Characterization of a group-norm by maximum functional equation and stability results

Muhammad Sarfraz ${ }^{\mathrm{a}}$, Fawad Ali ${ }^{\mathrm{b}}$, Qi Liu ${ }^{\mathrm{a}}$, Yongjin Lia ${ }^{\text {a, }}$,
${ }^{\text {a }}$ School of Mathematics, Sun Yat-sen University, Guangzhou 510275 China
${ }^{\text {b }}$ School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049 China
*Corresponding author, e-mail: stslyj@mail.sysu.edu.cn

Received 3 May 2021
Accepted 24 Jun 2021
ABSTRACT: Let $(G,\|\cdot\|,+)$ be a normed group, where $\|\cdot\|: G \rightarrow \mathbb{R}$. We study the equation

$$
\max \{\|x+y\|,\|x-y\|\}=\|x\|+\|y\| \quad \text { for all } x, y \in G .
$$

Without a commutativity assumption of the normed group G, we analyze the stability results and characterization of a group-norm by the given equation.

KEYWORDS: normed group, discretely normed abelian group, Tabor weakly commutative, stability
MSC2010: 20D60 54E35 11T71

INTRODUCTION

Simon et al [4] gave the characterization $f(g)=$ $|\eta(g)|$ for an additive function $\eta: G \rightarrow \mathbb{R}$ such that $\eta\left(g_{1}+g_{2}\right)=\eta\left(g_{1}\right)+\eta\left(g_{2}\right)$, which fulfills the equations

$$
\begin{align*}
& \max \left\{f\left(g_{1}-g_{2}\right), f\left(g_{1}+g_{2}\right)\right\}=f\left(g_{1}\right)+f\left(g_{2}\right), \tag{1}\\
& \min \left\{f\left(g_{1}-g_{2}\right), f\left(g_{1}+g_{2}\right)\right\}=\left|f\left(g_{1}\right)-f\left(g_{2}\right)\right| \tag{2}
\end{align*}
$$

for all $g_{1}, g_{2} \in G$, assuming that the domain of f is an abelian group G. However, according to the stability results of Przebieracz [9], (2) is stable, and she presented a general theorem that proves the stability of (2), where $f: \mathbb{R} \rightarrow \mathbb{R}$ is considered as a continuous function of real variables.

Gilanyi et al [5] took into account the generalized version of (1), that is

$$
\begin{equation*}
\max \left\{f\left(\left(g_{1} g_{2}\right) g_{2}\right), f\left(g_{1}\right)\right\}=f\left(g_{1} g_{2}\right)+f\left(g_{2}\right) \tag{3}
\end{equation*}
$$

for all $g_{1}, g_{2} \in G$, and demonstrated its stability for the real-valued function $f: G \rightarrow \mathbb{R}$ under the assumption of left identity, where G is considered as a square-symmetric groupoid. Consequently, Volkmann [15] gave the generalization of (1) under the condition that $f\left(g_{1} g_{2} g_{3}\right)=f\left(g_{1} g_{3} g_{2}\right)$ holds for all $g_{1}, g_{2}, g_{3} \in G$. Stability results in connection with generalization of (1) can be found in [12], while a generalized version of (1) without commutativity condition can be seen in [14].

Furthermore, Redheffer in a joint paper with Volkmann [10] gave the solution to a Pexiderized version of (1),

$$
\begin{equation*}
f(x)+g(y)=\max \{h(x-y), h(x+y)\} \tag{4}
\end{equation*}
$$

for all $x, y \in G$, where f, g and h are mappings from an abelian group ($G,+$) to \mathbb{R}.

Since group-norms play an important role in establishing relation between norms and group structures; therefore, in the next section, it will be shown that the proposed equation

$$
\begin{equation*}
\|x\|+\|y\|=\max \{\|x+y\|,\|x-y\|\} \tag{5}
\end{equation*}
$$

for all $x, y \in G$, characterizes the group-norm. Therefore, we established a reliable relation between normed-groups and functional equation (5) through the characterization of a group-norm function from a normed group $(G,\|\cdot\|,+)$ to $\mathbb{R}_{\geqslant 0}$ defined by $\|x\|:=|x|$ for all $x \in G$. A presentation of our proposed definition in the form of group-norm equivalent to (5) was investigated in [5] as

$$
\begin{equation*}
\max \left\{\left\|\left(g_{1} g_{2}\right) g_{2}\right\|,\left\|g_{1}\right\|\right\}=\left\|g_{1} g_{2}\right\|+\left\|g_{2}\right\| \tag{6}
\end{equation*}
$$

for all $g_{1}, g_{2} \in G$.
The last section is devoted to the stability results of (5), where $(G,\|\cdot\|,+)$ is a normed group. Moreover, we will analyze the stability of (5) for a realvalued function defined on a normed group G. As a
consequence of our main stability theorem of (5), we obtain the stability results of (5) on a Tabor weakly commutative group.

