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ABSTRACT: We characterize the independence number of the intersection power graph of a group, which extends
some results in Aprose et al [Punjab Univ J Math 52 (2020):47–53]. Moreover, the finite groups with dominatable
intersection power graphs are characterized, which generalizes some results in Bera [Electron J Graph Theory Appl
6 (2018):178–189]. Furthermore, we characterize the finite groups whose intersection power graphs equal to their
power graphs, enhanced power graphs, commuting graphs, and order supergraphs.
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INTRODUCTION

A simple graph is an undirected graph without loops
and multiple edges. All graphs considered in this
paper are finite and simple. By associating a graph
to an algebraic structure, the investigation of the
interplay between the algebraic structure and graph
theory has been actively investigated in the litera-
ture. For example, the Cayley graph of a group,
which has a long history.

Let G be a group. The undirected power graph
of G, denoted P (G), is a graph whose vertex set
is G and two distinct vertices are adjacent if one
is a power of the other. Kelarev and Quinn [1]
first introduced the concept of the power graph of a
group, which is a directed graph. The concept of the
undirected power graph of a group was introduced
first by Chakrabarty et al [2]. For convenience, in
this paper, we always use “power graph” to denote
an undirected power graph. The subgraph of P (G)
induced by G\{e} is called the proper power graph
of G and is denoted by P ∗(G). In past two decades,
the study of the (proper) power graph of a group
has been growing. See, for example, [3–6] and
the survey paper [7] with many results and open
questions on the power graph of a group.

The commuting graph of G, denoted C (G), is
a graph whose vertices are the elements of G and
two distinct vertices x , y are adjacent if x y = y x .
In order to classify finite simple groups, Brauer
and Fowler [8] first studied the graph. Notice that
every element of the center of G is adjacent to

any other vertex. As a result, the vertex set of
the commuting graph of G is assumed to the set
of all non-central elements of G. For some results
on commuting graphs, see [9, 10] and references
therein. The enhanced power graph of G, denoted
PE(G), is the graph whose vertex set is G, and two
distinct vertices are adjacent if they can generate a
cyclic subgroup of G. Clearly, P (G) is a spanning
subgraph of PE(G). To measure how close power
graphs of groups is to commuting graphs of groups,
Aalipour et al [11] first introduced the concept of
an enhanced power graph of a group. For some
more properties on the enhanced power graph of
a group, see [12]. The order supergraph of P (G),
denoted S (G), is a graph whose vertex set is G
and two distinct elements x , y ∈ G are adjacent
if o(x)|o(y) or o(y)|o(x). For convenience, we
also call S (G) as the order supergraph of G. In
2017, Hamzeh and Ashrafi [13] first introduced the
order supergraph and studied its full automorphism
group. In fact, the authors in [13] called S (G) as
the main supergraph of P (G). In 2018, Hamzeh
and Ashrafi [14] obtained some more properties of
S (G).

As stated in [15], one can define a graph over
a group by using a poset consisting of all cyclic
subgroups of the group, and use Hasse diagram of
the poset to visualize some algebraic properties of
the group. Motivated by this, Bera [15] defined the
intersection power graphPI (G) of a group G, where
the vertex set of PI (G) is G, and distinct vertices
x and y are adjacent if either one of {x , y} is the
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identity element of G, or 〈x〉 ∩ 〈y〉 is non-trivial. In
[15], the author studied some properties of PI (G)
and determined the full automorphism group of the
intersection power graph of a cyclic group.

Every group considered in this paper is finite. In
general, G always denotes a group and its identity
element is e. Let g ∈ G, the order of g, denoted
o(g), is the cardinality of the cyclic subgroup 〈g〉
generated by g. If M is a cyclic subgroup of G and is
not a proper subgroup of some cyclic subgroup of G,
then M is called a maximal cyclic subgroup of G. The
set of maximal cyclic subgroups of G is denoted by
MG . We remark that the size ofMG is 1 if and only if
G is a cyclic group. Also, Zn denotes the cyclic group
of order n. Let Γ is a graph. Γ is called complete
if every two distinct vertices of Γ is connected by
an edge. The independence number of Γ , denoted
α(Γ ), is defined as the maximum cardinality of a set
of pairwise non-adjacent vertices which is called an
independent set of Γ . An independent set is called
maximal in Γ if no vertex can be added without
violating independence. A vertex of Γ is called a
dominating vertex if it is adjacent to every other
vertex of Γ . Note that e is adjacent to every other
vertex inPI (G). Therefore, e is a dominating vertex
in PI (G). An intersection power graph PI (G) is
called dominatable if G has a non-trivial dominating
vertex.

