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ABSTRACT: The extrusive rock samples were collected from outcrops at Khun Dan Prakarn Chon Dam site, Nakhon
Nayok Province. They are parts of the Pre-Cretaceous Khao Yai Volcanics located at the southern end of the western Loei-
Petchabun-Nakhon Nayok Volcanic Subbelt. Petrological study found that the extrusive rock samples can be classified
into four groups: felsic pyroclastic rocks, felsic volcanic lava flows, mafic pyroclastic rocks, and mafic-to-intermediate
volcanic/hypabyssal rocks. Geochemical characteristics of the extrusive rock samples, however, can be divided into
two groups which are mafic-to-intermediate extrusive rocks and felsic extrusive rocks. Although the major and some
trace element signatures of these extrusive rocks are identical to those of typical calc-alkalic magmas, the tectonic
discrimination diagrams for least-altered rocks showed that they were different in the magmatic suite and erupting
episode; and discriminant diagrams can be successfully used to identify the tectonic environments of extrusive rocks
and to evaluate the tectonic setting of a region. Incompatible trace element plot on the tectonic discrimination diagrams
for the mafic-to-intermediate extrusive rock samples indicated high affinity with a within-plate tectonic setting, while
felsic extrusive rock samples had high affinity with continental volcanic arc tectonic setting. In addition, the tectonic
setting of these mafic-to-intermediate extrusive rock samples could be correlated to the Khiao Andesite located in the
east of studied area. Dykes could be associated with multiple arc magmatism in Loei Fold Belt and resulted in the
subduction in the Late Permian.

KEYWORDS: Khao Yai volcanics, Khun Dan Prakan Chon Dam, calc-alkalic rocks, continental arc, within-plate tectonic
setting

INTRODUCTION

The Pre-Cretaceous felsic-to-mafic volcanic/hy-
pabyssal volcanic rocks are of particular interest
because they are the evidence to amalgamation
of Indochina and Shan-Thai terranes. The Pre-
Cretaceous felsic-to-mafic volcanic/hypabyssal
rocks in Thailand can be separated into five major
belts from west to east: (1) Chiang Rai-Chiang
Mai volcanic belt, (2) Chiang Khong-Tak volcanic
belt, (3) Nan-Uttaradit volcanic belt, (4) Loei-
Phetchabun-Nakhon Nayok volcanic belt, and (5)
Sra Kaew-Chanthaburi volcanic belt (Fig. 1a) [1–3].

The studied area is the outcrop in Khun Dan
Prakarn Chon Dam site, Mueang Nakhon Nayok
District, Nakhon Nayok Province, Thailand that ap-
pears in the topographic map at scale of 1:50 000,
series L7017, sheet 5237 I (Ban Salika), latitudes
14°10′–14°30′ N, and longitudes 101°10′–101°25′ E
(Fig. 1b) [4]. This area is underlain by Permo-

Triassic volcanic rocks that is part of the volcanic
mass known as Khao Yai Volcanics [5]. These
volcanic rocks are constituted largely by pyroclastic
rocks with minor lava flows and hypabyssal rocks
(dikes and plugs) of felsic-to-mafic compositions.
The pyroclastic rocks are either fall or flow deposits
and are dominated by volcanic breccias and agglom-
erates. The Khao Yai Volcanics are the southern part
of the Loei-Phetchabun-Nakhon Nayok volcanic belt
that runs in NNE-SSW direction from Loei through
Phetchabun to Nakhon Nayok Provinces [2]. The
volcanic rocks in Loei is composed of acidic-to-basic
lavas and pyroclastic rocks compositionally equiva-
lent to the lavas with an Ar-Ar age of 237±12 Ma
(Middle Triassic) [6] and, maybe, a southward
extension of those in the Phetchabun area. The
volcanic rocks in the Phetchabun area have been
interpreted as a result of volcanism along an active
continental margin [1] in an Early-to-Middle Trias-
sic time, as evidenced by an Ar-Ar dating of amphi-
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Fig. 1 (a) Distribution of Pre-Cretaceous volcanic rocks in Northern Thailand (b) Geologic map of studied site.

