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ABSTRACT: Let I' = (G, o) be a signed graph of order n with maximum degree A. Denote by r(T") the rank of I'. We
firstly prove that r(Kg’:b) =2 (a,b = 2) if and only if all the cycles of order 4 in Kib are balanced. Using this result,

we also prove that r(T') > %, and the equality holds if and only if I' = 5TK¢

balanced. If 2A t n, then r(I') > 2t

A
4in KZ’ , and K("Ail)’ » is balanced.

A

and r(I') = 2 if and only if T = "fﬁ“KZ,A UK,

and each cycle of order 4 in K7 , is

where each cycle of order

28 A,A0

(A-1),A°
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INTRODUCTION

Let G = (V(G),E(G)) be a graph with vertex set
V(G) and edge set E(G). We use N;(v) to denote
the neighbor set of a vertex v € V(G), and dg(v) =
|Ng(v)| to denote the degree of v. Denote by A(G) =
max{dg;(v)} (or A) the maximum degree of G. If
d;(v) =1, then v is called a pendant vertex of G. We
use T, to denote a tree of order n. Let a, b be two
positive integers. We use K, , to denote the complete
bipartite graph with a and b vertices on each part
respectively.

Let V(G) = {vy,Vvs,...,V,}. Then the adjacency
matrix A(G) of G is a symmetric n x n matrix with
entries A(i, j) = 1 (or written as a;; = 1) if and only
if v;v; € E(G) and zeros elsewhere. The rank of
A(G), denoted by r(G), is called the rank of G. The
multiplicity of O as an eigenvalue of A(G), denoted
by n(G), is called the nullity of G. Obviously, r(G)+
n(G) =n.

A signed graph T = (G, o) consists of a simple
graph G with edge set E and a mapping o : E —
{+,—}. G is called the underlying graph of T'. For
convenience, sometimes we also use G to denote
I'. The adjacency matrix of T, denoted by A(T) =
ag = o(v;v;)a;j, where a;; € A(G). We use r(T) to
denote the rank of a signed graph T'.

Denote by C? a signed cycle of order n. The
sign sgn(C7) of C7 is defined as HEGE(C;,)U(e). If
sgn(C’) = + (or sgn(C?) = —, respectively), then

Cy is said to be positive (or negative, respectively).
If all the cycles of T are positive, then I' is balanced,
and unbalanced otherwise.

Let H? be a subgraph of I'. Then I'—H? is the
subgraph of T" with vertex set V(G)\V(H) and edge
set E(G)\E(H) preserving the signs in T'. Similarly,
for F c V(T'), we use I' —F to denote the subgraph
obtained from I' by removing all vertices in F and
all their incident edges. If there is a vertex x which
belongs to V(I') but not V(H), then we use H + x
to denote the union of H and x, i.e., the graph with
vertex set V(H) U {x} and edge set E(H?).

Collatz et al [1] attempted to obtain all graphs
of order n with r(G) < n. Until today, this problem is
still unsolved. In mathematics, the rank (or nullity)
of a graph attracted a lot of researchers’ attention,
they focus on the relationship between the rank
(or nullity) and some graph parameters, such as
pendant vertices [2,3], matching number [4-7],
path cover number [8], and so on.

Song et al [9] proved that

r(G) = 2+ 2In,A.
In 2018, Zhou et al [10] proved that

r(G) =

D=

The relationship between the rank ry (D) and max-
imum degree of a mixed graph D; was obtained by
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Wei et al [11] as follows

n
ry(Dg) = x

If we add some special conditions to the edge
of a simple graph, then some special graphs will be
obtained, such as signed graphs, oriented graphs,
T-gain graphs and so on. The rank of these special
graphs are also worth studying.

For a signed graph ' = (G, o), Fan et al [12]
studied the nullity of unicyclic signed graphs.
Fan et al [13] studied the nullity of bicyclic signed
graphs. Let w(G) be the number of connected
components of G and d(G) = |[E(G)|—|V(G)|+w(G).
Luet al [14] obtained the relationship between r(T'),
d(G) and r(G), that is

r(G)—2d(G) < r(T) < r(G)+2d(G).

He et al [15] obtained the relationship between
r(T), d(G) and m(G) (matching number of G), that
is

2m(G)—2d(G) < r(T') < 2m(G) + d(G).

Li et al [16] obtained the bounds of the rank of
a signed graph in terms of independence number.
There are also some other papers about signed
graphs. The readers can refer to [17-19].