ANALYSIS OF (5)

Throughout this article, our normed group G will in general be ($G,\|\cdot\|,+$), and 0 is considered to be the neutral element unless otherwise stated.

Definition 1 Let $(G,+)$ be a group with the neutral element 0 , then we say its norm $\|\cdot\|: G \rightarrow[0, \infty)$ is called a group-norm if, for any $a, b \in G$, it fulfills the following properties:
(i) $\|a+b\| \leqslant\|a\|+\|b\|$;
(ii) $\|a\| \geqslant 0$, with $\|a\|=0$ if $a=0$;
(iii) $\|-a\|=\|a\|$.

If (i) and (ii) are satisfied, then the norm $\|\cdot\|$ is known as a pre-norm; if only (i) holds, then we say the norm $\|\cdot\|$ is a semi-norm. For instance, see $[2,13]$. A normed group is denoted by $(G,\|\cdot\|,+)$ where $\|\cdot\|$ is a group-norm and $(G,+)$ is a group.

Theorem 1 Suppose that $(G,+)$ is a group. A mapping $\|\cdot\|: G \rightarrow \mathbb{R}$ satisfies (5) if and only if $(G,\|\cdot\|,+)$ is a normed group.

Proof: Suppose that (5) holds. Setting $x=0$, we can compute $\|0\|+\|0\|=\max \{\|0\|,\|0\|\}=\|0\|$, which implies that $\|0\|=0$.

Also given condition yields that $\|x\|+\|x\|=$ $\max \{\|x+x\|,\|x-x\|\}=\max \{\|2 x\|,\|0\|\} \geqslant 0$, which gives that $2\|x\| \geqslant 0$, so $\|x\| \geqslant 0$. Since $\|x\| \geqslant 0$ and $\|x\|=0$ whenever $x=0$, then we can see $\|2 x\| \geqslant 0=\|0\|$, so we have $\|2 x\| \geqslant\|x-x\|$, then

$$
2\|x\|=\|x\|+\|x\|=\max \{\|x-x\|,\|2 x\|\}=\|2 x\|
$$

therefore $2\|x\|=\|2 x\|$.
Moreover, setting $y=-x$ in (5) implies that $\|x\|+\|-x\|=\max \{\|x+x\|,\|x-x\|\}=$ $\max \{\|0\|,\|2 x\|\}=\|2 x\|=2\|x\|$, which gives that $\|-x\|=\|x\|$. Furthermore, we can observe from (5) that $\|x-y\| \leqslant\|x\|+\|y\|$ or $\|x+y\| \leqslant\|x\|+\|y\|$; hence, in either case, the triangle inequality holds. Hence $(G,\|\cdot\|,+$) is a normed group. Conversely, let G be a normed group defined by the group-norm $\|\cdot\|$. Obviously, $\|x\|+\|y\|=\max \{\|x-y\|,\|x+y\|\}$ for any $x, y \in G$.

Corollary 1 For a normed group ($G,\|\cdot\|,+$), a groupnorm $\|\cdot\|: G \rightarrow \mathbb{R}$ fulfilling (5) is a conjugation and abelian group-norm.

Proof: Let $x, y \in G$, then the proof of conjugation group-norm consists of the following simple computation:

$$
\begin{aligned}
\|y\|+\|- & y+x+y \| \\
& =\max \{\|y-y+x+y\|,\|y-y-x+y\|\} \\
& =\max \{\|x+y\|,\|-x+y\|\} \\
& =\max \{\|-y-x\|,\|-y+x\| \|\} \\
& =\max \{\|-y+x\|,\|-y-x\|\} \\
& =\|-y\|+\|x\| \\
& =\|y\|+\|x\|
\end{aligned}
$$

Therefore, $\|-y+x+y\|=\|x\|$. Writing $y+x$ instead of x, we can obtain that

$$
\|y+x\|=\|-y+y+x+y\|=\|x+y\|
$$

which implies that $\|x+y\|=\|y+x\|$ for any $x, y \in$ G. Thus, the group-norm is abelian.

Theorem 2 Let $(G,\|\cdot\|,+)$ be a normed group then $\min \{\|x-y\|,\|x+y\|\} \leqslant|\|x\|-\|y\||$ holds for all $x, y \in G$.