bole which gave a plateau age of 238±4 Ma. The
volcanic rocks in the Nakhon Nayok area, located
in the southern part of the western sub-belt, are
also geochemically arc-related magma. The Khao
Yai Volcanics ages, obtained from Ar-Ar dating of
hypabyssal rocks, and volcanic rocks, located in the
northwest of the studied area, are of Jurassic age;
hence implying that the dated rocks are younger
than the Permian marine sequences [7, 8]. In ad-
dition, the geochemistry of Permo-Triassic Mafic-
to-Intermediate Dyke swarms in the folded layers
of the Khao Khwang Fold-Thrust Belt (KKFTB) at
the south-western margin of the Indochina Ter-
rane, Central Thailand have ranged from slightly
tholeiitic to mostly calc-alkalic. Zircon U-Pb and
mica 40Ar/39Ar ages indicated that the mafic-to-
intermediate dyke swarms were interpreted as being
intruded from the Early Triassic (255±6 Ma) to
the Late Triassic (207±2 Ma). It can be suggested
that the rocks were emplaced between the Late
Permian and the Late Triassic in a similar orogenic
setting and were probably sourced from a more
crustally contaminated magma [9]. The volcanic
rocks at Wang Nam Khiao Area, Nakhon Ratchasima
Province are eastern part of the Khao Yai Volcanics;
and are classified as rhyolite, dacite, and andesite
whereas dikes are also characterized by andesitic
composition. These dikes clearly cut into the vol-
canic rocks and Late Permian hornblende granite
implying that the volcanic rocks and dikes have
taken place during/after Late Permian. Whole-rock
geochemistry indicated that these suites are related
to calc-alkaline hydrous magma, and rare earth
element patterns indicated arc magmatism [10].
The aim of the present study was to identify rock
types and tectonic settings of eruption of volcanic

rock samples.

METHODOLOGY

Sample preparation

The 41 least-altered volcanic samples were prepared
for whole-rock chemical analysis by splitting into
conveniently sized fragments. The fragments were,
then, crushed into small chips, using a Rocklabs Hy-
draulic Splitter/Crusher. Approximately 50–80 g of
the chips were cautiously chosen, cleaned, and pul-
verized for a few minutes by a Rocklabs Tungsten-
Carbide Ring Mill.

Analytical techniques

Major oxides (SiO2, TiO2, Al2O3, total iron as Fe2O3,
MnO, MgO, CaO, Na2O, K2O, and P2O5) were an-
alyzed on fusion discs using a PANalytical Zetium
X-ray fluorescence (XRF) spectrometer (wavelength
dispersive system), installed at the Kanchanaburi
Campus, Mahidol University, Thailand. The stan-
dards used were the set of Omnian standards:
Omnian-08, -09, -10, -11, -12, -13, -14, -15, -16,
and -17. These chemical species were measured
from fusion discs prepared with 0.5 g powdered
sample and 6.5 g mixer materials consisting of anhy-
drous lithiumtetraborate (Li2B4O7) 49.75%, lithium
metaborate (LiBO2) 49.75%, and lithiumbromide
(LiBr) 0.5%).

Analyses of certain trace elements, i.e. Ba,
Rb, Sr, Y, Zr, Nb, Ni, V, Sc, Cr, and Th, were
carried out using Philips Magix PRO X-ray fluores-
cence (XRF) spectrometer (wavelength dispersive
system). Detection limit for Ba is 50 ppm; whereas
for Rb, Sr, Ni, V, Cr, and Zr are 10 ppm; and Y, Nb,
Sc, and Th are 5 ppm. The standards used were
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Table 1 Major oxides and some certain trace elements of the studied volcanic and pyroclastic rocks.

