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ABSTRACT: This research aims to study the concentration change of the radioactive substance 18F-FDOPA, which is the
key method to diagnose the Parkinson’s disease (PD), using the diffusion equation. The model aims at approximating
the concentration over the brain region called striatum. From the PET/CT images of the whole brain, the striatum site
was segmented using the Otsu’s method. The region obtained from the segmentation is then used as the domain for our
diffusion model. We then adopt the ADI method of [17] to the non-rectangular domain. The diffusion parameters are
improved by mean of the pattern search method to best fit with the true data. After comparing the numerical solution
at the final timestep with the actual data, we can finally be positive that our diffusion model is consistent with the
actual data and lead to the same diagnosis of the Parkinson’s disease.

KEYWORDS: diffusion model, Parkinson’s disease, ADI method, image segmentation

MSC2010: 65M06 65M22

INTRODUCTION

Pakinson’s disease (PD) is caused by a disorder of
nerve cells in a brain area called the substantia
nigra which controls body movement. Nerve cells in
this part are responsible for producing an important
chemical called dopamine. Loss of dopaminergic
innervation to the striatum (and basal ganglia) re-
sults in PD. The striatum, consisting of putamen
and caudate nucleus [1–4], is a hub in the basal
ganglia circuitry controlling goal directed actions
and habits, hence is an important part to diagnose
the PD patients. PD affects about 1–3% of the
global population aged over 60 years [5]. We
suspect a patient to have a PD symtoms after they
were diagnosed to lose approximately 50–60% of
the dopamine neurons. Dopamine is a chemical
messenger that carries signals between brain and
other cells, and the signal of dopamine released in
the striatum [6, 7]. Patients with Parkinson’s disease
can be diagnosed using Diagnostic Radiology [8].
In this research, we want to study the radioactivity
of 18F-FDOPA, which is related to the dopamine in

vivo [9, 10].
The patient will be injected 18F-FDOPA and

it shows the intensity of the dopamine remaining
in brain [11]. Positron Emission Tomography -
Computed Tomography (PET/CT) scan is a type of
nuclear medicine imaging and the most commonly
used for radiotracer because PET scan produces
the intensity of the radioactivity and CT scan pro-
duces a detailed image of structures inside the body.
PET/CT scan combines PET and CT imaging and
then provides a clear picture of what is happening
in the body. The concentration of 18F-FDOPA is
detected by PET/CT scan 90 minutes after injection.

The patient’s data is recorded from King Chu-
lalongkorn Memorial Hospital with a PET/CT scan.
The PET/CT imaging can help physicians to accu-
rately diagnose many diseases early on when treat-
ment is more likely to be effective. For example,
the grayscale image of PET/CT scan as shown in
Fig. 1 illustrate the intensive of the radioactivity.
The idea to set up a mathematical model for approx-
imating the concentration of 18F-FDOPA is described
by Fick’s law, which is a simple description of the
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Fig. 1: The grayscale image shows the concentration
of 18F-FDOPA.

flux of chemical to approximate the concentration of
chemical which diffuse through a unit area during
a unit time interval [12, 13]. The concentration
is collected by using the thresholding by Otsu’s
technique [14].

In this research, we study the behaviour of
18F-FDOPA to gain a better understanding of the
diffusion mechanism of drug-disease or the con-
centration of radiotracers, which is related to the
disease and treatment. It also optimizes clinical
trials through modeling and clinical trial simulations
in the future. The main idea of this research is to
apply a diffusion model by Fick’s law to approximate
the concentration of 18F-FDOPA, which is stored in
striatum at each time t. This research should yield
a new knowledge that can be applied to Parkinson
clinical diagnosis and treatment. The main results of
this paper concerns with the following advantages.
(1) The numerical method of this paper is based on
the segmentation technique which allows us to ne-
glect the unrelated effects outside the ROIs. (2) The
simulation of this paper can be applied in case of
missing or corrupted PET/CT scans. (3) The time
increment in the simulation can be refined to inter-
polate the concentration of the radiopharmaceutical
in the missing time. In addition to these benefits,
the proposed method can hopefully be extended to
study the diffusion behavior of other radioactivity
substances, for example 18F-FDG which is commonly
used in oncology.