Proof: Since $(G,\|\cdot\|,+$) is a normed group, a groupnorm $\|\cdot\|: G \rightarrow \mathbb{R}$ satisfies (5). Making use of the conjugation group-norm, we first compute that

$$
\begin{aligned}
2\|x\| & =\|x\|+\|x\| \\
& =\|x\|+\|-y+x+y\| \\
& =\max \{\|x-y+x+y\|,\|x-y-x+y\|\} \\
& \geqslant\|x-y+x+y\|
\end{aligned}
$$

Then we can obtain the required result by the following simple calculation:

$$
\begin{aligned}
& \max \{\|x-y\|,\|x+y\|\}+\min \{\|x-y\|,\|x+y\|\} \\
& \quad=\|x-y\|+\|x+y\| \\
& \begin{aligned}
&\|x\|+\|y\|+\min \{\|x-y\|,\|x+y\|\}=\|x-y\|+\|x+y\| \\
& \min \{\|x-y\|,\|x+y\|\}=\|x-y\|+\|x+y\|-\|x\|-\|y\|
\end{aligned} \\
& =\max \{\|x-y+x+y\|,\|x-y-y-x\|\}-\|x\|-\|y\| \\
& =\max \{\|x-y+x+y\|,\|x-2 y-x\|\}-\|x\|-\|y\| \\
& \quad \leqslant \max \{2\|x\|,\|-2 y\|\}-\|x\|-\|y\| \\
& \quad=\max \{2\|x\|, 2\|y\|\}-\|x\|-\|y\| \\
& \quad=2 \max \{\|x\|,\|y\|\}-\|x\|-\|y\| \leqslant\|x\|-\|y\| \mid .
\end{aligned}
$$

By adding a certain condition for Theorem 2, we can extend the proof to remove the inequality. The following definition will play a key role in the proof of Theorem 3.

Definition 2 ([7]) For a normed group ($G,\|\cdot\|,+$), we say a mapping $\|\cdot\|: G \rightarrow \mathbb{R}$ satisfies condition (C) if

$$
\|u+z+v\|=\|u+v+z\| \quad \text { for any } u, z, v \in G
$$

Obviously, any normed group ($G,\|\cdot\|,+$) fulfills the proposed condition (C) whenever the group G is abelian.

Theorem 3 Suppose that $(G,+)$ is a group and a mapping $\|\cdot\|: G \rightarrow \mathbb{R}$ fulfills the given condition (C), then $(G,\|\cdot\|,+)$ is a normed group if and only if the group-norm is 2-homogeneous, and also

$$
\begin{equation*}
\min \{\|x-y\|,\|x+y\|\}=|\|x\|-\|y\|| \tag{7}
\end{equation*}
$$

holds for all $x, y \in G$.
Proof: If $(G,\|\cdot\|,+)$ is a normed group, then it is obvious that $\|0\|=0$ holds and also $\|x\| \geqslant 0$ for any $x \in G$. Also we can obtain that $\|x\|+\|y\|=$ $\max \{\|x-y\|,\|x+y\|\}$; therefore, setting $x=y=0$, we can compute that $\|2 x\|=2\|x\|$, i.e., group-norm is 2 -homogeneous. The following simple computation gives the proof of (7):

```
\(\min \{\|x-y\|,\|x+y\|\}+\|x\|+\|y\|\)
    \(=\min \{\|x-y\|,\|x+y\|\}+\max \{\|x-y\|,\|x+y\|\}\)
    \(=\|x-y\|+\|x+y\|\)
    \(=\max \{\|x+y+x-y\|,\|x+y+y-x\|\}\)
    \(=\max \{\|x+y+x-y\|,\|x+2 y-x\|\}\)
    \(=\max \{\|2 x\|,\|2 y\|\}\)
\(\min \{\|x-y\|,\|x+y\|\}=\max \{2\|x\|, 2\|y\|\}-\|x\|-\|y\|\)
\(\min \{\|x-y\|,\|x+y\|\}=|\|x\|-\|y\||\).
```

Conversely, assume that a group-norm fulfills (7) and also is 2 -homogeneous. Then we can see that

$$
\begin{aligned}
\max \{\|x-y\|,\|x+y\|\}-\min & \{\|x-y\|,\|x+y\|\} \\
& =|\|x+y\|-\|x-y\||
\end{aligned}
$$

Applying (7) in the following computation, we obtain that

$$
\begin{aligned}
& \max \{\| x-y\|,\| x+y \|\}-|\|x\|-\|y\||=|\|x+y\|-\|x-y\|| \\
&=\min \{\|x+y+x-y\|,\|x+y+y-x\|\} \\
& \quad=\min \{\|2 x\|,\|x+2 y-x\|\} \\
& \quad=\min \{\|2 x\|,\|2 y\|\} \\
& \max \{\| x-y\|,\| x+y \|\}=2 \min \{\|x\|,\|y\|\}+|\|x\|-\|y\|| \\
& \max \{\|x-y\|,\|x+y\|\}=\|x\|+\|y\|,
\end{aligned}
$$

which implies that $(G,\|\cdot\|,+)$ is a normed group.