Sample No. KD01 KD02 KD03 KD04 KD05 KD06 KD07 KD08 KD09 KD10

Major oxide (wt%)
SiO2 60.41 57.16 64.42 63.91 74.52 60.02 63.07 76.37 74.66 71.88
TiO2 1.10 1.20 0.96 0.98 0.77 0.98 0.98 0.21 0.78 0.68
Al2O3 15.87 17.77 16.79 16.72 12.89 17.38 16.95 13.73 13.57 13.83
Fe2O3 7.52 8.15 5.50 5.73 2.88 6.63 5.61 1.80 3.37 3.92
MnO 0.15 0.10 0.06 0.07 0.03 0.11 0.07 0.03 0.04 0.04
MgO 3.16 4.38 1.89 1.89 0.41 3.72 2.86 0.97 0.84 0.35
CaO 4.91 3.64 1.98 2.63 0.83 4.35 3.12 2.94 1.00 1.67
Na2O 5.47 5.85 6.04 5.54 3.33 4.86 5.02 0.65 3.19 7.14
K2O 1.02 1.27 2.15 2.27 4.17 1.76 2.04 3.26 2.43 0.27
P2O5 0.40 0.48 0.22 0.27 0.15 0.19 0.29 0.04 0.13 0.20
Original Sum. 99.77 99.77 99.81 99.87 99.81 99.93 99.89 99.88 99.80 99.90

Trace element (ppm)
Ni 89.41 86.84 13.70 16.42 9.13 81.50 78.34 14.77 16.05 14.05
V 150.31 165.09 144.97 135.82 117.71 133.03 144.22 45.16 124.10 105.94
Rb 36.85 29.83 51.12 57.75 98.59 45.13 87.84 74.42 64.89 10.95
Y 23.94 23.96 26.08 26.15 30.96 24.73 26.65 25.54 29.81 25.58
Nb 3.99 4.17 1.33 1.70 8.04 3.50 4.27 7.37 7.80 5.60
Th 0.97 0.93 4.27 4.51 13.65 2.18 1.13 10.00 11.94 5.23
Sr 394.98 307.86 307.43 282.96 213.85 222.29 378.45 504.36 200.50 189.42
Ba 539.01 589.57 703.56 697.04 879.05 486.36 692.27 717.01 657.05 479.65
Sc 17.47 11.84 7.68 10.66 5.54 14.51 11.12 11.04 3.76 7.35
Zr 195.03 202.25 253.47 244.57 521.37 219.30 238.52 179.28 517.40 329.38

Sample No. KD11 KD12 KD13 KD14 KD15 KD16 KD17 KD18 KD19 KD20

Major oxide (wt%)
SiO2 63.76 77.33 54.36 54.26 56.19 55.03 56.03 55.95 58.44 73.20
TiO2 1.11 0.67 1.39 1.31 1.24 1.45 1.22 1.06 1.08 0.53
Al2O3 14.49 11.71 19.35 18.88 17.97 19.31 17.63 18.67 18.91 13.32
Fe2O3 7.42 2.61 8.78 8.88 8.67 8.56 8.36 7.92 6.96 2.19
MnO 0.07 0.03 0.14 0.12 0.11 0.15 0.13 0.13 0.11 0.04
MgO 0.95 0.44 3.97 4.24 4.41 4.15 5.13 3.64 3.75 0.37
CaO 4.94 0.96 4.33 4.99 5.27 3.64 4.81 6.23 3.33 0.95
Na2O 5.04 4.02 5.34 5.32 4.76 5.96 4.14 4.63 4.66 6.59
K2O 1.94 2.11 1.95 1.58 1.01 1.31 2.13 1.38 2.49 2.73
P2O5 0.29 0.13 0.40 0.42 0.37 0.44 0.44 0.39 0.27 0.08
Original Sum. 99.81 99.83 99.87 99.85 99.83 99.88 99.73 99.64 99.77 99.56

