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ABSTRACT: Let Γ = (G,σ) be a signed graph of order n with maximum degree ∆. Denote by r(Γ ) the rank of Γ . We
firstly prove that r(Kσa,b) = 2 (a, b ¾ 2) if and only if all the cycles of order 4 in Kσa,b are balanced. Using this result,
we also prove that r(Γ ) ¾ n

∆ , and the equality holds if and only if Γ = n
2∆Kσ

∆,∆, and each cycle of order 4 in Kσ
∆,∆ is

balanced. If 2∆ - n, then r(Γ )¾ n+1
∆ , and r(Γ ) = n+1

∆ if and only if Γ = n−2∆+1
2∆ Kσ

∆,∆∪Kσ(∆−1),∆, where each cycle of order
4 in Kσ

∆,∆ and Kσ(∆−1),∆ is balanced.

KEYWORDS: signed graphs, rank of graphs, maximum degree

MSC2010: 05C35 05C50

INTRODUCTION

Let G = (V (G), E(G)) be a graph with vertex set
V (G) and edge set E(G). We use NG(v) to denote
the neighbor set of a vertex v ∈ V (G), and dG(v) =
|NG(v)| to denote the degree of v. Denote by∆(G) =
max{dG(v)} (or ∆) the maximum degree of G. If
dG(v) = 1, then v is called a pendant vertex of G. We
use Tn to denote a tree of order n. Let a, b be two
positive integers. We use Ka,b to denote the complete
bipartite graph with a and b vertices on each part
respectively.

Let V (G) = {v1, v2, . . . , vn}. Then the adjacency
matrix A(G) of G is a symmetric n× n matrix with
entries A(i, j) = 1 (or written as ai j = 1) if and only
if vi v j ∈ E(G) and zeros elsewhere. The rank of
A(G), denoted by r(G), is called the rank of G. The
multiplicity of 0 as an eigenvalue of A(G), denoted
by η(G), is called the nullity of G. Obviously, r(G)+
η(G) = n.

A signed graph Γ = (G,σ) consists of a simple
graph G with edge set E and a mapping σ : E →
{+,−}. G is called the underlying graph of Γ . For
convenience, sometimes we also use Gσ to denote
Γ . The adjacency matrix of Γ , denoted by A(Γ ) =
aσi j = σ(vi v j)ai j , where ai j ∈ A(G). We use r(Γ ) to
denote the rank of a signed graph Γ .

Denote by Cσn a signed cycle of order n. The
sign sgn(Cσn ) of Cσn is defined as

∏

e∈E(Cσn )
σ(e). If

sgn(Cσn ) = + (or sgn(Cσn ) = −, respectively), then

Cσn is said to be positive (or negative, respectively).
If all the cycles of Γ are positive, then Γ is balanced,
and unbalanced otherwise.

Let Hσ be a subgraph of Γ . Then Γ −Hσ is the
subgraph of Γ with vertex set V (G)\V (H) and edge
set E(G)\E(H) preserving the signs in Γ . Similarly,
for F ⊂ V (Γ ), we use Γ − F to denote the subgraph
obtained from Γ by removing all vertices in F and
all their incident edges. If there is a vertex x which
belongs to V (Γ ) but not V (Hσ), then we use Hσ+ x
to denote the union of Hσ and x , i.e., the graph with
vertex set V (H)∪{x} and edge set E(Hσ).

Collatz et al [1] attempted to obtain all graphs
of order n with r(G)< n. Until today, this problem is
still unsolved. In mathematics, the rank (or nullity)
of a graph attracted a lot of researchers’ attention,
they focus on the relationship between the rank
(or nullity) and some graph parameters, such as
pendant vertices [2, 3], matching number [4–7],
path cover number [8], and so on.

Song et al [9] proved that

r(G)¾ 2+2ln2∆.

In 2018, Zhou et al [10] proved that

r(G)¾
n
∆

.

The relationship between the rank rH(DG) and max-
imum degree of a mixed graph DG was obtained by
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Wei et al [11] as follows

rH(DG)¾
n
∆

.

If we add some special conditions to the edge
of a simple graph, then some special graphs will be
obtained, such as signed graphs, oriented graphs,
T-gain graphs and so on. The rank of these special
graphs are also worth studying.

For a signed graph Γ = (G,σ), Fan et al [12]
studied the nullity of unicyclic signed graphs.
Fan et al [13] studied the nullity of bicyclic signed
graphs. Let ω(G) be the number of connected
components of G and d(G) = |E(G)|−|V (G)|+ω(G).
Lu et al [14] obtained the relationship between r(Γ ),
d(G) and r(G), that is

r(G)−2d(G)¶ r(Γ )¶ r(G)+2d(G).

