z, w) 6≡ 0
that b3(z) 6≡ 0. As above, it follows by (32) that either
w(qz) or w(z/q) has a pole of order at least p at z = ẑ,
and we may again suppose that w(qz) has that pole.
If p > 1, then (34) implies that w(q2z) has a pole at
z = ẑ of order at least p. Even though, w(z)− b j(z) has
a root at z = q3ẑ for some j ∈ {1,2, 3}, we have found
at least one pole for each root of w(z)− b1(z) in this
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iteration sequence, counting multiplicities. Therefore
we can pair the root of w(z)− b1(z) at z = ẑ and the
pole of w(z) at z = qẑ the same way as in (35) and
(38). If p = 1, it may in principle be possible that the
pole of right hand side of (34) at z = ẑ cancels with the
pole of the term a(qz)qw′(qz)/w(qz) at z = ẑ in such
a way that w(q2ẑ) remains finite. If w(q2ẑ) 6= b j(q2ẑ)
for j ∈ {1, 2,3}, then it follows from (36) that w(q3z)
has a pole at z = ẑ, and we can pair up the root of
w(z)− b1(z) at z = ẑ and the pole of w(z) at z = qẑ. If
w(q2ẑ) = b j(q2ẑ) for j ∈ {1,2, 3}, it may happen that
w(q3ẑ) remains finite. If all points ẑ such that w(ẑ) =
b j(ẑ) are a part of an iteration sequence of this form,
i.e.,

w(ẑ) = b j1(ẑ), w(qẑ) =∞, w(ẑ) = b j2(ẑ),

j1, j2 ∈ {1, 2,3},

by adding up all roots of w(z)− b j(z), j ∈ {1, 2,3}, we
have

n
�

r, 1
w−b1

�

+n
�

r, 1
w−b2

�

+n
�

r, 1
w−b3

�

¶ 2n(Kr, w)+O(1),

with K = max{|q|, 1/|q|}. Note that, all of b1, b2 and
b3 are not solutions of (32), it follows from Lemma 4
that ρ(w)> 0, a contradiction.

Case 2: Suppose that the denominator of
R(z, w(z)) in (3) has at least one non-zero rational root,
say b1(z) 6≡ 0. Then (3) can be written as

w(qz)−w(z/q)+ a(z)
w′(z)
w(z)

=

P(z, w(z))
(w(z)− b1(z))nQ̌(z, w(z))

, (40)

where P(z, w(z)) 6≡ 0 and (w(z) − b1(z))nQ̌(z, w(z))
are two mutually prime polynomials in w(z) with
degw(P) ¶ 4 and degw((w(z) − b1(z))nQ̌(z, w(z))) =
n+degw(Q̌) = n+m¶ 4. Then b1(z) is not a solution
of (40), and satisfies the first condition of Lemma 4.
Assume that n ∈ {2,3, 4}, and suppose that ẑ is a
generic root of w(z)− b1(z) of order p. Then either
w(qz) or w(z/q) has a pole at z = ẑ of order at least np,
and without loss of generality, we suppose that w(qz)
has such that a pole at z = ẑ. Next, suppose that

degw(P)¶ n+m. (41)

Then w(q2ẑ) is a pole of order one, and w(q3ẑ) is a
pole of order at least np. By continuing the iteration,
it follows that w(q4ẑ) is again a simple pole or finite
value. Thus it may be w(q4ẑ) = b1(q4ẑ), and so it is at
least in principle possible that w(q5ẑ) is a finite value.
By adding up all roots of w(z) − b1(z) and poles of
w(z) in the set {ẑ, qẑ, · · · , q4ẑ}, and taking into account
multiplicities of these points, we find that there at

least 2np + 1 poles for 2p roots of w(z) − b1(z). If
w(q4ẑ) 6= b1(q4ẑ), or w(q4ẑ) is a root of Q̌(z, w(z))with
multiplicity p, then w(q5ẑ) is a pole of order np, and
we have even more poles for every root of w(z)−b1(z).
By adding up the contribution from all points z = ẑ to
corresponding counting functions, it follows that

n
�

r,
1

w− b1

�

¶
1
n

n(K4r, w)+O(1),

with K = max{|q|, 1/|q|}. Then the second condition
of Lemma 4 is satisfied, so ρ(w)> 0, a contradiction.