In this paper, we first characterize the indepen-
dence number of the intersection power graph of a
group (see Theorem 2), which implies Theorems 4.1
and 4.2 of [16]. We then characterize all groups
whose intersection power graphs are dominatable
(see Theorem 3), which generalizes Theorems 4.1
and 4.3 of [15]. There are various graphs defined
on the set of elements of a group. It is natural to
consider the following question.

Question 1 For which groups is the intersection
power graph equal to the power graph, the enhanced
power graph, the commuting graph, or the order
supergraph?

Motivated by this question, we finally characterize
the groups whose intersection power graphs equal
to the power graphs, the enhanced power graphs,
the commuting graphs, and the order supergraphs.

INDEPENDENCE NUMBER

In this section, we characterize the independence
number of the intersection power graph of a group.
Our main result is Theorem 2, which implies Theo-
rems 4.1 and 4.2 of [16].

Theorem 2 α(PI (G)) is the size of the set of all
subgroups of prime order of G.

Proof : Let NG be the set of all subgroups of prime
order in G. Write

NG = {〈u1〉, 〈u2〉, . . . , 〈ut〉}. (1)

Let S be an independent set ofPI (G) such that every
element of S has prime order. we first claim |S|¶ t.
Assume, to the contrary, that |S| > t. Then by (1),
there exist distinct x , y ∈ S such that 〈x〉 = 〈y〉.
It follows that 〈x〉 ∩ 〈y〉 6= {e}. Thus, x and y
are adjacent in PI (G), this contradicts that S is an
independent set. Therefore, our claim is valid.

Now let X = {x1, x2, . . . , xk} be an independent
set with α(PI (G)) = k. In the following, we prove
k ¶ t. If o(x i) is a prime for each i ∈ {1,2, . . . , k},
then the claim as above implies k ¶ t, as desired.
Thus, we may assume that there exists x j ∈ X such
that o(x j) is not a prime. In the following, we
prove that o(x j) is a prime power. Suppose for
a contradiction that o(x j) has two distinct prime
divisors p, q. Let u, v ∈ 〈x j〉 with o(u) = p and
o(v) = q. Notice that X is an independent set.
Clearly, u, v /∈ X . If there exists a vertex in X\{x j}
such that it is adjacent to u or v, then the vertex
must be adjacent to x j , a contradiction. It follows
that {u, v} ∪ (X\{x j}) is an independent set of size
k + 1, this contradicts α(PI (G)) = k. We conclude
that the order of any element of X is either a prime
or a prime power. Without loss of generality, now
let {x1, x2, . . . , x l} be the set of all non-prime-order
elements of X , where l ¶ k. For each i, 1 ¶ i ¶ l,
take yi ∈ 〈x i〉 such that o(yi) is a prime. Then it is
easy to see that

Y = {y1, y2, . . . , yl , x l+1, . . . , xk}

is an independent set of size k. Note that every
element of Y has prime order. Thus, by the claim
as above, we have k ¶ t, as desired. We conclude
α(PI (G))¶ t.

Let N = {u1, u2, . . . , ut}. Clearly, N is an inde-
pendent set of PI (G). It follows that α(PI (G))¾ t.
This implies that α(PI (G)) = t = |NG |. 2

For n ¾ 3, the dihedral group of order 2n,
denoted D2n, is presented by

D2n = 〈a, b : an = b2 = e, bab = a−1〉.

It is easy to see that
�

D2n = 〈a〉 ∪ {b, ab, a2 b, . . . , an−1 b},

o(ai b) = 2 for any i ¶ 1¶ n,
(2)
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MD2n
= {〈a〉, 〈ab〉, 〈a2 b〉, . . . , 〈an b〉}. (3)

and
¨

Z(D2n) = {e} if n is odd;

Z(D2n) = {e, an/2} if n is even,
(4)

where Z(D2n) is the center of D2n. For m ¾ 2,
the generalized quaternion group, denoted Q4m, is
presented by

Q4m = 〈x , y : xm = y2, x2m = e, y−1 x y = x−1〉.

For more information see [17]. We remark that Q4m
has order 4m,

o(xm) = 2, o(x i y) = 4, for any i ¶ 1¶ m (5)

and

MQ4m
= {〈x〉, 〈x y〉, 〈x2 y〉, . . . , 〈xm y〉}, xm ∈

⋂

M∈MQ4m

M . (6)

Clearly, xm ∈ Z(Q4m).
For a positive integer n, the set of all prime

factors of n is denoted by π(n). Also, denote by Zk
p

the elementary abelian p-group of order pk, where
p is a prime and k is a positive integer. Notice that

Zk
p has pk−1

p−1 maximal cyclic subgroups and every
maximal cyclic subgroup is isomorphic to Zp.