He et al [15] obtained the relationship between
r(Γ ), d(G) and m(G) (matching number of G), that
is

2m(G)−2d(G)¶ r(Γ )¶ 2m(G)+ d(G).

Li et al [16] obtained the bounds of the rank of
a signed graph in terms of independence number.
There are also some other papers about signed
graphs. The readers can refer to [17–19].

For an oriented graph, in 2015, Li et al [20] first
investigated the rank of oriented graphs. After that,
there are a lot of related results. The most studied
is the rank of oriented graph by using different pa-
rameters, such as r(G) [21], m(G) [22], bicyclic ori-
ented graphs [23–25], independence number [26],
and so on.

For a T-gain graph Φ, Yu et al [27]) first study
the inertias of Φ. They also gave some useful results.
Lu et al [28] characterized all the T-gain bicyclic
graphs Φ satisfied r(Φ) = 2,3, 4. Lu et al [29]
obtained the relationship between r(Φ), d(G) and
r(G), that is

r(G)−2d(G)¶ r(Φ)¶ r(G)+2d(G)

for a T-gain graph Φ. He et al [30] obtained the
relationship between r(Φ), d(G) and m(G), that is

2m(G)−2d(G)¶ r(Φ)¶ 2m(G)+ d(G).

PRELIMINARIES

First, we will list some lemmas about the rank of
signed graphs.

Lemma 1 ([19]) Let Γ be a signed graph.

(i) If Γ =
⋃t

i=1 Γi , where Γi is the connected compo-
nent of Γ , then r(Γ ) =

∑t
i=1 r(Γi).

(ii) r(Γ )¾ 2 if and only if Γ contains at least on edge.
(iii) If V (Γ1) ⊆ V (Γ ), then r(Γ1)¶ r(Γ ).

For a signed cycle Cσn , we have the following
lemma.

Lemma 2 ([12]) For a signed cycle Cσn , if Cσn is
balanced, then

r(Cσn ) =

¨

n−2, if n≡ 0 (mod 4),
n, otherwise.

If Cσn is unbalanced, then

r(Cσn ) =

¨

n−2, if n≡ 2 (mod 4),
n, otherwise.

Lemma 3 ([12]) Let Γ = (G,σ) be a signed graph.
If Γ has an edge uv such that dΓ (u) = 1, then r(Γ ) =
r(Γ1)+2 where Γ1 = Γ −u− v.

By Lemmas 2.4 and 3.1 of [10], we can get the
following lemma.

Lemma 4 Let Γ be a signed graph with n vertices. If
r(Γ ) = r, then there is an induced subgraph Γ1 of Γ
such that r(Γ1) = |V (Γ1)|= r.

MAIN RESULTS ABOUT r (Γ )

In this section, we will give our main results about
the lower bound of r(Γ ).

Lemma 5 Let Γ = Kσa,b (a, b¾ 2) and V (Γ ) = V1∪V2,
|V1|= a, |V2|= b. Then r(Kσa,b) = 2 if and only if Γ is
balanced.

Proof : (Necessity) Let

A(Γ ) =
�

0 A1
AT

1 0

�

be the adjacency matrix of Γ . Since r(Γ ) = 2,
we have r(A1) = 1. Let α1, α2, . . . , αa be the
row vectors of A1. Since r(A1) = 1, we have that
every maximal independent group of α1, α2, . . . ,
αa has one vector. Without loss of generality, let
αi (i ∈ {1, 2, . . . , a}) be the unique vector of the
maximal linearly independent group and α j = k jαi ,
j = 1, 2, . . . , i−1, i+1, . . . , a, k j 6= 0.

Let x1, x2 be any two vertices of V1 and y1, y2
be any two vertices of V2. For convenience, we
assume α1, α2 be the vector corresponding to x1, x2
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in A1, respectively. Denote by ai j the element in A1
corresponding to the edge x i y j , i, j ∈ {1,2}. Then

a11 =
k1

k2
a21, a12 =

k1

k2
a22.

Let Cσ4 be the signed cycle induced by
{x1, x2, y1, y2}, then sgn(Cσ4 ) = +, that is, Cσ4
is balanced.

(Sufficiency) Let A1, x1, x2, y1, y2 and ai j be the
same as described in the proof of “Necessity”. Since
all the cycles of order 4 in Γ are balanced, so

a11a12a21a22 = 1,

i.e.,

a11a22 =
1

a12a21
= a12a21,

since ai j = ±1. So,

a11

a21
=

a12

a22
.

