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ABSTRACT: Nitrogen (N) and phosphorus (P) are essential macronutrients required for plant growth and development.
Under N and inorganic phosphate (Pi) deficiencies, plants undergo adaptation at physiological, morphological, and
transcriptional levels via modulation of endogenous signals, such as phytohormones, in an attempt to increase nutrient
acquisition from the environment. Biosynthesis of brassinosteroid (BR), a class of plant hormones, has been shown to
be crucial in nutrient deficiency responses in the plant model Arabidopsis. In this study, the responses of rice (Oryza
sativa L.) to N and Pi deficiencies were investigated using rice seedlings grown in the presence and absence of a
BR biosynthesis inhibitor, propiconazole (PPZ). Transcript levels of BR biosynthesis genes were induced by N and Pi
deficiencies. PPZ-treated plants showed retarded growth in both sufficient and deficient conditions. Besides, gene
expression of N- and Pi-deficiency-responsive genes was also attenuated by PPZ treatments. These results suggest
that inhibition of BR biosynthesis by PPZ could restrain plant growth and adaptation in response to both N and Pi
deficiencies.
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INTRODUCTION

Nitrogen (N) and phosphorus (P) are two macronu-
trients required for plant growth and development,
and often the major limiting factors in most agri-
cultural system. Deficiencies in N and inorganic
phosphate (Pi) severely affect many physiological
processes, including photosynthesis, carbon and ni-
trogen metabolism, and plant hormone metabolism,
leading to reduction in growth, biomass, and yields
[1, 2]. Plants have evolved diverse mechanisms to
sense the availability of nutrients in the soil and
undergo adaptation at morphological, physiolog-
ical, and transcriptional levels to cope with the
unfavorable conditions [3]. N and Pi deficiencies
have been reported to increase root-shoot biomass
ratio and alter root system architecture, allowing
plants to explore their surrounding soil and increase
nutrient uptake efficiency [4, 5].

Plant hormones serve as an important endoge-
nous signal to control plant growth and develop-
ment in response to nutrient availability and fa-

cilitate communication of nutrient status at sys-
temic levels [6]. Brassinosteroid (BR) is a class of
growth-promoting plant hormones that regulates di-
verse physiological processes, including photomor-
phogenesis, root growth and development, plant
defense, and reproductive development [7]. Recent
studies have revealed roles of BR in abiotic stresses,
such as salinity, drought, and N and Pi deficiencies
[8, 9]. Under mild N deficiency, expression of BR
biosynthesis genes is up-regulated on Arabidopsis
roots, contributing to low N-mediated root elonga-
tion as a foraging adaptation to explore more soil
volume [10]. Overexpression of a BR biosynthesis
enzyme DWARF1 (DWF1) improves plant growth
and overall N accumulation in Arabidopsis [10].
A proteomic study in rapeseed roots also found
that DWF1 is enriched by N deficiency, suggest-
ing that the roles of BR biosynthesis in N defi-
ciency responses are likely conserved across plant
species [11]. Under Pi deficiency, BR biosynthesis
has been shown to be down-regulated on root elon-
gation in Arabidopsis [12]. Recently, several works
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have shown roles of BR biosynthesis in N and Pi
deficiencies in rice. NH+4 promotes BR biosynthesis
via miR444-MADS box-OsBRD1 signaling cascade,
leading to NH+4 -triggered root elongation inhibi-
tion [13]. BR biosynthesis or signaling mutants
attenuated Pi deficiency-induced leaf inclination by
compromising expression of BU1, a BR-induced
gene regulating cell elongation of lamina joint in
rice [14].

The use of chemical inhibitors to inhibit plant
hormone biosynthesis has played significant roles in
the advancement of plant hormone research, espe-
cially when responsible mutants are not available.
Several triazole compounds have been shown to
inhibit cytochrome P450 monooxygenase enzymes
that catalyze biosynthesis pathways of plant hor-
mones. Paclobutrazole and uniconazole are well-
known plant growth regulators that inhibit gib-
berellin biosynthesis and are used to alleviate plant
abiotic stress [15]. Propiconazole (PPZ) is a spe-
cific BR biosynthesis inhibitor that binds CYP90D1
enzyme in the BR biosynthesis pathway [16], result-
ing in reduced endogenous BR levels and signaling
activities [17]. PPZ treatment has been shown to
reduce plant height, root length, and biomass, simi-
lar to BR mutants, in several plant species including
Arabidopsis, soybean, maize, and Brachypodium
[17–20].