Combining (2), (3), (5), (6), and Theorem 2,
we have the following examples.

Example 1
(i) Let n¾ 2. Then α(PI (Zn)) = π(n).
(ii) Let k ¾ 2 and p a prime. Then

α(PI (Zk
p)) =

pk −1
p−1

.

(iii) α(PI (D2n)) = π(n)+ n.
(iv) α(PI (Q4m)) = π(2m).

Recall now an elementary result on p-groups.

Lemma 1 (Theorem 5.4.10 [18]) Given a prime p,
a p-group having a unique subgroup of order p is
either generalized quaternion or cyclic.

Note that PI (G) is complete if and only if
α(PI (G)) = 1. In the following, we classify all
groups whose intersection power graphs are com-
plete. By an alternative method, Bera [15] also
obtained the result (see Theorem 3.1 [15]).

Corollary 1 PI (G) is complete if and only if G is
either a cyclic p-group or a generalized quaternion 2-
group.

Proof : Since both a cyclic p-group and a general-
ized quaternion 2-group have a unique subgroup of
prime order, their intersection power graphs have
independence number 1 by Theorem 2. Conversely,
suppose that α(PI (G)) = 1. Then Theorem 2 im-
plies G has a unique subgroup of prime order. As a
result, G must be a p-group. Now the desired result
follows from Lemma 1. 2

DOMINATABILITY

In this section, we characterize all the groups whose
intersection power graphs are dominatable (see
Theorem 3), which also generalizes Theorems 4.1
and 4.3 of [15].

In the following, we use Ψ to denote the set of
all groups G such that the following two conditions
hold:
(i) For any prime divisor p of |G|, G has a unique

subgroup of order p.
(ii) If p1, p2, . . . , pt are all prime divisor of |G|, then

G has a cyclic subgroup of order
∏t

i=1 pi .

Example 2
(i) Every cyclic group belongs to Ψ.
(ii) Let m ¾ 2. Then the generalized quaternion

group Q4m belongs to Ψ.
(iii) If G is the semidirect product of Z5 and Z8 via

square map, that is

G = 〈a, b : a5 = b8 = e, bab−1 = a2〉,

then G ∈ Ψ.
(iv) If G is the semidirect product of Z5 and Z16 via

inverse map, that is

G = 〈a, b : a5 = b16 = e, bab−1 = a−1〉,

then G ∈ Ψ.

Now we state our main theorem of the section.

Theorem 3 PI (G) is dominatable if and only if
G ∈ Ψ.

Proof : We first prove the sufficiency. Suppose that
G ∈ Ψ. Let p1, p2, . . . , pt be all prime divisor of
|G|. Then G has a cyclic subgroup of order

∏t
i=1 pi ,

say, 〈x〉. Let y ∈ G\{x , e}. Taking 〈z〉 ⊆ 〈y〉 such
that o(z) = pi for some 1 ¶ i ¶ t, we deduce that
〈z〉 ⊆ 〈x〉 ∩ 〈y〉 by (i). It follows that x is adjacent
to y in PI (G). Since x is adjacent to e in PI (G), x
is a dominating vertex, which implies that PI (G) is
dominatable.

We next prove the necessity. Suppose that
PI (G) is dominatable. Let a be a dominating vertex
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of PI (G), and let p1, p2, . . . , pt be all prime divisor
of |G|. Suppose for a contradiction that G has two
distinct subgroups of order pi where 1 ¶ i ¶ t, say,
〈b〉 and 〈c〉. Because o(b) = o(c) = pi , where pi is
a prime, it follows that 〈b〉, 〈c〉 ¶ 〈a〉, which is in
contradiction with 〈b〉 6= 〈c〉. As a result, G has a
unique subgroup of order pi for each 1¶ i ¶ t.

Now let 〈bi〉 be the unique subgroup of order
pi for each 1 ¶ i ¶ t. If t = 1, then clearly, G has
a cyclic subgroup 〈b1〉 of order p1, which implies
G ∈ Ψ, as desired. Thus, we now may assume that
t ¾ 2. Note that bi is adjacent to a for each 1 ¶
i ¶ t. It follows that 〈bi〉 ∩ 〈a〉 = 〈bi〉, and so bi ∈
〈a〉 for each 1 ¶ i ¶ t. This means that every of
p1, p2, . . . , pt is a prime divisor of |〈a〉|, that is, 〈a〉
has a cyclic subgroup of order

∏t
i=1 pi . Thus, we

have G ∈ Ψ. 2

Corollary 2 Let G be a group such that GI (G) is
dominatable, and let a be a non-trivial element of G.
Then the closed neighbourhood of a in PI (G) is G if
and only if o(a) is divisible by every prime divisor of
|G|.