Corollary 2 If $(G,+)$ is a group and a mapping $\|\cdot\|: G \rightarrow \mathbb{R}$ fulfills the proposed condition (C), then $(G,\|\cdot\|,+)$ is a normed group if and only if

$$
\begin{equation*}
\|x\|+\|y\|=\|x-y\|+\|x+y\|-|\|x\|-\|y\|| \tag{8}
\end{equation*}
$$

for any $x, y \in G$, and also $\|0\|=0$ holds.
Proof: Assume that (8) holds and also $\|0\|=0$. Then (8) yields that

$$
\begin{equation*}
2 \max \{\|x\|,\|y\|\}=\|x-y\|+\|x+y\|, \quad x, y \in G . \tag{9}
\end{equation*}
$$

Since $\|0\|=0$, replacing y with x, we can easily compute that $\|2 x\|=2\|x\|$. Then replacing x with $x+y$ and y with $x-y$ in (9), we have

$$
\begin{aligned}
2 \max \{\|x-y\|,\|x+y\|\} & =\{\|2 x\|+\|2 y\|\} \\
& =\{2\|x\|+2\|y\|\} \\
\max \{\|x-y\|,\|x+y\|\} & =\|x\|+\|y\| .
\end{aligned}
$$

Conversely, suppose $(G,\|\cdot\|,+$) is a normed group, then, by Theorem 3, we can determine that $\|0\|=0$, and (8) also holds.

STABILITY OF (5)

To analyze the stability results of (5) involving variables x and y, first replacing y with x in (5), we will find the stability result of (5) in a single variable x in the following theorem.

Theorem 4 Suppose that $(G,+)$ is a group and for some $\delta \geqslant 0$ a mapping $\|\cdot\|^{*}: G \rightarrow \mathbb{R}$ satisfies

$$
\begin{equation*}
\left|\max \left\{\|2 x\|^{*},\|0\|^{*}\right\}-2\|x\|^{*}\right| \leqslant \delta, \quad x \in G \tag{10}
\end{equation*}
$$

then, we can obtain a group-norm $\|\cdot\|: G \rightarrow \mathbb{R}$ of

$$
\begin{equation*}
\max \{\|2 x\|,\|0\|\}=2\|x\|, \quad x \in G \tag{11}
\end{equation*}
$$

such that

$$
\begin{equation*}
-3 \delta \leqslant\|x\|-\|x\|^{*} \leqslant \delta \tag{12}
\end{equation*}
$$

Also, the group-norm $\|\cdot\|$ can be written as

$$
\begin{equation*}
\|x\|=\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left\|2^{n} x\right\|^{*}, \quad x \in G \tag{13}
\end{equation*}
$$

By (11), $\|\cdot\|$ is uniquely determined, and by (12), $\|\cdot\|-\|\cdot\|^{*}$ is also bounded.

Proof: First, setting $x=0$ in (10) implies that $\left|\max \left\{\|0\|^{*},\|0\|^{*}\right\}-2\|0\|^{*}\right| \leqslant \delta$, therefore $\left|\|0\|^{*}\right| \leqslant \delta$. Additionally, (10) also gives that

$$
\begin{gather*}
-\delta+2\|x\|^{*} \leqslant \max \left\{\|2 x\|^{*},\|0\|^{*}\right\} \leqslant \delta+2\|x\|^{*} \\
-\delta \leqslant\|0\|^{*} \leqslant \delta+2\|x\|^{*} \\
-\delta \leqslant\|x\|^{*}, \quad \text { for all } x \in G . \tag{14}
\end{gather*}
$$

Replacing x with $2 x$ gives that $-\delta \leqslant\|2 x\|^{*}$, so we can obtain

$$
\begin{align*}
& \|0\|^{*} \leqslant \delta=2 \delta-\delta \leqslant 2 \delta+\|2 x\|^{*} \\
& \|0\|^{*} \leqslant 2 \delta+\|2 x\|^{*} \quad \text { for all } x \in G \tag{15}
\end{align*}
$$

By (10) and (15), we can compute

$$
\begin{array}{ll}
& 2\|x\|^{*} \leqslant \delta+\max \left\{\|2 x\|^{*},\|0\|^{*}\right\} \\
& 2\|x\|^{*} \leqslant \delta+\|0\|^{*} \leqslant 3 \delta+\|2 x\|^{*} \\
\text { or } \quad 2\|x\|^{*} \leqslant \delta+\|2 x\|^{*} \leqslant 3 \delta+\|2 x\|^{*} .
\end{array}
$$

Joining both cases, we determine that

$$
\begin{equation*}
-3 \delta \leqslant\|2 x\|^{*}-2\|x\|^{*} \tag{16}
\end{equation*}
$$