In agriculture, PPZ application is one of
the most widely used fungicides in many crop
plants [21]. Highly repeated applications lead to
PPZ contaminations, which have been reported in
soils and water sources [22], as well as topsoil of
paddy rice field [23]. In this study, we investigated
effects of N and Pi deficiency stresses on expression
of BR biosynthesis genes in rice seedlings and effects
of PPZ application on N and Pi deficiency responses
by evaluating plant growth, mineral concentrations,
as well as expression of genes known to be regulated
by N and Pi deficiencies.

MATERIALS AND METHODS

Plant materials and growth conditions

Seeds of rice (Oryza sativa L.) cultivar Zhonghua 11
were sterilized with 3% H2O2 overnight and rinsed
three times with distilled water. The sterilized
seeds were soaked in distilled water and kept in
the dark at 30 °C for 2 days before transferring
to a hydroponic condition using Yoshida’s nutrient
solution (full-strength under sufficient conditions:
1.427 mM NH4NO3, 0.323 mM NaH2PO4, 0.512
mM K2SO4, 0.998 mM CaCl2, 1.643 mM MgSO4,

0.009 mM MnCl2, 0.075 µM (NH4)6Mo7O24, 0.019
mM H3BO3, 0.152 µM ZnSO4, 0.155 µM CuSO4,
and 0.036 µM Fe-EDTA) [24]. Germinated seeds
were transferred to a net floating on half-strength
Yoshida’s nutrient solution in the absence and pres-
ence of 10 µM PPZ for 4 days. Then, uniform
seedlings were selected and transferred to full-
strength Yoshida’s nutrient solution under sufficient
conditions and N-deficient (0.014 mM NH4NO3) or
Pi-deficient (0.003 mM NaH2PO4) conditions in the
absence and presence of 10 µM PPZ. The nutrient
solutions were renewed every 2 days. All seedlings
were grown in a growth room controlled at 30 °C
under 16 h light and 8 h dark cycle.

After 10 days of treatments, plant samples were
harvested for biomass, N and P contents, and gene
expression analyses. Three biological replicates
were used in all experiments.

Measurements of biomass and total N and P
contents

Plant biomass was measured in terms of dry weight
and plant height. To measure plant dry weight,
root and shoot samples were dried at 70 °C until
a constant weight was recorded. To determine
total N and P contents, dry root and shoot samples
were digested with concentrated H2SO4, followed
by addition of H2O2 in block digestion machine.
The digested solution was completed volume with
deionized water. N and P concentrations were deter-
mined by continuous flow analyzer (Skalar Analytic
B.V., Netherlands).

Gene expression analysis

After treatment, roots and shoots were separated
and immediately frozen in liquid nitrogen. Total
RNA was extracted from whole root and whole
shoots tissues using RNAprep Pure Kit (For Plant)
(TIANGEN, China). For each sample, 1 µg of
total RNA was treated with DNase to eliminate
genomic DNA contamination, and first-strand cDNA
was synthesized using PrimeScript™ RT reagent kit
with gDNA Eraser (TaKaRa, China) according to
the manufacturer’s protocol. The cDNA templates
were used to quantify target gene expression level
by quantitative RT-PCR (qRT-PCR) analysis using
gene specific primers listed in Table S1. qRT-PCR
was performed on QuantStudio™ 6 Flex Real-Time
PCR System using SYBR® Premix Ex Tag™ (TaKaRa,
China). The following thermal profile was used for
PCR amplification: initial denaturation at 95 °C for
30 s, followed by 40 cycles of PCR at 95 °C for 5 s and
at 60 °C for 34 s. Melt curve analysis was performed
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to confirm the specificity of the reactions. OsACTIN1
was used as internal control for normalizing gene
expression. The relative expression level was calcu-
lated by 2−∆∆Ct method. The analysis includes three
biological replicates, 12 plants per replicate.