For an oriented graph, in 2015, Li et al [20] first
investigated the rank of oriented graphs. After that,
there are a lot of related results. The most studied
is the rank of oriented graph by using different pa-
rameters, such as r(G) [21], m(G) [22], bicyclic ori-
ented graphs [23-25], independence number [26],
and so on.

For a T-gain graph ®, Yu et al [27]) first study
the inertias of ®. They also gave some useful results.
Lu et al [28] characterized all the T-gain bicyclic
graphs & satisfied r(®) = 2,3,4. Lu et al [29]
obtained the relationship between r(®), d(G) and
r(G), that is

r(G)—2d(G) < r(®) < r(G)+2d(G)

for a T-gain graph ®. He et al [30] obtained the
relationship between r(®), d(G) and m(G), that is

2m(G)—2d(G) < r(®) < 2m(G) +d(G).

PRELIMINARIES

First, we will list some lemmas about the rank of
signed graphs.

Lemma 1 ([19]) Let T be a signed graph.
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@ Ifr= Uit:1 I;, where T; is the connected compo-
nent of T, then r(T') = Zle r(T).

(ii) r(T) = 2ifand only if T contains at least on edge.

(iii) If V(Iy) S V(T), then r([y) < r(T).

o

For a signed cycle C7,

lemma.

we have the following

Lemma 2 ([12]) For a signed cycle C?, if C7 is
balanced, then

H(Co) = n—2, ifn=0(mod 4),
n n, otherwise.

If C7 is unbalanced, then

-2
r(cg):{n >
n,

Lemma 3 ([12]) Let T' = (G, o) be a signed graph.
If T has an edge uv such that dp(u) =1, then r(T') =
r(T))+2where I} =T —u—v.

if n=2(mod 4),
otherwise.

By Lemmas 2.4 and 3.1 of [10], we can get the
following lemma.

Lemma 4 Let T be a signed graph with n vertices. If
r(T') = r, then there is an induced subgraph Ty of T
such that r(Iy) = |V(Ty)| =r.

MAIN RESULTS ABOUT r(T)

In this section, we will give our main results about
the lower bound of r(T).

Lemma 5 LetT'=K7, (a,b>2) and V(T') = V,UV,,
Vil = a,|V,| = b. Then r(KJ,) =2 if and only if T is
balanced.

Proof: (Necessity) Let

(3 %)

be the adjacency matrix of I'. Since r(I') = 2,
we have r(A;) = 1. Let a, ay, ..., a, be the
row vectors of A;. Since r(A;) = 1, we have that
every maximal independent group of a;, a,, ...,
a, has one vector. Without loss of generality, let
a; (i €{1,2,...,a}) be the unique vector of the
maximal linearly independent group and a; = k;a;,
j=1,2,...,i—-1i+1,...,a,k; #0.

Let x;,x, be any two vertices of V; and yq, y,
be any two vertices of V,. For convenience, we
assume a;, o, be the vector corresponding to x;, X,
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in A,, respectively. Denote by a;; the element in A,

corresponding to the edge x;y;, i,j € {1,2}. Then

a, = —a ayy = ﬁa
n= g G 2= g da
Let C; be the signed cycle induced by

{x1,x2,¥1,¥2}, then sgn(Cy) = +, that is, C;
is balanced.

(Sufficiency) Let Ay, X1, X, ¥1,Y- and a;; be the
same as described in the proof of “Necessity”. Since
all the cycles of order 4 in I are balanced, so

a11A12A91d9 = 1,

ie.,
1
110y = = d12dy),
a12do
since a;; = +1. So,
dj; _ dpp
dz; Ay

Using the same method, we can get that the max-
imal linearly independent group of a;, a,, ..., a,
describe above has one vector, i.e., r(4;) = 1, and
then r(T) = 2. a

Theorem 1 Let I' = (G, o) be a signed graph with n
vertices and minimum degree at least 1. Then

n
r(l = —.
OEE

Proof: For convenience, let r(I') = r. Since I' has no
isolated vertex, by Lemma 1(b), r = 2. By Lemma 4,
there exists an nonsingular induced subgraph I} of
I and r(I) = |TI}| = r. Let T} be the signed graph
obtained from I'-T;. Then, we can get the following
claim.

Claim 1 For any vertex y € V(I;), there exists
at least one vertex x € V(I3) such that xy € E(T).