By (10), we can see that $\max \left\{\|2 x\|^{*},\|0\|^{*}\right\} \leqslant \delta+$ $2\|x\|^{*}$, which is possible whenever

$$
\begin{equation*}
\|2 x\|^{*}-2\|x\|^{*} \leqslant \delta \tag{17}
\end{equation*}
$$

Inequalities (16) and (17) imply that

$$
\begin{equation*}
-3 \delta \leqslant\|2 x\|^{*}-2\|x\|^{*} \leqslant \delta \quad \text { for all } x \in G \tag{18}
\end{equation*}
$$

By (18), it can be observed that the mapping $\|\cdot\|: G \rightarrow \mathbb{R}$ given in (13) exists and $\|\cdot\|$ fulfills

$$
\begin{equation*}
\|2 x\|=2\|x\| \quad \text { for all } x \in G \tag{19}
\end{equation*}
$$

Moreover, $\|\cdot\|$ satisfies (12). Also, replacing x with $2^{n} x$ in (14) and dividing by 2^{n}, then taking the limit $n \rightarrow \infty$ while utilizing (13), we can get that $\|x\| \geqslant 0$ for all $x \in G$. Therefore, we get (11) from (19). In view of (11) and using fact that $\|2 x\|=2\|x\| \geqslant 0$ for every $x \in G$, we can see the uniqueness of $\|\cdot\|$.

Stability results of (5) involving two variables can be easily shown with the help of Theorem 4 as follows.

Theorem 5 Suppose that $(G,+)$ is a group and a mapping $\|\cdot\|^{*}: G \rightarrow \mathbb{R}$ satisfies

$$
\begin{equation*}
\left|\max \left\{\|x-y\|^{*},\|x+y\|^{*}\right\}-\|x\|^{*}-\|y\|^{*}\right| \leqslant \delta \tag{20}
\end{equation*}
$$

for all $x, y \in G$ and for some $\delta \geqslant 0$. Then, there exists a unique group-norm $\|\cdot\|: G \rightarrow \mathbb{R}$ of

$$
\begin{equation*}
\|x\|+\|y\|=\max \{\|x-y\|,\|x+y\|\}, \quad x, y \in G \tag{21}
\end{equation*}
$$

such that

$$
\begin{equation*}
-3 \delta \leqslant\|x\|-\|x\|^{*} \leqslant \delta, \quad x \in G \tag{22}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\|x\|=\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left\|2^{n} x\right\|^{*}, \quad x \in G \tag{23}
\end{equation*}
$$

Proof: By Theorem 4, we can show the required stability results. First, replacing y with x in (20), and by Theorem 4 we can get a mapping $\|\cdot\|: G \rightarrow \mathbb{R}$. Moreover, we show that this mapping $\|\cdot\|$ fulfills (21). By replacing x with $2^{n} x$ and y with $2^{n} y$ in (20) and dividing by 2^{n}, then applying the limit $n \rightarrow \infty$ and also utilizing (23), we get the required result in the form of (21).

Theorem 6 Let $(G,+)$ be a group. Assume that a mapping $\|\cdot\|^{*}: G \rightarrow \mathbb{R}$ satisfies (20), then it fulfills the proposed condition

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left[\max \left\{\left\|2^{n} x-2^{n} y\right\|^{*},\left\|2^{n} x+2^{n} y\right\|^{*}\right\}\right. \\
& \left.\quad-\max \left\{\left\|2^{n}[x-y]\right\|^{*},\left\|2^{n}[x+y]\right\|^{*}\right\}\right]=0 \tag{24}
\end{align*}
$$

if and only if $(G,\|\cdot\|,+)$ is a normed group.
Proof: Suppose that $(G,\|\cdot\|,+)$ is a normed group, then (21) holds. Taking any elements $x, y \in G$, we have

$$
\begin{aligned}
& \mid \max \left\{\left\|2^{n} x-2^{n} y\right\|^{*},\left\|2^{n} x+2^{n} y\right\|^{*}\right\} \\
& \quad-\max \left\{\left\|2^{n}[x-y]\right\|^{*},\left\|2^{n}[x+y]\right\| \|^{*}\right\} \mid \\
& \leqslant\left|\max \left\{\left\|2^{n} x-2^{n} y\right\|^{*},\left\|2^{n} x+2^{n} y\right\|^{*}\right\}-\left\|2^{n} x\right\|^{*}-\left\|2^{n} y\right\|^{*}\right| \\
& \quad+\left|\max \left\{\left\|2^{n}[x-y]\right\|^{*},\left\|2^{n}[x+y]\right\|^{*}\right\}-\left\|2^{n} x\right\|^{*}-\left\|2^{n} y\right\|^{*}\right| \\
& \leqslant \delta+\left|\max \left\{\left\|2^{n}[x-y]\right\|^{*},\left\|2^{n}[x+y]\right\|^{*}\right\}-\left\|2^{n} x\right\|^{*}-\left\|2^{n} y\right\|^{*}\right| .
\end{aligned}
$$