Note that a nilpotent group is a direct product
of its Sylow subgroups. Combining Theorem 3 and
Lemma 1, we have the following, where Corol-
lary 3 (i) extends Theorems 4.1 and 4.3 of [15].

Corollary 3
(i) Let G be a nilpotent group. Then PI (G) is domi-

natable if and only if G is isomorphic to either a
cyclic group or Q2n × 〈g〉, where n ¾ 3 and o(g)
has odd order.

(ii) Let m¾ 2. Then Q4m is dominatable.
(iii) Let n¾ 3. Then D2n is not dominatable.

COMPARING TO THE INTERSECTION POWER
GRAPH AND THE OTHERS

There are various graphs defined on the set of
elements of a group. For example, in introduction
of the paper, we mention the power graph, the
enhanced power graph, the commuting graph, and
the order supergraph of a group. Motivated by
Question 1, in this section, we characterize the
groups whose intersection power graphs equal to
their power graphs, enhanced power graphs, com-
muting graphs, and order supergraphs.

Intersection power graph and power graph

The following result follows directly from the defini-
tions of intersection power graph and power graph.

Observation 4 For a group G, the intersection power
graph of G is equal to its power graph if and only if
G satisfies the following property: for any x , y ∈ G,
〈x〉 ∩ 〈y〉 6= {e} implies that 〈x〉 ⊆ 〈y〉 or 〈y〉 ⊆ 〈x〉.

A group is called a P-group [19] if every non-
trivial element of the group has prime order. For
example, both the dihedral group of order 6 and the
alternating group on 5 letters are P-groups.

Example 3 If G is a P-group, then the intersection
power graph of G is equal to its power graph.

Observation 4 implies the following corollary,
which gives a necessary condition for PI (G) =
P (G).

Corollary 4 If PI (G) = P (G), then every two dis-
tinct maximal cyclic subgroups of G has trivial inter-
section.

Remark that the converse of Corollary 4 is not
true. In fact, by (3), it is easy to see that D24 and
D60 are two counterexamples.

Lemma 2 Suppose that G is a group with PI (G) =
P (G). Then
(i) G has no subgroup Zp ×Zpq, where p and q are

primes;
(ii) G has no element of order p2q, where p and q are

distinct primes;
(iii) G has no element of order pqr, where p, q and r

are distinct primes;
(iv) G has no subgroup isomorphic to a generalized

quaternion group.

Proof : (i) Suppose for a contradiction that Zp ×Zpq
is a subgroup of G, where p and q are primes.
Then (0, p) ∈ 〈(1,1)〉 ∩ 〈(0,1)〉. However, 〈(1,1)〉 *
〈(0,1)〉 and 〈(0, 1)〉 * 〈(1,1)〉 since o((1, 1)) =
o((0, 1)) = pq, contrary to Observation 4.

(ii) Suppose for a contradiction that G has an
element x of order p2q, where p and q are distinct
primes. Then in 〈x〉, we have x pq ∈ 〈x p〉 ∩ 〈xq〉.
Since o(x p) = pq and o(xq) = p2, it follows that
〈x p〉 * 〈xq〉 and 〈xq〉 * 〈x p〉, contrary to Observa-
tion 4.

(iii) Suppose for a contradiction that G has an
element x of order pqr, where p, q and r are distinct
primes. We deduce x pq ∈ 〈x p〉 ∩ 〈xq〉. Notice that
o(x p) = qr and o(xq) = pr. We have 〈x p〉 * 〈xq〉
and 〈xq〉 * 〈x p〉, contrary to Observation 4.

(iv) Suppose for a contradiction that G has
a subgroup H which is a generalized quaternion
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group. By (5) and (6), there exist two distinct cyclic
subgroups of order 4 in H such that their intersec-
tion has size 2, contrary to Observation 4. 2

In the following, we use Φ to denote the set
of all finite groups G such that the following two
conditions hold:
(i) G is a non-cyclic p-group, where p is a prime.
(ii) G has a maximal cyclic subgroup 〈x〉, and the

order of every element in G\〈x〉 is p.
In other words, if G has a maximal cyclic subgroup
of order at least p2, then G has precisely one maxi-
mal cyclic subgroup of order at least p2.