Suppose that

degw(P)> n+m+1. (42)

Suppose that z = ẑ is a generic root of w(z)− b1(z) of
order p. As in the case (41) either w(qẑ) or w(ẑ/q), say
w(qẑ), is a pole of order np at least. This implies that
w(q2ẑ) is a pole of order np at least, and so, the only
way that w(q4ẑ) can be finite is that w(q3ẑ) = b1(q3ẑ),
or w(q3ẑ) is a root of Q̌(z, w(z)), with multiplicity
p. This is the “best case”, we have found 2np poles,
counting multiplicities, that correspond uniquely to 2p
roots of w(z)− b1(z). Thus, we have

n
�

r,
1

w− b1

�

¶
1
n

n(K3r, w)+O(1),

with K = max{|q|, 1/|q|}. Lemma 4 implies that
ρ(w)> 0, a contradiction.

Case 3: Suppose that Q(z, w) in (3) has only one
simple root, and assume that

degw(P)¾ 3. (43)

Then the denominator of the right hand side of (3) can
be written as Q(z, w(z)) = w(z)− b1(z). Let z = ẑ be
a generic root of w(z)− b1(z) of order p. Then, either
w(qẑ) or w(ẑ/q) is a pole of order p at least. Without
loss of generality, we assume that w(qẑ) is a pole of
order p. Then w(q2ẑ) is a pole of order 2p at least, and
w(q3ẑ) is a pole of order 4p at least, and so on. Then
we have

n
�

r,
1

w− b1

�

¶
1
3

n(K2r, w)+O(1),

with K = max{|q|, 1/|q|}. Lemma 4 implies that
ρ(w)> 0, a contradiction.

Case 4: Suppose that Q(z, w) in (3) has only one
simple root, and

degw(P)¶ 2. (44)

If degw(P) = 2, then degw(P) = degw(Q)+1, and thus
(4) holds. If degw(P)¶ 1, then degw(R) = 1.

Case 5: R(z, w(z)) is a polynomial in w(z). Then
(3) can be written as

w(qz)−w(z/q)+ a(z)
w′(z)
w(z)

= P(z, w(z)), (45)
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where degw(P) ¶ 4. If degw(P) = 1, then (4) holds,
and if degw(P) = 0, it follows that R(z, w(z)) in (3) is
a polynomial of degree 0 as asserted. Now, we assume
that degw(P) ¾ 2 and suppose that w(z) has either
infinitely many zeros or poles(or both). Suppose that
there is a pole or a zero of w(z) at z = ẑ. Note that
the coefficients of (45) are rational, we can always
choose a zero or pole of w(z) in such way that there
is no cancellation with the coefficients. Without loss
of generality, suppose that there is a pole of w(z) at
z = qẑ. By iterating (45), it follows that w(z) has a
pole of order degw(P), at least, at z = q2ẑ, and a pole
of order (degw(P))

2 at z = q3ẑ, and so on. The string
of poles with exponential growth in the multiplicity
can not terminate. And note that the coefficients are
rational and thus have finitely many zeros, and w(z)
has infinitely many zeros or poles, we can choose
the starting point ẑ of the iteration from outside a
sufficiently large disc in such a way that no cancellation
occurs. Thus

n(K s|ẑ|, w)¾ (degw(P))
s−1,

for all s ∈ N, with K =max{|q|, 1/|q|}, and so

λ

�

1
w

�

= lim sup
r→∞

log n(r, w)
log r

¾ lim sup
s→∞

log n(K s|ẑ|, w)
log(K s|ẑ|)

¾ lim sup
s→∞

log(degw(P))
s−1

log(K s|ẑ|)

=
log(degw(P))

log K
> 0.

Hence, ρ(w)¾ λ
�

1
w

�

> 0, a contradiction.
Suppose that w(z) has finitely many poles and ze-

ros, then w(z) is a rational function, which contradicts
with our assumption. 2
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