To obtain the required statement, first dividing both sides by 2^{n}, taking the limit $n \rightarrow \infty$, and using the proposed condition (21), we can see that

$$
\left.\begin{array}{rl}
\lim _{n \rightarrow \infty} & \frac{1}{2^{n}}[
\end{array} \quad \max \left\{\left\|2^{n} x-2^{n} y\right\|^{*},\left\|2^{n} x+2^{n} y\right\|^{*}\right\}\right) .
$$

Conversely, suppose that condition (24) holds. Replacing x with $2^{n} x$ and y with $2^{n} y$ in (20), then taking the limit $n \rightarrow \infty$ after dividing by 2^{n}, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{2^{n}} \max \left\{\left\|2^{n} x-2^{n} y\right\|^{*},\left\|2^{n} x+2^{n} y\right\|^{*}\right\} & \\
& =\|x\|+\|y\|
\end{aligned}
$$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{2^{n}} \max \left\{\left\|2^{n}[x-y]\right\|^{*},\right. & \left.\left\|2^{n}[x+y]\right\|^{*}\right\} \\
& =\max \{\|x-y\|,\|x+y\|\}
\end{aligned}
$$

By condition (24), we can compute $\|x\|+\|y\|=$ $\max \{\|x-y\|,\|x+y\|\}$.

Also, the proposed condition (24) associated with function $\|\cdot\|^{*}$ is not directly related to ($G,+$),
but some valuable properties about G can be observed. We have given below a modified condition that is equivalent to the proposed condition (24). Consider a subsequence $m(n)$ of \mathbb{N} such that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{2^{m(n)}} & {\left[\max \left\{\left\|2^{m(n)} x-2^{m(n)} y\right\|^{*},\left\|2^{m(n)} x+2^{m(n)} y\right\|^{*}\right\}\right.} \\
& \left.-\max \left\{\left\|2^{m(n)}[x-y]\right\|^{*},\left\|2^{m(n)}[x+y]\right\|^{*}\right\}\right]=0
\end{aligned}
$$

which implies the mapping $\|\cdot\|^{*}$. Moreover, it holds because both of the limits

$$
\lim _{n \rightarrow \infty} \frac{1}{2^{m(n)}} \max \left\{\left\|2^{m(n)} x-2^{m(n)} y\right\|^{*},\left\|2^{m(n)} x+2^{m(n)} y\right\|^{*}\right\}
$$

and

$$
\lim _{n \rightarrow \infty} \frac{1}{2^{m(n)}} \max \left\{\left\|2^{m(n)}[x-y]\right\|^{*},\left\|2^{m(n)}[x+y]\right\|^{*}\right\}
$$

exist and are finite.
Corollary 3 Assume that a mapping $\|\cdot\|^{*}: G \rightarrow \mathbb{R}$ satisfies (11). Then it fulfills the proposed condition

$$
\begin{align*}
\lim _{n \rightarrow \infty} & \frac{1}{2^{n}}\left[\max \left\{\left\|2^{n} x+2^{n} y\right\|^{*},\left\|2^{n} x-2^{n} y\right\|\right\}\right. \\
& \left.-\left\|2^{n}[x+y]\right\|^{*}\right]=0 \quad \text { for all } x, y \in G \tag{25}
\end{align*}
$$

if and only if $\|x\|+\|y\|=\|x+y\|$ holds for every $x, y \in G$.

Remark 1 The proposed condition (24) satisfies when G is an n-abelian group (a group G is known as an n-abelian group if condition $n(u+v)=n u+n v$ holds for every integer n and for every $u, v \in G$, for instance, see [1, 3]).

Remark 2 Proposed condition (24) also holds when G is related to the class of groups C_{n} for every natural number n belongs to \mathbb{N} (C_{n} is a notation for the class of groups, which fulfills the condition $n v+n u=n u+n v$ for every $n \in \mathbb{N}$ and $u, v \in G)$.

Remark 3 If a group-norm $\|\cdot\|$ is abelian, then the proposed condition (24) is also true.

Theorem 7 Assume that (5) is stable on a normed group $(G,\|\cdot\|,+)$. Then a free abelian group H can be embedded into G.