Remark 1 G ∈ Φ if G is one of the following:

(a) The elementary abelian p-group Zm
p for some

prime p and positive integer m;

(b) For any odd prime q, the group U T (3, q) is
defined as the unitriangular matrix group of
degree 3 over the prime field Fq. Explicitly,

U T (3, p) =

( 

0 a12 a13

0 1 a23

0 0 1

!

: a12, a13, a23 ∈ Fq

)

and its operation is the usual matrix multiplica-
tion. In fact, U T (3, q) is the unique non-abelian
group of order q3 and exponent q;

(c) The dihedral group D2·2m for some positive
integer m¾ 2.

Lemma 3 (Theorem 2.12 [2]) P (G) is complete if
and only if G is a cyclic group of prime power order.

Theorem 5 Let G be a nilpotent group. PI (G) =
P (G) if and only if one of the following holds:
(i) G is a cyclic p-group;
(ii) G is a cyclic group of order pq, where p and q are

two distinct primes;
(iii) G ∈ Φ.

Proof : We first prove the sufficiency. If G is a cyclic
p-group, then by Corollary 1 and Lemma 3, we have
PI (G) =P (G). If G is a group of (ii) and (iii), then
by Observation 4, one can obtain easily thatPI (G) =
P (G).

We next prove the necessity. Suppose that
PI (G) = P (G). Assume that G is not a p-group.
Note that a nilpotent group is a direct product of
its Sylow subgroups. By Lemma 2 (iii), we deduce
that |G| has precisely two distinct prime divisors,
say, p and q with p < q. Let 〈x〉 and 〈y〉 be two
cyclic subgroups of order p and q, respectively. If G
has a cyclic subgroup 〈z〉 of order q with 〈z〉 6= 〈y〉,

then 〈x y〉 ∩ 〈xz〉 = 〈x〉 and o(x y) = o(xz) = pq, a
contradiction by Observation 4. Thus, we conclude
that G has a unique cyclic subgroup 〈y〉 of order
q. Similarly, we have that G has a unique cyclic
subgroup 〈x〉 of order p. If p > 2, then by Lemma 1,
every Sylow subgroup of G is cyclic, and so G is
a cyclic group of order pq from Lemma 2 (ii), as
desired. Similarly, if p= 2, it follows from Lemma 1,
Lemma 2 (ii) and Lemma 2 (iv) that G is a cyclic
group of order pq, as desired.

Assume now that G is a p-group. Suppose that
G is not cyclic. It suffices to prove that G ∈ Φ.
Since the center of a p-group is non-trivial, we may
assume that 〈a〉 is a cyclic subgroup of order p and
is contained in the center of G. If G is a group of
exponent p, that is, every element of G has order p,
then clearly, G satisfies (iii), as desired. As a result,
we may take a maximal cyclic subgroup 〈b〉 of order
at least p2. Suppose for a contradiction that a /∈ 〈b〉.
Then 〈a〉〈b〉= 〈a, b〉 is an abelian subgroup of G. It
follows that 〈b〉 is normal in 〈a〉〈b〉. Since 〈a〉 is
normal in 〈a〉〈b〉 and 〈a〉 ∩ 〈b〉= {e}, we have

〈a〉〈b〉= 〈a〉× 〈b〉 ∼= Zp ×Zpm ,

where |〈b〉| = pm for some m ¾ 2. It follows that G
has a subgroup isomorphic to Zp ×Zp2 , contrary to
Lemma 2 (i). We conclude a ∈ 〈b〉.

Suppose for a contradiction that G has a max-
imal cyclic subgroup 〈c〉 of order at least p2 with
〈c〉 6= 〈b〉. Similarly, we have a ∈ 〈c〉. It follows from
Observation 4 that one of 〈c〉 ⊆ 〈b〉 and 〈b〉 ⊆ 〈c〉
occurs. Hence, we have 〈c〉= 〈b〉 since both 〈b〉 and
〈c〉 are maximal cyclic, a contradiction. We conclude
that G ∈ Φ, as desired. 2

In view of Lemma 2, the next result is obtained
by applying Theorem 5 to abelian groups.

Corollary 5 Let G be an abelian group. Then
PI (G) =P (G) if and only if G is isomorphic to one of
Zpm , Zm

p , and Zpq, where p, q are distinct primes and
m is a positive integer.

By (2)–(6), we have the following result.

Corollary 6
(i) Let n ¾ 3. Then PI (D2n) = P (D2n) if and only

if n is either a prime power or a product of two
distinct primes.