METHODOLOGY

In this paper, we study the concentration in the
striatum by firstly start collecting the actual data
using PET/CT imaging to observe brain activities
of Parkinson’s patients. After the data is collected,
we perform the brain area segmentation to the

Fig. 2: Conceptual framework of methodology.

Fig. 3: The example of PET/CT imaging after
colours the image.

striatum by using the Otsu’s thresholding technique
to highlight the brain site where the 18F-FDOPA
uptake takes place. To understand the 18F-FDOPA
uptake and describe the behaviour of this radioac-
tivity, we use the idea of Fick’s law [13], which is
the most commonly used method for describing the
diffusion of radioactive tracers in tissue. After that
Alternating Direction Implicit (ADI) method is used
to describe the 18F-FDOPA uptake, see Fig. 2.

Data collection

Data collection is recorded from King Chula-
longkorn Memorial Hospital. The patients will be
scanned with PET/CT once every 5 min for 90 min
records the grayscale images as shown in Fig. 1,
then it is easier if we visualize the image in colors
as shown in Fig. 3. In this section, we explain
the method of collecting the data by using the
thresholding technique from the computer vision
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theory. Thresholding is a process in which a group
of thresholds is optimally chosen under a given
criteria, which assign each pixel into a class. In this
paper, we use the Otsu’s technique, which is one of
the most successful methods for image thresholding
due to its simple and inexpensive calculation. Otsu’s
technique is an automatic threshold selection region
based segmentation method. The useful data we
adopted in this paper is extracted from the area of
the striatum, which is related to the diagnosis of PD.

From Fig. 3 our Region of Interests (ROIs),
namely the striatum (red area), where the radioac-
tivity of 18F-FDOPA is intensely stored, is detected
by applying the Otsu’s technique. In this work, our
data is collected from PET/CT imaging as can be
seen from Fig. 3. We use thresholding by Otsu’s
technique to collect the area of striatum in order
to fix the boundary condition used in our proposed
mathematical model. In terms of mathematics, if
the radioactivity at both sides of striatum cannot
be computed, then we need to separate the side to
approximate the concentration. After the radioac-
tivity at both sides of the striatum were collected
using the thresholding technique described above,
we use the techniques of mathematical modelling
and numerical methods, namely, the ADI method,
to approximate the concentration 18F-FDOPA at each
position x , y and time t.

Fig. 3 shows the concentration level of 18F-
FDOPA in the whole brain. Our ROI (striatum
area) should be considered separately in the left
and right sides, since the concentration of each side
gives a different sign for diagnosis of the Parkinson’s
disease. In this paper, we select the three patients,
who were diagnosed with different brain disorders
as our sample cases. This will ensure our method is
capable of explaining the diffusion of 18F-FDOPA in
each situation.

Otsu’s technique

In this section, we explain the method of collect-
ing the data by using the thresholding technique
from the computer vision theory. Thresholding is a
process in which a group of thresholds is optimally
chosen under a given criteria, which assign each
pixel into a class. In this topic, we use the Otsu’s
Algorithm, which is widely considered as one of the
most successful methods for image thresholding due
to its simplicity and inexpensive calculation. Otsu’s
technique is an automatic threshold selection region
based segmentation method. The useful data we
adopted in this paper is extracted from the area of
the striatum, which is related to the diagnosis of PD.

It was developed in [16] based on the maximisation
of the between-class variance:

argmax
(th0,...,thn)∈TH

∑

i, j∈{0,1,2}

ωiω j(σi −σ j)
2, (1)

where TH is a class of all set of threshold. Here,
i and j index the intensity classes, and ωi and σi
are the probability of occurrence and the mean of a
class, respectively. Such values are obtained as:

ωi =
thi
∑

j=thi−1+1

p j and σi =
thi
∑

j=thi−1+1

pi

ωi
j,

where p j denotes the probability distribution of
pixel. Applying the Otsu’s technique to our PET/CT
data, we obtain the 18F-FDOPA concentration in
the ROI. After we collect the area of striatum, the
next step is to define the domain and the boundary
condition that will be used in the diffusion equation
model for approximating the concentration of the
radioactivity.