Trace element (ppm)
Ni 23.40 12.44 51.05 51.26 48.83 40.21 102.64 20.59 43.06 10.63
V 156.46 114.73 198.27 178.79 192.02 188.41 171.22 171.99 155.01 89.38
Rb 44.10 46.92 44.65 38.09 23.76 32.56 45.75 29.62 73.79 70.31
Y 23.23 28.58 23.96 24.04 23.72 23.92 24.75 23.82 25.11 30.27
Nb 4.28 6.70 0.67 1.28 2.38 4.83 3.01 1.70 1.39 8.03
Th 3.70 15.02 5.57 1.46 4.12 1.77 1.49 1.06 4.45 14.43
Sr 143.29 152.69 171.05 249.77 324.48 292.95 723.40 288.86 303.35 245.66
Ba 578.83 667.97 515.46 564.67 504.35 525.03 765.16 554.91 697.03 759.25
Sc 16.20 3.65 14.11 15.61 14.81 10.63 16.27 19.96 14.17 4.76
Zr 113.20 506.75 137.86 140.84 172.48 174.29 239.15 165.79 186.96 576.13

Sample No. KD21 KD22 KD23 KD24 KD25 KD26 KD27 KD28 KD29 KD30

Major oxide (wt%)
SiO2 74.73 71.94 55.22 73.24 74.63 61.92 62.48 60.90 49.05 48.96
TiO2 0.57 0.84 1.39 0.82 0.56 0.83 0.85 1.06 1.99 1.93
Al2O3 13.45 14.11 18.22 13.69 13.41 17.41 17.12 16.72 18.78 19.36
Fe2O3 2.47 3.34 8.51 2.99 1.98 5.54 5.58 7.48 11.25 11.17
MnO 0.04 0.05 0.18 0.03 0.03 0.08 0.07 0.13 0.18 0.18
MgO 0.35 0.58 4.09 0.46 0.27 2.75 3.06 3.68 4.94 4.92
CaO 0.73 1.13 4.85 0.91 1.55 4.67 4.31 3.24 6.02 5.83
Na2O 4.53 4.23 5.55 4.21 6.30 3.97 4.76 4.55 2.39 2.37
K2O 3.06 3.67 1.54 3.52 1.21 2.61 1.55 2.11 4.79 4.70
P2O5 0.08 0.12 0.44 0.14 0.06 0.21 0.20 0.13 0.60 0.59
Original Sum. 99.77 99.78 99.83 99.84 99.71 99.80 99.84 99.87 99.83 99.30

Trace element (ppm)
Ni 10.36 9.45 36.70 8.05 6.42 41.09 42.52 109.71 57.92 10.36
V 91.14 121.78 189.81 111.71 82.26 121.60 133.13 141.89 250.09 91.14
Rb 67.92 73.23 39.96 69.49 28.57 61.66 36.00 79.34 116.59 67.92
Y 29.88 30.29 23.99 29.55 28.26 24.50 23.67 26.21 26.96 29.88
Nb 8.11 8.60 2.55 7.63 7.77 3.05 2.56 4.61 4.16 8.11
Th 18.99 13.15 2.23 15.32 12.00 3.52 4.03 5.03 0.75 18.99
Sr 161.30 195.15 253.15 149.18 144.74 543.80 593.18 349.44 246.58 161.30
Ba 725.48 785.30 504.36 840.67 557.79 711.45 615.46 731.92 444.81 725.48
Sc 3.30 3.90 16.76 1.77 7.06 15.04 13.11 9.94 16.66 3.30
Zr 559.41 555.42 160.79 527.84 543.95 211.44 214.62 238.83 161.15 559.41
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Table 1 Continued . . .

Sample No. KD31 KD32 KD33 KD331 KD34 KD35 KD36 KD37 KD38 KD39 KD40

Major oxides (wt%)
SiO2 73.62 72.85 58.83 56.79 54.40 57.74 56.46 59.99 62.94 71.02 73.87
TiO2 0.37 0.39 1.15 1.20 1.36 0.95 1.24 0.91 0.84 0.57 0.60
Al2O3 14.14 14.36 17.57 17.90 18.18 18.30 16.77 17.53 17.21 14.99 13.20
Fe2O3 2.03 2.35 8.36 7.76 8.52 6.83 8.78 6.20 5.53 2.51 2.37
MnO 0.06 0.06 0.10 0.10 0.11 0.11 0.12 0.12 0.09 0.04 0.04
MgO 0.69 0.77 4.50 4.38 3.79 4.04 5.15 4.02 3.23 0.95 1.21
CaO 1.32 2.06 1.93 4.18 7.29 4.94 5.84 4.57 2.92 2.96 2.37
Na2O 4.39 4.89 5.82 5.55 4.82 3.74 3.65 3.87 4.39 5.61 4.98
K2O 3.30 2.20 1.28 1.64 1.13 3.13 1.56 2.57 2.64 1.26 1.31
P2O5 0.08 0.06 0.46 0.51 0.41 0.22 0.43 0.22 0.21 0.08 0.07
Original Sum. 99.85 99.89 99.86 99.77 99.80 99.68 99.77 99.74 99.75 99.84 99.72