STATISTICAL ANALYSIS

Means and standard errors (SE) were calculated and
analyzed by one-way analysis of variance (ANOVA).
Mean comparison was calculated according to Dun-
can’s multiple range test (DMRT) using IBM SPSS
statistics 20.

RESULTS AND DISCUSSION

Expression analysis of BR biosynthesis genes

To determine whether N and Pi deficiencies af-
fect expression levels of BR biosynthesis genes (Os-
DWF4, OsD2, and OsCYP85A1), total RNAs from
shoots and roots of rice seedlings grown under N-
deficient, Pi-deficient, or sufficient (control) con-
ditions were harvested and determined transcript
levels by quantitative RT-PCR. The results showed
that N deficiency strongly induced OsDWF4 in the
roots (∼6 fold compared with the control) (Fig. 1a),
consistent with a previous report in Arabidopsis
roots [9]. In addition, OsDWF4 and OsD2 were
also induced by N deficiency in the shoots (Fig. 1b).
Pi deficiency promoted the expressions of OsDWF4,
OsD2, and OsCYP85A1 in the shoots, but not in the
roots (Fig. 1ab). These results suggest that both
N and Pi deficiencies induced expressions of BR
biosynthesis genes, but different BR biosynthesis
genes might show varied tissue-specific regulation
by nutrient status.

Effect of PPZ on plant growth under N and Pi
deficiencies

To investigate whether inhibition of BR biosynthe-
sis by exogenous PPZ treatment affects N and Pi
deficiency responses in rice, growth phenotypes of
rice seedlings grown in the presence or absence
of PPZ under nutrient-sufficient conditions were
evaluated. Compared with PPZ-untreated controls,
PPZ-treated plants showed significant reduction in
root biomass, shoot biomass, and plant height by
49.4%, 68.1%, and 76.3%, respectively (Fig. 2).
Moreover, the PPZ-treated plants displayed several
phenotypes common to BR-deficient or signaling
mutants, including dwarf shoots, short roots, and
dark green leaves [18, 25, 26]. The reduction in
growth observed in this study is likely due to re-
duced endogenous BR levels by PPZ inhibiting the

BR biosynthesis enzymes [18, 27]. Transcript levels
of the BR biosynthesis genes (OsDWF4, OsD2, and
OsCYP85A1), which are feedback-regulated by the
BR signaling pathway [28], showed significant up-
regulation (Fig. 1cd). In spite of the upregulation
of the transcripts, endogenous BR levels remain low
because PPZ binds to CYP90D1 enzyme in the BR
biosynthesis pathway and blocks the activities [16].
Thus, the upregulation of the BR biosynthesis genes
supported that endogenous BR levels in the PPZ-
treated plants are blocked, which is consistent with
previous reports [29].

In the absence of PPZ, N deficiency reduced
root biomass (−31.4%), shoot biomass (−59.2%),
and plant height (−28.3%), while Pi deficiency
reduced shoot biomass (−5.6%) and plant height
(−10.0%) but increased root biomass (+17.6%)
when compared with sufficient condition (Fig. 2).
Moreover, when plants were N-deficient, PPZ treat-
ment reduced root biomass, shoot biomass, and
plant height (−26.6%, −55.7%, and −72.5%, re-
spectively), when compared with PPZ-untreated
plants. Similarly, when plants were Pi-deficient,
PPZ treatment reduced root biomass, shoot biomass,
and plant height (−57.3%, −68.0%, and −72.9%,
respectively). Thus, the results showed that PPZ-
treated plants showed similar growth retardation
under sufficient, N-deficient, and Pi-deficient condi-
tions, except reduced degrees of root biomass reduc-
tion was found under N-deficient condition. In N-
deficient plants, PPZ treatment did not reduce root
growth much further than the effect of N deficiency.

Our results demonstrated that PPZ treatment
reduced root adaptation to N and Pi deficiencies.
Previous studies have shown that application of
BR biosynthesis inhibitor, brassinazole, suppressed
root elongation in low N-treated Arabidopsis [10]
and inhibited root formation in low Pi-treated lupin
(Lupinus albus L.) [30].