Suppose the contrary, let u € V(I3,) such that
dr,(u) = 0. Since T' has no isolated vertex, there
exists a vertex v € V(I;,) and uv € E(T}). Let I3 =
I +u+v. Then u is a pendant vertex of I; with the
unique neighbor v. By Lemma 3,

r(ly)=r(l})+2=r+2>r,

a contradiction.
Let E; = {xy|x € V(I}), ¥y € V(I}). Using the
results of Claim 1,

n—r=|V(L)| < |E]. @))]
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Since r([;) = |V(I;)| = r, we have

dfl (X) > 1’ (2)

dr(x) < A, (3

|Ey| = D dr(x)— ) dr, (x), @
X€l X€l

for each vertex x € V(I3).
Combining with (1), (2), (3) and (4),

n—r<|E|<rA-r, (5)

so, we have
rM=r=

> =

O
In the following, the signed graphs T' satisfied
r(I') = % will be characterized.

Theorem 2 Let T' = (G, o) be a signed graph with n
vertices and minimum degree at least 1. Then r(T') =
3 ffand only if T = 53KY ,, and KY , is balanced.

Proof: (Sufficiency) Let T = iKZ) > and each cycle
(if any) of order 4 in KZ’  is balanced.

If A =1, then r(K‘A”A) = r(K{”l) = 2, and so
r(T') = n, as desired.

If A > 2, by Lemmas 1 and 5,
n
r(K3 ,)=2 and r(I') = R

(Necessity) Since r(I') = %, A|n and the inequal-
ities (2), (3) and (5) all become equalities. Let
I, be the same as described in Theorem 1 and so
|V([)| = %, r(I) = r(T). For each vertex x € V(I}):
@) dr(x)=1,ie,I} = %K&;
(i) dr(x)=A;

(iii) |E;|=n-—r.

IfA=1,thenT = gKil, as desired.

If A>2, let x;¥; € E(I}). By (ii), we have
dr(x) = A for each vertex x € V(I}). Let

Nl"2(x1) ={¥2¥3-->Yab

Nl}()’l) ={x3,X3,...,Xa}.
For any 2 <1, j < A, by (iii), we have x; # y;. Now
we will prove that x; is adjacent to y;. Suppose

to the contrary that x;y; ¢ E(T,) (by (i) we have
xi’.)’j S V(Fz)) Let F4 = Fl U {xi,yj}, by Lemma 3,

r(M)=r(fy—x;—y;—x1—y1) +4
=r(l}—x;—y)+4=rTy)+2>r(),
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a contradiction. Hence, the signed graph obtained
from {x1, X, ..., Xa, Y1, Y2, -+, ¥a} I8 KZ,A- By (),
we can get that T = ZAK"

Since r(T") = &, we have r(Kg ,) = 2 for each
K7 \. By Lemma 5 We can get that each cycle (if
any) of order 4 in K A A lS balanced. O

Let ' = (G, o) be a signed graph with n vertices.
Next, we will determine the minimum rank of I with
the maximum degree A satisfying 2A { n. All the
corresponding extremal graphs are characterized.

Theorem 3 Let T' = (G, ) be a signed graph with
n vertices and minimum degree at least 1, 2A } n.
Then r(T') = £, and r(I) = “ if and only if

A)
UK(A e and K‘A’A, K("A Da are

r= n—2A+1 Ko'

balanced.

Proof: Since 2A ¢ n, A = 2. Assume r(I') = r. Using
the results in Lemma 4, there exists a nonsingular
induced subgraph T3 of T and r(I3) = |[}| = r. Let
I, =T —T;. Using the same methods in Theorem 1,
we can get that for any vertex of y € V(I;), there
exists at least one vertex of x € V(I3 ) satisfying xy €
E(T).
Let E; = {xy|x € V(I}), y € V(I}). Then

|Eo| 2 [V(I)| =n—r. (6)

Since r(I) = |V(I;)| = r, we have

d(x)>1, ie, > dy(x)>r, 7
x€ly
de(x)< A, ie, Y di(x)<ra,  (8)
X€l
Byl = > dr(x)— ) dr, (x), 9)
x€l} x€l}

for each vertex x € V(I3).
Combining with (6), (7), (8) and (9), we have

n—r<|E|<rA-r, (10)
so, we have
O=r>-
rD=r=—
A’
If r(I') = %, then by Trefth:3.3, T = EKZ K

contradiction to 2A { n.
Now, the following cases will be considered.
Case 1: Two inequalities in (6), (7) and (8) turn
into equalities. In this case, we have

n+1

r(r) =
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Case 2: At most one inequality in (6), (7) and
(8) turn into equality. In this case, we have

n+2 2 n+1
r(l
(> n
Combining with Cases 1 and 2, we have
n+ 1
r
(>
In the following, we will characterize the ex-
tremal signed graph I' with r(T") = @
_ n= 2A+1
(Sufficiency) Let T = K" UK(A DA such
that each cycle of order 4 in KA A and K(A D b is
balanced.
Then by Lemmas 1 and 5,
n—2A+1 n+1
r(r)_z— ( A)J’_r(KA I)A) T

(Necessity) r(T') = &1 ,and 2A tn.
Case 1: (6) and (8) turn into equalities and
(7) is strict, that is err dr(x) > r+1. Since

r(r) = 52, we have 3, . dp, (x) =r + 1. That is

= TK; UP7. By Lemmas 1 and 3, we have
r(I}) =r—1, a contradiction.