Trace elements (ppm)
Ni 12.93 9.85 103.33 81.02 54.28 59.69 90.99 54.84 40.07 51.07 11.08
V 68.25 68.10 177.83 172.04 181.83 143.05 164.00 133.46 130.10 249.79 87.64
Rb 96.45 69.84 39.93 53.50 28.85 80.32 31.63 56.12 70.71 118.27 30.90
Y 26.10 25.19 24.89 25.14 23.36 24.89 23.93 24.46 24.78 26.88 28.36
Nb 3.84 4.90 2.86 4.64 2.35 2.82 3.17 3.97 2.26 3.94 6.14
Th 7.73 10.31 2.44 −0.14 2.84 4.75 5.07 3.61 7.95 1.37 12.83
Sr 363.88 416.22 274.87 271.15 299.74 665.33 746.31 687.82 739.36 236.54 240.22
Ba 731.56 572.16 531.16 546.67 495.93 766.68 572.17 819.22 897.48 432.94 535.95
Sc 5.21 8.27 8.37 13.95 21.62 15.21 16.48 14.92 11.67 17.09 9.62
Zr 239.80 243.59 199.39 198.07 142.87 201.29 235.69 225.42 229.42 158.71 535.09

the USGS geochemical reference materials: AGV-
2, BCR-2, BHVO-2G, BIR-1a, DTS-2b, DNC-1a, W-
2a, GSP-2, QLO-1a, RGM-2, and STM-2. These
chemical species were measured from pressed pow-
der samples prepared with 6 g sample powder and
0.3 g XRF MULTI-MIX PXR-200 for trace elements.
These procedures were completed and measured at
the Department of Geological Sciences, Chiang Mai
University.

Major oxides and certain trace elements of the
least-altered samples were shown in Table 1. The
data for major oxides, in terms of weight%, were
used to calculate the Ishikawa alteration index (AI)
and the chlorite-carbonate-pyrite index (CCPI) by
the following equations:

AI =
100(MgO+K2O)

(FeO+K2O+MgO+Na2O)

CCPI =
100(FeO+MgO)

(FeO+K2O+MgO+Na2O)

RESULTS AND DISCUSSION

The results (Table 1) show that the studied samples
lie well within limits of the least-altered rocks [11],
except KD10 and KD25 which are slightly altered
(Fig. 2).

Lithology and petrography

The volcanic rocks at Khun Dan Prakarn Chon Dam
ridge were composed of felsic and mafic volcanic
rocks, and equivalent pyroclastic rocks. These
rocks occurred as pyroclastic fall and flow deposits,
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lava flows; and those solidified from magma arisen
along conduits. Pyroclastic breccias and agglom-
erates were the most abundant rock types. Forty-
one least-altered volcanic rock samples presented
in this study were collected from outcrop at the
Khun Dan Prakarnchon Dam site, which included
felsic volcanic rocks, mafic volcanic rocks (greenish
gray, grayish black, and black andesite/basalt), and
pyroclastic rock.