Effects of PPZ on total N and P contents in
tissues

Effects of PPZ application on N and Pi acquisition or
accumulations in plant tissues were investigated by
measuring total N and P contents in rice seedlings.
N and Pi deficiency treatments similarly reduced
total N and P contents in the PPZ-treated and
the PPZ-untreated plants. Interestingly, the PPZ-
treated plants had higher total N and P contents
than the PPZ-untreated plants under both sufficient
and deficient conditions (Fig. 3). This may be a
consequence of smaller cell size and greater cell
density of PPZ-treated plants. In agreement with a
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Fig. 1 Gene expression analyses of BR biosynthesis genes in roots (a,c) and shoots (b,d) of rice seedlings. Effects of
nutrient deficiency (a,b): seedlings were grown under sufficient or N-deficient or Pi-deficient conditions. Effects of PPZ
treatments (c,d): seedlings were grown in nutrient sufficient conditions in the absence or presence of PPZ treatment.
Relative expression levels were normalized with OsACTIN. Data are means±SE (n = 3). Different letters indicate
significant differences (p < 0.05) according to Duncan’s multiple range test (DMRT).
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Fig. 2 Effects of PPZ on growth of rice seedlings grown under sufficient, N-deficient, or Pi-deficient condition showing
quantification of root biomass (a), shoot biomass (b), and plant height (c). Data are means±SE (n = 3). Different
letters indicate significant differences (p < 0.05) according to Duncan’s multiple range test (DMRT).
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Fig. 3 Effects of PPZ on total N and P contents of rice seedlings grown under sufficient or deficient condition. Total
N contents (mg/g dry weight): in roots (a) and shoots (b) of rice seedlings grown in the sufficient or N-deficient
condition. Total P contents (mg/g dry weight): in roots (c) and shoots (d) of rice seedlings grown in the sufficient
or Pi-deficient condition. Data are means±SE (n = 3). Different letters indicate significant differences (p < 0.05)
according to Duncan’s multiple range test (DMRT).

previous study, PPZ-treated plants increased chloro-
phyll content in leaves, which is likely due to the
specific inhibition of cell elongation [31]. However,
when total N or P accumulations per plant were
considered instead of per g dry weight, PPZ-treated
plants had lower total N and P contents due to the
small shoot biomass (data not shown), similar to
previous reports in BR mutants [10].

PPZ treatment reduced growth rates of
seedlings (Fig. 2), which may lead to a reduction
in nutrient demand compared with the untreated
plants. However, both N and Pi deficiencies led
to similar reduction of total N and P contents
when compared with sufficient conditions
(Fig. 3), indicating that the PPZ-treated plants
also encountered similar nutrient starvation.
Regarding mineral contents in growth-retarded

plants, a previous study has shown that under
Fe-sufficient conditions, the BR biosynthesis rice
mutant (d2-1) showed increased Fe concentrations,
but no differences in Mg and K concentrations
were found when compared with wild-type plants,
suggesting that the effect of plant hormone
deficiency is specific to Fe and not due to reduced
nutrient demand of growth-retarded plants [32].

Expression analyses of genes related to N and Pi
deficiencies

Under N-deficient conditions, N signaling has been
shown to induce expressions of many genes related
to N uptake and metabolism, such as nitrate trans-
porters OsNRT2.1 and OsNRT1.1, an ammonium
transporter OsAMT1.1, and N-assimilating enzymes
OsGS1.1 and OsNADH-GOGAT1 [33]. To determine
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Fig. 4 Gene expression analyses of N deficiency-responsive genes in roots and shoots of rice seedlings grown in the
absence and presence of PPZ and subjected to sufficient or N-deficient condition. Relative expression levels were
normalized with OsACTIN. Data are means±SE (n = 3). Different letters indicate significant differences (p < 0.05)
according to Duncan’s multiple range test (DMRT) (lowercase for root data; uppercase for shoot data).