Case 2: (7) and (8) turn into equalities and (6)
is strict, we have |E;| = n—r + 1 since r(T') = ﬂ
So, we can get that there exists a unique vertex u in
V(I,) such that dr, (u) = 2 and any other vertex v in
V() have dp, (v) = 1. Assume that x;u, x,u € E,.
Note that dr, (x) =1 and I} = 5K since (7) holds.

Subcase 2.1: x1x, € E(T}).

Combining with the fact that dr(x) = 1,
dr(x) = A, for each vertex x in V(I}), we denote

<5 Ya—2,X2, u};
> ZA72: > Xl’ u})

Nr(x1) ={y1, 2, .-
Nr(x5) = {21,249, ...
so, we have

If A =2, then the graph induced by xi,x,,u
is CJ. Let x3,x, be two adjacent vertices distinct
from xy,x, in Ty. Since dr,(x3) =dr,(x;) =A—1=
1. Denote by m;,m, be two vertices in I}, such
that xsm,,x,m, € E,, we say that mym, € E(L}).
Otherwise, let T; be the signed graph induced by
I, U{m;, my}. By Lemma 3,

r(3) =r(l3—x3

a contradiction. So we have the graph induced by
X3,X4,My,my is CJ. Then T = 2CJ UCY. By
Lemma 2,

_ml_X4_m2)+4: r(F1)+2 >,

r(r) = ”_Br(c;f)+3.
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If C7 is balanced, then r(I) = 22 +3 =22 >
”TH, a contradiction.
If C7 is unbalanced, then r(I') =n—3+3=n>

"TH, a contradiction.
If A = 3, then the vertices ¥, y,,...,Ya_p and
21,%9,---,%a_p are all adjacent to u. Otherwise,

suppose there exists avertex y; (i =1,2,...,A—2)is
not adjacent to u. Let I; be the signed graph induced
by I3 U{y;,u}. By Lemma 3,

T'(F4) - T'(F4—X1 _XZ_u_yl)+4 - T(F1)+2 > r,
a contradiction. So,
dr(w) > 24+2(A—2)=A+A—2> A,

also a contradiction.

Subcase 2.2: x;x, ¢ E(T}).

Since dr, (x) =1 for any vertex x in I} and I} =
5K3, let x;x3,x,x4 € E(I}). We say that for each
v € Np, (x3) UNp, (x4), uv € E(T). Otherwise, let v €
Np,(x3) and uv ¢ E(T). Let I be the signed graph
induced by I} U {u, v}. By Lemma 3,

rG)=r(lg—x;—x3—u—v)+4=r(I})+2>r,

a contradiction. Since Np(x3) N Np(x4) = @, so we
have dp(u) = 2A > A, a contradiction.

Case 3: (6) and (7) turn into equalities and
(8) is strict, we have > _. dp(x) =rA—1 since
r(I) = HTH- In this case, we say that there exists
an unique vertex x; in I such that dp(x;) = A—1
and other vertices have degree A in I'. Since (7)
turn into equality, we can get that I} = 5K . Let
XXy € E(T}) and

x€el;

Nr(x1) = {1, Y2, > Ya—2, X2},

Nr(xp) = {21,223, .., 2a-1, X1}

Since (6) turns into equality, we can get that
Nr(x;)NNp(x,) = @. Similar to the method in Case
2, we can get that the graph induced by the vertices

Y1, Y2,--

5 YA-2,%X2,%21,%2, - 4,871, X1

is K("Aﬂ)’ - For any edge x3x,4 in E(T}) distinct from

X1X,, the graph induced by the {x3,x,}, Np(x3)U

Np(x4) is K 5. S0, T' = "525KS LUK ) o
Hence,

n+1 n—2A+1
X = oA r(K‘A”A) + r(K(UA_l)’A).

r(h)=

By Lemma 1, r(KY ) = 2, r(K{y_;) A) > 2.
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We can get that

n+1
A

n—2A+1
A K ) (K, 0) >

Hence,

r(KZ A) =r(K_py ) = 2.
By Lemma 5, we have all the cycles of order 4

in KZ, A and K("A_l), , are balanced. a
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