The petrographic study can be used to classify
these volcanic rocks into 4 groups: felsic volcanic
rocks, felsic pyroclastic rocks, mafic volcanic rocks,
and mafic pyroclastic rocks (Fig. 3). The felsic
volcanic rocks are light brown (KD31 and KD32)
rhyolite. They show porphyritic texture with pla-
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gioclase, alkaline feldspar, and quartz phenocryst-
s/microphenocrysts; and groundmass composed of
quartz and feldspar. The felsic pyroclastic rocks
are grayish red (KD05, KD08, KD09, KD10, KD12,
KD20, KD21, KD22, and KD24) and grayish brown
(KD25, KD39, and KD40) lapilli tuff and breccia.
These felsic pyroclastic rocks show pyroclastic tex-
ture that can be classified, based on pyroclasts, to
crystal tuff, lapilli tuff, and breccia. The mafic
volcanic rocks are dark gray (KD01, KD02, KD03,
KD04, KD23, KD26, KD27, KD28, KD29, KD30,

KD33, KD331, KD34, KD36, and KD38) and grayish
green (KD13, KD14, KD15, KD16, KD17, KD18, and
KD19) andesite/basalt. They show porphyritic tex-
ture with plagioclase and pyroxene phenocrysts/mi-
crophenocrysts and some samples show sub-ophitic
texture. These phenocrysts/mi-crophenocrysts are
embedded in the holocrystalline groundmass with
a felty or a trachytic texture. The mafic pyroclastic
rocks are blackish red (KD06, KD11, and KD35) and
blackish gray (KD07 and KD37) lithic tuff. These
mafic pyroclastic rocks show pyroclastic texture and
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Fig. 5 Harker variation diagrams of SiO2-major oxides;
and bivariate diagrams: Zr-Nb and Zr-Y.

can be classified into crystal tuff and lithic tuff.

Magmatic affinity

Although the studied volcanic rocks were least-
altered, their chemical compositions were unlikely
to represent their magmatic source since the rocks
underwent varying degrees of alteration and low
grade metamorphism. The concentrations of im-
mobile elements could be changed due to either
dilution or enrichment of mobile elements. How-
ever, the ratios of immobile elements in the pri-
mary rocks and the altered rocks remain relatively
constant. In this study, relatively immobile ele-
ments and relatively immobile element ratios to-
gether with some major and minor compositions
were used in geochemical interpretation. High field
strength elements (HFSE) such as Ti, Nb, Zr, P, Rb,
and Y were taken in consideration. The data were
plotted in several diagrams in order to provide their
compositional arrays.

The total alkali silica (TAS) classification dia-
gram [12] (Fig. 4a) was used for nomenclature of

rocks and magma by major oxides. The analyzed
samples could be divided into 2 groups: (1) mafic-
to-intermediate extrusive rocks with SiO2 content
between 48 wt%–65 wt%, such as trachybasalt,
basaltic trachyandesite, trachyandesite, andesite,
and trachyte; and (2) felsic extrusive rocks with
SiO2 content between 70 wt%–78 wt%, such as
rhyolite. Based on immobile elements, the Nb/Y-
Zr/TiO2 diagram [13] (Fig. 4b) could be classified
into mafic extrusive rocks group with the Zr/TiO2
and the Nb/Y ranging from 0.008 to 0.027 and
0.028 to 0.202, respectively. The compositional field
of andesite and a few andesite/basalt and the felsic
extrusive rocks had Zr/TiO2 and Nb/Y ranging from
0.048 to 0.109 and 0.147 to 0.289, respectively.
The values were in the compositional field of rhy-
odacite and a few rhyolites. Most samples were
in subalkaline series. In addition, the relationships
of Na2O+K2O, FeO, and MgO on the alkali, Fe,
and Mg oxides (AFM) diagram [14] (Fig. 4c), K2O
and SiO2 [15] (Fig. 4d), and Na2O+K2O-CaO and
SiO2 [16] (Fig. 4e) suggested that most extrusive
rocks are calc-alkaline to high-K calc-alkaline se-
ries, except a few felsic pyroclastic rocks are low-K
(tholeiite) series.

The SiO2 variation diagrams for major oxides
and bivariate diagrams of Nb-Zr and Y-Zr (Fig. 5)
showed that the values for FeO, TiO2, MgO, CaO,
and P2O5 of the studied rocks slightly decreased,
while values for Al2O3, K2O, and Na2O slightly in-
creased throughout the fractionation. Although the
relationship between incompatible-element pairs
for the least-altered rocks such as Nb-Zr and Y-
Zr were positively linear, the trends of felsic and
mafic rocks were not continuous, which signified
that they were not co-magmatic suite. They might
have formed by different degrees of partial melting
of a common source rock or by different degrees
of fractional crystallization of the same parental
magma. The former was unlikely as the patterns of
the incompatible-element pairs did not trace back to
zero intercept.