whether PPZ treatment affects expression of these
genes under N deficiency, transcript levels in shoots
and roots were measured by quantitative RT-PCR.
It was found that expressions of these genes in
PPZ-untreated plants were significantly upregulated
under N-deficient condition. However, the degrees
of upregulation were attenuated by PPZ treatment
(Fig. 4). In particular, when PPZ was not applied,
OsNRT2.1 in roots was dramatically induced by N
deficiency (Fig. 4a), but its expression in shoots was
not detectable, which is consistent with previous
reports that this gene is strongly inducible in roots
by N deficiency [34]. These results suggest that
PPZ treatment could attenuate the N-deficiency-
induced transcriptional response. In contrast, the
attenuation effect was not observed in N-deficiency-
induced OsAMT1.1 expression in the root (Fig. 4c).
This might be due to distinct expression patterns
of different members of AMT1 gene family and
their regulation by BR, as suggested by works in

Arabidopsis that AMT1 expression is controlled by a
complex interaction between nutrient and hormone
signaling in plants [35].

Upon Pi deficiency, a MYB transcription fac-
tor PHOSPHATE STARVATION RESPONSE (PHR),
which is the central regulator of the Pi signaling
pathway, activates expression of the Pi starvation-
induced (PSI) genes, such as INDUCED BY PHOS-
PHATE STARVATION 1 (IPS1) and SPX1, in response
to Pi deficiency [36]. To determine whether PPZ
treatment affects Pi signaling and the expression of
PSI genes, expressions of five PSI genes: OsIPS1, Os-
SPX1, OsSQD2 (SULFOQUINOVOSYLDIACYLGLYC-
EROL 2), OsPAP10 (PURPLE ACID PHOSPHATASE
10), and OsPT8 (PHOSPHATE TRANSPORTER 8),
were investigated in rice seedlings grown under Pi-
sufficient and Pi-deficient conditions in the pres-
ence and absence of PPZ. Their expression in roots
showed dramatic upregulation by Pi deficiency, and
such response was suppressed by PPZ treatment
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Fig. 5 Gene expression analyses of Pi deficiency-responsive genes in roots and shoots of rice seedlings grown in the
absence and presence of PPZ and subjected to sufficient or Pi-deficient condition. Relative expression levels were
normalized with OsACTIN. Data are means±SE (n = 3). Different letters indicate significant differences (p < 0.05)
according to Duncan’s multiple range test (DMRT) (lowercase for root data; uppercase for shoot data).

(Fig. 5). PPZ treatment, however, enhanced re-
sponses of OsSQD2 expression in shoots in response
to Pi deficiency (Fig. 5c). We also found that ex-
pressions of OsSPX1 and OsPAP10 in shoots was
moderately induced by Pi deficiency under both
PPZ-treated and untreated conditions (Fig. 5bd).

Under Pi-sufficient conditions, PPZ treatment
did not significantly alter expression of the PSI genes
with the exception of OsIPS1 and OsPT8 expression
in shoots that showed significant upregulation by
PPZ (Fig. 5a-e). Interestingly, PPZ treatment signifi-
cantly reduced expression of OsIPS1 in shoots under
Pi-deficient conditions (Fig. 5a). Together, these ex-
pression analyses demonstrated an interesting trend
that PPZ treatment suppressed upregulation of PSI
genes, especially in roots.

Our gene expression analysis results showed
that PPZ treatment reduced levels of N and Pi
deficiency-responsive gene expressions (Figs. 4 and
5). Previous studies have shown that PPZ treat-
ments could block nuclear localization of the BR-