(ii) Let m¾ 2. Then PI (Q4m) 6=P (Q4m).

Intersection power graph and enhanced power
graph

A group is called a CP-group [20] if every element
of the group has prime power order. For example,
every p-group is a CP-group.
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Theorem 6 The following conditions are equivalent
for a group G:

(a) PI (G) =PE(G);

(b) For any x , y ∈ G\{e}, 〈x〉∩ 〈y〉 6= {e} is equiva-
lent to 〈x , y〉 is cyclic;

(c) P ∗(G) is a disjoint union of some complete
graphs, that is, every connected component of
P ∗(G) is complete;

(d) G is a CP-group in which every two distinct
maximal cyclic subgroups has trivial intersection.

Proof : By the definitions of the intersection power
graph and the enhanced power graph, it is clear that
(a) and (b) are equivalent.

In the following, we prove (b) implies (d).
Suppose that (b) holds. Assume to the contrary,
that G has an element x of order pq where p and
q are distinct primes. Then o(x p) = q, o(xq) = p,
and 〈x p, xq〉 ⊆ 〈x〉 is cyclic. Thus, by (b) we have
〈x p〉 ∩ 〈xq〉 6= {e}, a contradiction. It follows that
every element of G has prime power order, and
so G is a CP-group. We next prove that any two
distinct maximal cyclic subgroups of G have trivial
intersection. Otherwise, let 〈x1〉 and 〈x2〉 be distinct
maximal cyclic subgroups of G such that |〈x1〉 ∩
〈x2〉| > 1. Then both o(x1) and o(x2) are powers
of a prime, say, p. It follows from (b) that 〈x1, x2〉 is
cyclic. Since both 〈x1〉 and 〈x2〉 are maximal cyclic,
we have 〈x1, x2〉 = 〈x1〉 = 〈x2〉, a contradiction as
〈x1〉 6= 〈x2〉. We conclude that (d) follows.

Now we prove (d) implies (c). Suppose that (d)
holds. Let MG = {P1, P2, . . . , Pt} for some positive
integer t. Note that for any 1 ¶ i ¶ t, |Pi | is a
prime power. By Lemma 3, the subgraph P ∗(Pi)
of P ∗(G) induced by Pi\{e} is complete. Also, since
|Pi ∩ Pj | = 1 for all 1 ¶ j ¶ t, j 6= i, we have that
P ∗(G) is a disjoint union of the complete graphs
P ∗(P1), P ∗(P2), . . . , P ∗(Pt), which proves (c).

Finally, we prove (c) implies (b). Suppose that
(c) is valid. Take x , y ∈ G\{e}. Suppose first that
〈x , y〉 = 〈z〉. In the following we show 〈x〉 ∩ 〈y〉 6=
{e}. Let Γ be a connected component of P ∗(G)
which contains z as a vertex. It follows that x , y ∈
V (Γ ), since z is adjacent to every other element of
〈z〉 in P (G). Notice that an element of order q and
an element of order r are non-adjacent in P (G),
where q 6= r are primes. Since Γ is complete, we
have that o(z) is a power of a prime, say p. This
also implies that both o(x) and o(y) are powers
of p. As a result, 〈x〉 ⊆ 〈y〉 or 〈y〉 ⊆ 〈x〉, namely,
〈x〉 ∩ 〈y〉 6= {e}, as desired.

Suppose now 〈x〉∩〈y〉 6= {e}. It suffices to prove
that 〈x , y〉 is cyclic. Let w ∈ 〈x〉 ∩ 〈y〉 such that
o(w) = p for some prime p. Thus, if w 6= x (resp.,
w 6= y), then w is adjacent to x (resp., y) in P (G).
As a result, x , y belong to a connected component
of P ∗(G), say, ∆. Since ∆ is complete, we have
〈x〉 ⊆ 〈y〉 or 〈y〉 ⊆ 〈x〉, and so 〈x , y〉 = 〈x〉 or 〈y〉,
that is, 〈x , y〉 is cyclic, as desire. 2

Lemma 4 (Theorem 28 [11]) For a finite group G,
PE(G) =P (G) if and only if every cyclic subgroup of
G has prime power order.

Combining Theorems 5 and 6, and Lemma 4,
we have the following corollary.

Corollary 7 For a nilpotent group G, PI (G) =
PE(G) if and only if either G is a cyclic p-group or
G ∈ Φ.

Remark that if G is an abelian p-group and
has exponent at least p2, then G has a subgroup
isomorphic to Zp × Zp2 , and so G /∈ Φ. It follows
that G ∈ Φ is an abelian p-group if and only if G has
exponent p. Now by Corollary 7 and (2)–(6), one
can easily obtain following result.