Proof: Let $\|\cdot\|: G \rightarrow \mathbb{R}$ and for some $\delta \geqslant 0$, we have $|\max \{\|x-y\|,\|x+y\|\}-\|x\|-\|y\|| \leqslant \delta, \quad x, y \in G$. (26)
H is a torsion-free group because H is a free abelian group. By using the concept of HNN-extensions, for instance, see $[6,8]$. Any torsion-free group H can be embedded into G, if for every $h \in H$, there exists
an element $g \in G$ such that $g+h-g=2 h$. If H is embedding into G, then (26) implies that

$$
|\max \{\|h+g\|,\|h-g\|\}-\|h\|-\|g\|| \leqslant \delta, \quad h, g \in G .(27)
$$

It will be shown that $\|\cdot\|$ is bounded. The proof is obvious when $\delta=0$, so assume that $\delta>0$. More explicitly, we show that $\|h\|<2 \delta$ for every $h \in G$. By (27), we have two possible values that either $\|\| h-$ $g\|-\| h\|-\| g \| \mid \leqslant \delta$ or $|\|h+g\|-\|h\|-\|g\|| \leqslant \delta$. Considering the first possibility and setting $h=g=$ 0 , we can see that $\|0\| \leqslant \delta$. Setting $g=h$, we can conclude that

$$
\begin{aligned}
|\|0\|-2\|h\|| & \leqslant \delta \\
|2\|h\||-|\|0\|| & \leqslant \delta \\
2\|h\| & \leqslant \delta+\|0\| \\
2\|h\| & \leqslant \delta+\delta \\
\|h\| & \leqslant \delta .
\end{aligned}
$$

For the second possibility, we can obtain

$$
\begin{equation*}
|\|h+g\|-\|h\|-\|g\|| \leqslant \delta \tag{28}
\end{equation*}
$$

On the contrary, assume that $\|h\| \geqslant 2 \delta$ for some $h \in G$. Setting $g=h$ in (28), we have

$$
\begin{aligned}
\mid\|2 h\|-2\|h\| \| & \leqslant \delta \\
|2\|h\|-\|2 h\|| & \leqslant \delta \\
2\|h\|-\delta & \leqslant\|2 h\| \\
3 \delta & \leqslant\|2 h\| .
\end{aligned}
$$

Again, setting $g=2 h$ in (28) we have

$$
\begin{aligned}
|\|3 h\|-\|h\|-\|2 h\|| & \leqslant \delta \\
|\|h\|+\|2 h\|-\|3 h\|| & \leqslant \delta \\
|\|h\|\|+|\|2 h\|| & \leqslant \delta+\|3 h\| \\
5 \delta-\delta & \leqslant\|3 h\| \\
4 \delta & \leqslant\|3 h\| .
\end{aligned}
$$

Repeating this process for $g=3 h$, we can conclude $\|4 h\| \geqslant 4 \delta$. Continuing the process, we can determine

$$
(m+1) \delta \leqslant\|m h\|
$$

where $m=1,2, \ldots$, so we can see that $\|m h\|$ is unbounded when the value of m varies.

Also, let $g \in G$ such that $2 h=g+h-g$. Then $2 m h=g+m h-g$ for any integer $m>0$. Moreover, for any m, setting $g=m h$ and $h=m h$ in (28), we have

$$
\begin{array}{r}
|\|2 m h\|-2\|m h\|| \leqslant \delta \\
|\|g+m h-g\|-2\|m h\|| \leqslant \delta \tag{29}
\end{array}
$$

Moreover, (28) follows that

$$
\begin{gathered}
|\|g+m h-g\|-\|g\|-\|m h-g\|| \leqslant \delta \quad \text { and } \\
|\|m h-g\|-\|m h\|-\|-g\|| \leqslant \delta ;
\end{gathered}
$$

thus, we can get

$$
\begin{align*}
\mid\|g+m h-g\| & -\|g\|-\|m h\|-\|-g\| \mid \\
\leqslant & |\|g+m h-g\|-\|g\|-\|m h-g\|| \\
& \quad+|\|m h-g\|-\|m h\|-\|-g\|| \\
\leqslant & 2 \delta \tag{30}
\end{align*}
$$

From (29) and (30) we have

$$
\begin{aligned}
& |\|g+m h-g\|-2\|m h\|+\|m h\|| \leqslant 2 \delta+\|g\|+\|-g\| \\
& \quad\|m h\| \leqslant 2 \delta+\|g\|+\|-g\|+|\|g+m h-g\|-2\|m h\|| \\
& \quad\|m h\| \leqslant 5 \delta,
\end{aligned}
$$

for $m=1,2, \ldots$, which is a contradiction. This completes the proof because the group-norm $\|\cdot\|$ is bounded.

Corollary 4 Assume that (5) is stable on a normed group ($G,\|\cdot\|,+$), and H is a discretely normed abelian group. Then H is embedding into G.

Proof: Since H is a discretely normed abelian group, then H is a free group, for instance, see [11]; consequently H is embedding into G.

When we analyzed condition (24), it is noticed that for the stability of (5), the given condition (24) is necessary and sufficient. This condition leads to the following definition.