Using the same method, we can get that the max-
imal linearly independent group of α1, α2, . . . , αa
describe above has one vector, i.e., r(A1) = 1, and
then r(Γ ) = 2. 2

Theorem 1 Let Γ = (G,σ) be a signed graph with n
vertices and minimum degree at least 1. Then

r(Γ )¾
n
∆

.

Proof : For convenience, let r(Γ ) = r. Since Γ has no
isolated vertex, by Lemma 1(b), r ¾ 2. By Lemma 4,
there exists an nonsingular induced subgraph Γ1 of
Γ and r(Γ1) = |Γ1| = r. Let Γ2 be the signed graph
obtained from Γ−Γ1. Then, we can get the following
claim.

Claim 1 For any vertex y ∈ V (Γ2), there exists
at least one vertex x ∈ V (Γ1) such that x y ∈ E(Γ ).

Suppose the contrary, let u ∈ V (Γ2) such that
dΓ1(u) = 0. Since Γ has no isolated vertex, there
exists a vertex v ∈ V (Γ2) and uv ∈ E(Γ2). Let Γ3 =
Γ1+u+ v. Then u is a pendant vertex of Γ3 with the
unique neighbor v. By Lemma 3,

r(Γ3) = r(Γ1)+2= r +2> r,

a contradiction.
Let E1 = {x y | x ∈ V (Γ1), y ∈ V (Γ2). Using the

results of Claim 1,

n− r = |V (Γ2)|¶ |E1|. (1)

Since r(Γ1) = |V (Γ1)|= r, we have

dΓ1(x)¾ 1, (2)

dΓ (x)¶∆, (3)

|E1|=
∑

x∈Γ1

dΓ (x)−
∑

x∈Γ1

dΓ1(x), (4)

for each vertex x ∈ V (Γ1).
Combining with (1), (2), (3) and (4),

n− r ¶ |E1|¶ r∆− r, (5)

so, we have

r(Γ ) = r ¾
n
∆

.

2
In the following, the signed graphs Γ satisfied

r(Γ ) = n
∆ will be characterized.

Theorem 2 Let Γ = (G,σ) be a signed graph with n
vertices and minimum degree at least 1. Then r(Γ ) =
n
∆ if and only if Γ = n

2∆Kσ∆,∆, and Kσ∆,∆ is balanced.

Proof : (Sufficiency) Let Γ = n
2∆Kσ∆,∆, and each cycle

(if any) of order 4 in Kσ∆,∆ is balanced.
If ∆ = 1, then r(Kσ∆,∆) = r(Kσ1,1) = 2, and so

r(Γ ) = n, as desired.
If ∆¾ 2, by Lemmas 1 and 5,

r(Kσ∆,∆) = 2 and r(Γ ) =
n
∆

.

(Necessity) Since r(Γ ) = n
∆ ,∆|n and the inequal-

ities (2), (3) and (5) all become equalities. Let
Γ1 be the same as described in Theorem 1 and so
|V (Γ1)|=

n
∆ , r(Γ1) = r(Γ ). For each vertex x ∈ V (Γ1):

(i) dΓ1(x) = 1, i.e., Γ1 =
n

2∆Kσ1,1;
(ii) dΓ (x) =∆;
(iii) |E1|= n− r.

If ∆= 1, then Γ = n
2 Kσ1,1, as desired.

If ∆ ¾ 2, let x1 y1 ∈ E(Γ1). By (ii), we have
dΓ (x) =∆ for each vertex x ∈ V (Γ1). Let

NΓ2(x1) = {y2, y3, . . . , y∆},
NΓ2(y1) = {x2, x3, . . . , x∆}.

For any 2¶ i, j ¶∆, by (iii), we have x i 6= y j . Now
we will prove that x i is adjacent to y j . Suppose
to the contrary that x i y j /∈ E(Γ2) (by (i) we have
x i , y j ∈ V (Γ2)). Let Γ4 = Γ1 ∪{x i , y j}, by Lemma 3,

r(Γ4) = r(Γ4− x i − y j − x1− y1)+4

= r(Γ1− x1− y1)+4= r(Γ1)+2> r(Γ ),
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a contradiction. Hence, the signed graph obtained
from {x1, x2, . . . , x∆, y1, y2, . . . , y∆} is Kσ∆,∆. By (i),
we can get that Γ = n

2∆Kσ∆,∆.
Since r(Γ ) = n

∆ , we have r(Kσ∆,∆) = 2 for each
Kσ∆,∆. By Lemma 5, we can get that each cycle (if
any) of order 4 in Kσ∆,∆ is balanced. 2

Let Γ = (G,σ) be a signed graph with n vertices.
Next, we will determine the minimum rank of Γ with
the maximum degree ∆ satisfying 2∆ - n. All the
corresponding extremal graphs are characterized.