regulated transcription factors BRASSINAZOLE RE-
SISTANT1 (BZR1) in Arabidopsis, and thus in-
hibiting the BR-regulated transcriptional regula-
tion [17]. Furthermore, direct targets of BZR1
and BES1/BZR2 transcription factors in Arabidop-
sis have been determined by chromatin immuno-
precipitation assays (ChIP) followed by microarray
(ChIP-chip) or sequencing (ChIP-seq), and the re-
sults revealed thousands of target genes involved
in various physiological responses [37–39]. These
include genes encoding nitrate transporters (At-
NRT1.1, AtNRT1.2, AtNRT1.7, AtNRT1.8, AtNRT2.2,
AtNRT2.6, and AtNRT2.7); ammonium transporters
(AtAMT1;1, AtAMT1;2, and AtAMT2); phosphate
transporters (AtPHT4;1 and AtPHT4;2); purple acid
phosphatases (AtPAP19, AtPAP28 and AtPAP29);
and SPX proteins (AtSPX1 and AtSPX2). Such find-
ings suggest that expression of target genes might
be BR dependent, and the PPZ treatment could
interfere their transcriptional regulation by nutri-
ent deficiency. In agreement, recent studies found
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that brassinazole treatment reduced expression of
several NRT1 genes in cucumber under suboptimal
root zone temperature when compared with 24-
epibrassinolide treatments [40].

Our results showed that expression of N and Pi
deficiency-responsive genes was attenuated by PPZ,
although PPZ-treated plants did not have lower total
N and P contents when compared to the untreated
plants (Fig. 3). This may be due to the experimental
conditions, which were performed in closed hydro-
ponic containers. In such limited conditions, plants
cannot acquire more of the nutrients despite up-
regulating expression of relevant transporters and
enzymes. Future experiments conducted in soil
condition would be necessary for a better under-
standing on plant adaptation to nutrient deficiency.

CONCLUSION

This study demonstrated that N and Pi deficiencies
induced expression of BR biosynthesis genes. Direct
quantification of endogenous BR will be needed to
confirm whether N- and Pi-deficient plants produced
more endogenous BR. Our studies supported pu-
tative roles of BR on nutrient deficiency stress in
rice and illustrated the impact of BR biosynthesis
inhibition in attenuating plant responses to nutrient
deficiency. Hence, heavy repeated application of
PPZ to control fungal diseases in rice paddy field
could perhaps interfere plant adaptation in nutrient-
limited environment.

APPENDIX A. SUPPLEMENTARY DATA

Supplementary data associated with this arti-
cle can be found at http://dx.doi.org/10.2306/
scienceasia1513-1874.2021.S011.
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Appendix A. Supplementary data

Table S1 Gene specific primers used in this study.

Gene Sequence Reference

OsNRT1.1 F: CCTCGCAAGTGACCCTTGAAT [1]
R: CGATGGCTAATGAGGAACCCTT

OsNRT2.1 F: TTCGCGAACCCGCATATGA [1]
R: GTTGAGGTTGTCGCGGATGAT

OsAMT1.1 F: GGTTTCTCTCCCTCTCCGAT [2]
R: CCACCTTCACACCACACATT

OsGS1.1 F: GAGTCGTCGTCTCATTTGACCC [1]
R: GTAGCCACCATCGTTCCTCATC

OsNADH-GOGAT1 F: TGCTTGAGAGAATGGCGCA [1]
R: AACCCAGCATCCTTTGTCACC

OsIPS1 F: AAGGGCAGGGCACACTCCACATTA [3]
R: ATTAGAGCAAGGACCGAAACACA

OsSPX1 F: GACCAGCTTCTACCATCAAACG [4]
R: AGTTCCTGCTGCTCCTCTGG

OsSQD2 F: CTGAAAACGGTAATGGATAGG [5]
R: AACAACAACAGCACGAGC

OsPAP10 F: ATACTGGCAGCCGACGGATGA [5]
R: GAGGGAGCTGGAGCGGAGAA

OsPT8 F: AGAAGGCAAAAGAAATGTGTGTTAAAT [6]
R: AAAATGTATTCGTGCCAAATTGCT

OsCYP85A1 F: TGATCCATTCCTGTACCCTG [7]
R: TACCTTCTTCCTCCCATCTG

OsDWF4 F: AGTCGCGTGCTGCCATTCTCGGAG [8]
R: AGCAAGCTCAGCAAGAGGTCCAGG

OsD2 F: AGCTGCCTGGCACTAGGCTCTACAGATCAC [9]
R: ATGTTGTCGGAGATGAGCTCGTCGGTGAGC

OsACTIN1 F: TGCTATGTACGTCGCCATCCAG [10]
R: AATGAGTAACCACGCTCCGTCA
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