Corollary 8
(i) Let G be an abelian group. Then PI (G) =PE(G)

if and only if G is either a cyclic p-group or an
elementary abelian p-group.

(ii) Let n ¾ 3. Then PI (D2n) = PE(D2n) if and only
if n is a prime power.

(iii) Let m¾ 2. Then PI (Q4m) 6=PE(Q4m).

Intersection power graph and commuting graph

Notice that C (G) is complete if and only if G is
abelian. The following observation follows from the
definitions of intersection power graph and com-
muting graph.

Observation 7 For a group G, the intersection power
graph of G is equal to its commuting graph if and only
if G satisfies the property: for any x , y ∈ G\{e}, 〈x〉∩
〈y〉 6= {e} is equivalent to x y = y x.

Theorem 8 For a group G, PI (G) = C (G) if and
only if G satisfies the following:
(i) G is a CP-group;
(ii) G has no subgroup Zp ×Zp for a prime p;
(iii) Every two distinct maximal cyclic subgroups of G

has trivial intersection.

Proof : We first prove the necessity. Suppose that
PI (G) = C (G). If G has an element a of order pq
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where p, q are distinct primes, then apaq = aqap

and 〈ap〉 ∩ 〈aq〉 = {e}, contrary to Observation 7.
This means that G is a CP-group, and so (i) follows.
Now suppose for a contradiction that Zp × Zp is a
subgroup of G, where p is a prime. Then G has
at least two distinct cyclic subgroups of order p in
Zp × Zp, say, 〈x〉 and 〈y〉. Clearly, x y = y x and
〈x〉 ∩ 〈y〉 = {e}, this contradicts Observation 7. We
conclude that (ii) is valid. It now suffices to show
(iii).

Suppose for a contradiction that there exist two
distinct maximal cyclic subgroups, say, 〈x〉, 〈y〉, of
G such that 〈x〉∩〈y〉 6= {e}. Since is a CP-group, we
have that both o(x) and o(x) are powers of some
prime, say, p. Now Observation 7 implies x y = y x .
It follows that 〈x , y〉 is abelian, and hence is a direct
product of some cyclic groups, here every cyclic
group has order pm for some m ¾ 1. Notice that
G has no subgroup Zp × Zp. It follows that 〈x , y〉
is a cyclic p-group, and so 〈x , y〉 = 〈x〉 = 〈y〉, a
contradiction. We conclude that (iii) follows.

We next prove the sufficiency. Suppose that G
satisfies the three conditions (i)–(iii). Take x , y ∈
G\{e} such that 〈x〉 ∩ 〈y〉 6= {e}. Then by (i), both
o(x) and o(y) are powers of some prime, say, p.
Also, by (iii), it follows that both 〈x〉 and 〈x〉must be
contained in the same maximal cyclic subgroup of G,
which implies x y = y x . On the other hand, suppose
that ab = ba for two distinct a, b ∈ G\{e}. In view
of Observation 7, it suffices to prove 〈a〉∩〈b〉 6= {e}.
Notice that 〈x , y〉 is abelian. We have that 〈x , y〉 is
a direct product of two cyclic groups, say, Zm ×Zn.
Considering the condition (ii), we have that m and
n are coprime. By (i) again, it follows that 〈x , y〉 is
a cyclic group of prime power order. Without loss
of generality, now assume that o(x) ¶ o(y). We
conclude that 〈x〉 ∩ 〈y〉= 〈x〉, as desired. 2

Corollary 9 For a nilpotent group G, PI (G) =C (G)
if and only if G is a cyclic p-group.

Proof : If G is a cyclic p-group, then Corollary 1
implies that PI (G) is complete, and so PI (G) =
C (G), as desired. Now suppose thatPI (G) =C (G).
By Theorem 8, G is a CP-group. As a result, G is a
p-group for some prime p since G is nilpotent. Since
the center of a p-group is non-trivial, we may take a
subgroup of order p which is included in the center
of G, say, 〈x〉. If G has another subgroup 〈y〉 of order
p, then 〈x , y〉 ∼= Zp×Zp, contrary to Theorem 8. We
conclude that G has a unique subgroup of order p.
It follows from Lemma 1 that G is either cyclic or
generalized quaternion group. If G is a generalized

quaternion 2-group, then (6) implies that there exist
two distinct maximal cyclic subgroups in G such that
their intersection has size 2, which is impossible by
Theorem 8. Consequently, we have that G is a cyclic
p-group, as required. 2
An element of order 2 in G is called an involution.