Theorem 3 Let Γ = (G,σ) be a signed graph with
n vertices and minimum degree at least 1, 2∆ - n.
Then r(Γ ) ¾ n+1

∆ , and r(Γ ) = n+1
∆ if and only if

Γ = n−2∆+1
2∆ Kσ∆,∆ ∪ Kσ(∆−1),∆, and Kσ∆,∆, Kσ(∆−1),∆ are

balanced.

Proof : Since 2∆ - n, ∆¾ 2. Assume r(Γ ) = r. Using
the results in Lemma 4, there exists a nonsingular
induced subgraph Γ1 of Γ and r(Γ1) = |Γ1| = r. Let
Γ2 = Γ − Γ1. Using the same methods in Theorem 1,
we can get that for any vertex of y ∈ V (Γ2), there
exists at least one vertex of x ∈ V (Γ1) satisfying x y ∈
E(Γ ).

Let E2 = {x y | x ∈ V (Γ1), y ∈ V (Γ2). Then

|E2|¾ |V (Γ2)|= n− r. (6)

Since r(Γ1) = |V (Γ1)|= r, we have

dΓ1(x)¾ 1, i.e.,
∑

x∈Γ1

dΓ1(x)¾ r, (7)

dΓ (x)¶∆, i.e.,
∑

x∈Γ1

dΓ (x)¶ r∆, (8)

|E2|=
∑

x∈Γ1

dΓ (x)−
∑

x∈Γ1

dΓ1(x), (9)

for each vertex x ∈ V (Γ1).
Combining with (6), (7), (8) and (9), we have

n− r ¶ |E2|¶ r∆− r, (10)

so, we have

r(Γ ) = r ¾
n
∆

.

If r(Γ ) = n
∆ , then by Trefth:3.3, Γ = n

2∆Kσ∆,∆, a
contradiction to 2∆ - n.

Now, the following cases will be considered.
Case 1: Two inequalities in (6), (7) and (8) turn

into equalities. In this case, we have

r(Γ )¾
n+1
∆

.

Case 2: At most one inequality in (6), (7) and
(8) turn into equality. In this case, we have

r(Γ )¾
n+2
∆

>
n+1
∆

.

Combining with Cases 1 and 2, we have

r(Γ )¾
n+1
∆

.

In the following, we will characterize the ex-
tremal signed graph Γ with r(Γ ) = n+1

∆ .
(Sufficiency) Let Γ = n−2∆+1

2∆ Kσ∆,∆∪Kσ(∆−1),∆ such
that each cycle of order 4 in Kσ∆,∆ and Kσ(∆−1),∆ is
balanced.

Then by Lemmas 1 and 5,

r(Γ ) =
n−2∆+1

2∆
r(Kσ∆,∆)+ r(Kσ(∆−1),∆) =

n+1
∆

.

(Necessity) r(Γ ) = n+1
∆ , and 2∆ - n.

Case 1: (6) and (8) turn into equalities and
(7) is strict, that is

∑

x∈Γ1
dΓ1(x) ¾ r + 1. Since

r(Γ ) = n+1
∆ , we have
∑

x∈Γ1
dΓ1(x) = r + 1. That is

Γ1 =
r−3

2 Kσ2 ∪ Pσ3 . By Lemmas 1 and 3, we have
r(Γ1) = r −1, a contradiction.

Case 2: (7) and (8) turn into equalities and (6)
is strict, we have |E2| = n− r + 1 since r(Γ ) = n+1

∆ .
So, we can get that there exists a unique vertex u in
V (Γ2) such that dΓ1(u) = 2 and any other vertex v in
V (Γ2) have dΓ1(v) = 1. Assume that x1u, x2u ∈ E2.
Note that dΓ1(x) = 1 and Γ1 =

r
2 Kσ2 since (7) holds.

Subcase 2.1: x1 x2 ∈ E(Γ1).
Combining with the fact that dΓ1(x) = 1,

dΓ (x) =∆, for each vertex x in V (Γ1), we denote

NΓ (x1) = {y1, y2, . . . , y∆−2, x2, u},
NΓ (x2) = {z1, z2, . . . , z∆−2, , x1, u},

so, we have

yi 6= z j , 1¶ i, j ¶∆−2.