Definition 3 ([16]) A group ($G,+$) is called weakly commutative if for any $a, b \in G$, there exists $n=$ $n(a, b) \geqslant 2$ such that $2^{n}(a+b)=2^{n} a+2^{n} b$.
When we consider Theorem 6 and Definition 3 about Tabor weakly commutativity, then it gives the following theorem.
Theorem 8 Let $\left(G,\|\cdot\|^{*},+\right)$ be a Tabor weakly commutative, then the group-norm $\|\cdot\|$ satisfies (5).

Proof: From Theorem 6, it can be seen that condition (24) satisfies when G is weakly commutative. To prove the second condition presented in Theorem 6 , we need to construct a sequence $\{m(n)\}$, which holds the second condition. For this purpose, assume that $m_{1}=n(x, y)$ for fixed $x, y \in G$. Considering the pair ($2^{m_{1}} x, 2^{m_{1}} y$), by our assumption, there exists $n\left(2^{m_{1}} x, 2^{m_{1}} y\right)$ such that

$$
\begin{aligned}
& 2^{n\left(2^{m_{1}} x, 2^{m_{1}} y\right)}\left(2^{m_{1}} x+2^{m_{1}} y\right) \\
& \quad=2^{n\left(2^{m_{1}} x, 2^{m_{1}} y\right)}\left(2^{m_{1}} x\right)+2^{n\left(2^{m_{1}} x, 2^{m_{1}} y\right)}\left(2^{m_{1}} y\right)
\end{aligned}
$$

Since $2^{m_{1}}(x+y)=2^{m_{1}} x+2^{m_{1}} y$, so we get that

$$
\begin{aligned}
& 2^{m_{1}+n\left(2^{m_{1}} x, 2^{m_{1}} y\right)}(x+y) \\
& \quad=2^{m_{1}+n\left(2^{m_{1}} x, 2^{m_{1}} y\right)} x+2^{m_{1}+n\left(2^{m_{1}} x, 2^{m_{1}} y\right)} y .
\end{aligned}
$$

Again, assume that $m_{1}+n\left(2^{m_{1}} x, 2^{m_{1}} y\right)=m_{2}$; therefore, we have $2^{m_{2}}(x+y)=2^{m_{2}} x+2^{m_{2}} y$. By mathematical induction, it leads to the required sequence $\left\{m_{n}\right\}$.

Acknowledgements: This work was supported by the National Natural Science Foundation of China [Grant number 11971493 and 12071491].

REFERENCES

1. Alperin JL (1969) A classification of n-abelian groups. Can J Math 21, 1238-1244.
2. Bingham N, Ostaszewski A (2010) Normed versus topological groups: Dichotomy and duality. Diss Math 472, 1-138.
3. Baer R (1953) Factorization of n-soluble and n nilpotent groups. Proc Am Math Soc 4, 15-26.
4. Chaljub-Simon A, Volkmann P (1994) Caractérisation du module d'une fonction additive à l'aide d'une équation fonctionnelle. Aequ Math 47, 60-68.
5. Gilanyi A, Nagatou K, Volkmann P (2010) Stability of a functional equation coming from the characterization of the absolute value of additive functions. Ann Funct Anal 1, 1-6.
6. Higman G, Neumann BH, Neuman H (1949) Embedding theorems for groups. J London Math Soc 1, 247-254.
7. Kannappan Pl (1968) The functional equation $f(x y)+f\left(x y^{-1}\right)=2 f(x) f(y)$ for groups. Proc Amer Math Soc 19, 69-74.
8. Magnus W, Karrass A, Solitar D (2004) Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, 2nd Edn, Dover Publications, USA.
9. Przebieracz B (2011) The stability of functional equation $\min \{f(x+y), f(x-y)\}=|f(x)-f(y)|$. J Inequal Appl 2011, ID 22.
10. Redheffer RM, Volkmann P (1997) Die Funktionalgleichung $f(x)+\max \{f(y), f(-y)\}=$ $\max \{f(x+y), f(x-y)\}$, International Series of Numerical Mathematics 123, Birkhauser: Basel, Switzerland.
11. Steprāns J (1985) A characterization of free abelian groups. Proc Am Math Soc 93, 347-349.
12. Sarfraz M, Liu Q, Li Y (2020) Stability of maximum functional equation and some properties of groups. Symmetry 12, ID 1949.
13. Sarfraz M, Ali F, Li Y (2020) Lipschitz isomorphism and fixed point theorem for normed groups. Cogent Math Stat 7, ID 1859673.
14. Toborg I (2017) On the functional equation $f(x)+$ $f(y)=\max \left\{f(x y), f\left(x y^{-1}\right)\right\}$ on groups. Arch Math 109, 215-221.
15. Volkmann P (2017) Charakterisierung des Betrages Reellwertiger Additiver Funktionen auf Gruppen, KITopen.
16. Tabor J (1985) Remark 18, 22nd international symposium on functional equations, Oberwolfach 1984. Aequ Math 29, ID 96.