Tectonic setting

Several tectonic discrimination diagrams were used
to deduce tectonic settings. Some major and trace
elements discrimination diagrams could be used to
suggest the former tectonic environment of a suite
of magma.

For the studied mafic extrusive rocks, they ap-
peared to be calc-alkali basalt on Ti-Zr-Y diagram
(Fig. 6a) and Ti-Zr-Sr diagram (Fig. 6b) [17]. The
Ti-Zr-Y-Nb variation diagram was used for discrimi-
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nating the tectonic settings of studied mafic volcanic
rocks. Their tectonic settings were within-plate tec-
tonic setting basalts and supported by their positions
on the plots of Zr-Ti [18] (Fig. 6c) and Zr-Zr/Y [19]
(Fig. 6d). However, all mafic extrusive rock sam-
ples were calc-alkaline basalts on Ti-V diagram [20]
(Fig. 7a).

The felsic extrusive rocks were plot on the Nb-
Y-Rb variation diagram, which was used in tectonic
discrimination of felsic extrusive rocks. Their tec-
tonic settings were the volcanic arc and syn-collision
granites supported by their positions on the plots of
Y-Nb (Fig. 7b) and Nb+Y-Rb (Fig. 7c) [21].

Although the rock types from petrographic stud-
ied of the extrusive rock samples were varied,
their geochemical characteristics were different in
magma suite and tectonic settings. According to
petrographic study, the rocks could be divided into
four sub-groups based on texture and mineral com-
position; while the geochemically extrusive rock
samples could be divided into two sub-groups based
on SiO2. The mafic-to-intermediate rock samples
shared the distributions of elements such as HFSE
(Nb, Ti, P), Th, Zr, and Y indicating high affinity
with a within plate tectonic setting, while the felsic
rock samples were continental volcanic arc tectonic
setting. In addition, the Khao Yai Volcanics at Khun
Dan Prakarnchon Dam were correlated with the
Wang Nam Khiao Volcanics [10], as rhyolite, dacite,
and andesite were calc-alkaline magma resulted
from continental arc subduction. Moreover, the an-
desitic dikes were within-plate environments taken
place during/after volcanic eruption. It implied that
they were associated with multiple arc magmatism
in Loei Fold Belt and resulted in the subduction
in the Late Carboniferous-Early Permian to Late
Permian.

CONCLUSION

The rock outcrops at Khun Dan Prakarn Chon Dam
site were Pre-Cretaceous extrusive rocks (Khao Yai
Volcanics). The petrographic study results could be
used to classify the rock samples into four groups;
felsic pyroclastic rocks, felsic volcanic rocks, mafic
pyroclastic rocks, and mafic volcanic/hypabyssal
rocks. The felsic volcanic rocks, which are lava
flows, showed slightly porphyritic textures; and the
felsic pyroclastic rocks showed pyroclastic texture
with lapilli to block fragments. The intermediate to
mafic volcanic/hypabyssal rocks showed slightly to
highly porphyritic textures with sub-ophitic texture
might indicate dikes and plugs. The mafic pyro-
clastic rocks showed pyroclastic texture with ash

to lapilli pyroclastic fragments. The geochemically
extrusive rocks were classified into two groups:
(1) intermediate to mafic extrusive rocks (felsic
pyroclastic and felsic volcanic rocks) as subalka-
lic andesite and subalkalic andesite/basalt and (2)
felsic extrusive rocks (mafic pyroclastic and mafic
volcanic/hypabyssal rocks) as subalkalic rhyodacite
and subalkalic rhyolite. Although major and cer-
tain trace elements suggested that the volcanic
rocks were mostly calc-alkalic rocks, they originated
from different magmatic suite erupted in different
episodes. The results of this study well support
the model of multiple arc magmatism in Loei-
Phetchabun-Nakhon Nayok Volcanic Belt.
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