If ∆ = 2, then the graph induced by x1, x2, u
is Cσ3 . Let x3, x4 be two adjacent vertices distinct
from x1, x2 in Γ1. Since dΓ2(x3) = dΓ2(x4) =∆−1=
1. Denote by m1, m2 be two vertices in Γ2 such
that x3m1, x4m2 ∈ E2, we say that m1m2 ∈ E(Γ2).
Otherwise, let Γ3 be the signed graph induced by
Γ1 ∪{m1, m2}. By Lemma 3,

r(Γ3) = r(Γ3− x3−m1− x4−m2)+4= r(Γ1)+2> r,

a contradiction. So we have the graph induced by
x3, x4, m1, m2 is Cσ4 . Then Γ = n−3

4 Cσ4 ∪ Cσ3 . By
Lemma 2,

r(Γ ) =
n−3

4
r(Cσ4 )+3.

www.scienceasia.org

http://www.scienceasia.org/
www.scienceasia.org


ScienceAsia 47 (2021) 783

If Cσ4 is balanced, then r(Γ ) = n−3
2 + 3 = n+3

2 >
n+1

2 , a contradiction.
If Cσ4 is unbalanced, then r(Γ ) = n−3+3= n>

n+1
2 , a contradiction.

If ∆ ¾ 3, then the vertices y1, y2, . . . , y∆−2 and
z1, z2, . . . , z∆−2 are all adjacent to u. Otherwise,
suppose there exists a vertex yi (i = 1,2, . . . ,∆−2) is
not adjacent to u. Let Γ4 be the signed graph induced
by Γ1 ∪{yi , u}. By Lemma 3,

r(Γ4) = r(Γ4− x1− x2−u− yi)+4= r(Γ1)+2> r,

a contradiction. So,

dΓ (u)¾ 2+2(∆−2) =∆+∆−2>∆,

also a contradiction.
Subcase 2.2: x1 x2 /∈ E(Γ1).
Since dΓ1(x) = 1 for any vertex x in Γ1 and Γ1 =

r
2 Kσ2 , let x1 x3, x2 x4 ∈ E(Γ1). We say that for each
v ∈ NΓ2(x3)∪NΓ2(x4), uv ∈ E(Γ ). Otherwise, let v ∈
NΓ2(x3) and uv /∈ E(Γ ). Let Γ5 be the signed graph
induced by Γ1 ∪{u, v}. By Lemma 3,

r(Γ5) = r(Γ5− x1− x3−u− v)+4= r(Γ1)+2> r,

a contradiction. Since NΓ (x3)∩ NΓ (x4) = ∅, so we
have dΓ (u)¾ 2∆>∆, a contradiction.

Case 3: (6) and (7) turn into equalities and
(8) is strict, we have

∑

x∈Γ1
dΓ (x) = r∆ − 1 since

r(Γ ) = n+1
∆ . In this case, we say that there exists

an unique vertex x1 in Γ1 such that dΓ (x1) = ∆− 1
and other vertices have degree ∆ in Γ . Since (7)
turn into equality, we can get that Γ1 =

r
2 Kσ2 . Let

x1 x2 ∈ E(Γ1) and

NΓ (x1) = {y1, y2, ..., y∆−2, x2},
NΓ (x2) = {z1, z2, ..., z∆−1, x1}.

Since (6) turns into equality, we can get that
NΓ (x1)∩NΓ (x2) =∅. Similar to the method in Case
2, we can get that the graph induced by the vertices

y1, y2, . . . , y∆−2, x2, z1, z2, . . . , z∆−1, x1

is Kσ(∆−1),∆. For any edge x3 x4 in E(Γ1) distinct from
x1 x2, the graph induced by the {x3, x4}, NΓ (x3) ∪
NΓ (x4) is Kσ∆,∆. So, Γ = n−2∆+1

2∆ Kσ∆,∆ ∪ Kσ(∆−1),∆.
Hence,

r(Γ ) =
n+1
∆
=

n−2∆+1
2∆

r(Kσ∆,∆)+ r(Kσ(∆−1),∆).

By Lemma 1, r(Kσ∆,∆)¾ 2, r(Kσ(∆−1),∆)¾ 2.

We can get that

n−2∆+1
2∆

r(Kσ∆,∆)+ r(Kσ(∆−1),∆)¾
n+1
∆

.

Hence,

r(Kσ∆,∆) = r(Kσ(∆−1),∆) = 2.

By Lemma 5, we have all the cycles of order 4
in Kσ∆,∆ and Kσ(∆−1),∆ are balanced. 2
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