Corollary 10
(i) Let n ¾ 3. Then PI (D2n) = C (D2n) if and only if

n is a power of some odd prime.
(ii) Let m¾ 2. Then PI (Q4m) 6=C (Q4m).

Proof : (i) Suppose that PI (D2n) = C (D2n). By
Theorem 8, D2n is a CP-group, so n is a prime power.
If n is even, then by (4), Z(D2n) has an involution,
and since D2n has precisely n + 1 involutions by
(2), we have that D2n has a subgroup isomorphic to
Z2×Z2, contrary to Theorem 8. It follows that n is a
power of some odd prime, as desired. On the other
hand, by (2) and (3), it is easy to see that if n is a
power of some odd prime, then PI (D2n) =C (D2n).

(ii) The result follows from Theorem 8, (5), and
(6). 2

Intersection power graph and order supergraph

In this subsection, we classify completely the groups
whose intersection power graphs are equal to their
order supergraphs.

Lemma 5 Let G be a group satisfying PI (G) =
S (G). Then
(i) G has no element of order pqr or p2q, where

p, q, r are pairwise distinct primes;
(ii) If p is a prime dividing |G|, then G has exactly

one subgroup of order p.

Proof : (i) Suppose for a contradiction that G has an
element x of order pqr, where p, q, r are pairwise
distinct primes. Then x p is adjacent to xq in PI (G)
as x pq ∈ 〈x p〉 ∩ 〈xq〉. However, x p and xq are non-
adjacent in S (G) as o(x p) = qr and o(xq) = pr,
contrary to PI (G) = S (G). Similarly, we also can
obtain that G has no element of order p2q, where
p, q are distinct primes.

(ii) Suppose for a contradiction that G has two
distinct subgroups of order p, say, 〈x〉 and 〈y〉. Then
x is adjacent to y in S (G), but x is not adjacent to
y in PI (G) as 〈x〉 ∩ 〈y〉= {e}, a contradiction. 2

Theorem 9 For a group G, the intersection power
graph of G is equal to its order supergraph if and only
if G is isomorphic to one of the following groups:

(a) Zpq, where p and q are distinct primes;

(b) Zpn , where p is a prime and n is a positive integer;
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(c) Q4·2k , where k is a positive integer.

Proof : Clearly,PI (Zpq) =S (Zpq) for distinct primes
p, q. Also, Corollary 1 implies that if G is either a
cyclic p-group or a generalized quaternion 2-group,
thenPI (G) is complete. Furthermore, it is clear that
if G is a p-group, then S (G) is complete. Therefore,
the sufficiency follows. In the following, we prove
the necessity.

Suppose that PI (G) = S (G). Assume to
the contrary that |G| has three pairwise distinct
prime divisors, say, p, q, r. Let 〈x〉, 〈y〉, 〈z〉 be
three subgroups of order p, q, r, respectively. By
Lemma 5 (ii), we have that every of 〈x〉, 〈y〉, 〈z〉 is
normal in G. It follows that 〈x , y, z〉 ∼=Zpqr , contrary
to Lemma 5 (i). We conclude that |G| has at most
two prime divisors.

Case 1: |G| = pmqn, where p, q are distinct
primes and m, n are positive integers.

Let 〈x〉, 〈y〉 be two subgroups of order p, q,
respectively. Then Lemma 5 (ii) implies that 〈x〉
and 〈y〉 are unique subgroups of order p, q in G,
respectively. Therefore, 〈x〉 and 〈y〉 are normal
subgroups, which implies that x and y commute.
It follows that x y has order pq and x , y ∈ 〈x y〉.
We now claim that G has no element of order p2

or q2. In fact, if G has an element of order p2,
say, a, then x ∈ 〈a〉, and so x ∈ 〈a〉 ∩ 〈x y〉, which
is a contradiction since o(x y) = pq and o(a) = p2.
Similarly, we also have that G has no element of
order q2. Thus, our claim is valid. Now let P
and Q are Sylow p-subgroup and Sylow q-subgroup
of G, respectively. Then P and Q are elementary
abelian p-group and elementary abelian q-group,
respectively. In view of Lemma 5 (ii), we have that
P ∼= Zp and Q ∼= Zq. As a result, G ∼= Zpq, as desired.

Case 2. |G| = pm, where p is a prime and m is
a positive integer.

Combining Lemma 5 (ii) and Lemma 1, we
have that G is either a cyclic group or a generalized
quaternion 2-group, as desired. 2
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