Diffusion equation

The diffusion equation was designed by using a
mathematical model to explain diffusion of 18F-
FDOPA from the PET/CT imaging. In this work,
we emphasize that the concentration of 18F-FDOPA,
which diffuses through brain and the striatum will
absorb this chemical, while using PET/CT images in
the axial plane shown in Fig. 3.

Let Ω be the domain of our ROIs and let
U(x , y, t) be the concentration of 18F-FDOPA at each
position x , y and time t. Thus, the concentration
of 18F-FDOPA can be explained by Fick’s laws of
diffusion derived by Adolf Fick [13]. Here, we use
the diffusion equation in 2D as follows:

Ut = αUx x +βUy y , (2)

where α,β 6= 0 are the diffusion coefficient in the
direction of x and y , respectively. Since our ROI is a
non-rectangular domain, we will define the bound-
ary conditions and choose the method to match our
domain using the idea from Steven Wray [17].

2D ADI method for non-rectangular domain

We select the Alternating Direction Implicit (ADI),
which suits to our data. The ADI method is an
iterative method used to solve tri-diagonal matrix
equations. It is a well-known method for solving the
large matrix equations [18] and can also be used
to numerically solve parabolic and elliptic partial
differential equations. In addition, it is a classic
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Fig. 4: A domain satisfies the two-part of function.

method used for modeling heat conduction and
solving the diffusion equation in two or more dimen-
sions [19]. Our ROI is obviously non-rectangular
as one may recall from Fig. 3. This non-rectangular
shape forces us to adopt a numerical method that
is applicable to such region [17]. In this research,
we apply the 2D ADI method for non-rectangular
domains to compute the concentration of radioac-
tivity stored at the striatum. Note that the ADI
method is known for its stability and an inexpensive
computational cost at each step.

We now briefly recall the 2D ADI method for
non-rectangular domains firstly proposed in [17].
Let Ω ⊆ R2 be a domain that satisfies the two-part
definition,

Ω= {(x , y) | A< x < B,φ1(x)< y < φ2(x)}
= {(x , y) | C < y < D,ψ1(y)< x <ψ2(y)}, (3)

where A, B are real numbers with A< B, and C , D
are real numbers with C < D as shown in Fig. 4. Let
the step sizes

∆x =
B−A

N
and ∆y =

D− C
N

be defined by a given number of steps N . Then,
we define an array of grid points (x i , y j) over the
rectangular domain [A, B] × [C , D] containing Ω,
where

x i = A+ i∆x , i = 0,1, . . . , N

and
y j = C + i∆y , j = 0, 1, . . . , N .

Furthermore, the time step size is given by τ = T
M .

There are M +1 evenly spaced time values in total.

Suppose that the initial conditions are given by

u(x , y, 0) = h1(x , y), (x , y) ∈ Ω (4)

and the Dirichlet boundary conditions are given by

u(x , y, t) = h2(x , y, t), (x , y)∈ ∂Ω, t ∈ [0, T]. (5)

So, we used the ADI Method for approximating
the concentration of the radioactivity at position x ,
y and time t. The ADI Method was adapted from
the Crank-Nicolson Method [20], which exploits the
second-order central difference at position x and y
as follow,

δ2
x Um

i, j =
Um

i−1, j −2Um
i, j +Um

i+1, j

∆2
x

δ2
y Um

i, j =
Um

i, j−1−2Um
i, j +Um

i, j+1

∆2
y

,

(6)

for i, j = 1, . . . , N−1 and m= 0,1, . . . , M , where U M
i, j

represents U(x i , yi , tM ).
The Crank-Nicolson method is the traditional

method for solving the diffusion equation numeri-
cally, but its expensive computation cost is the main
disadvantage which encouraged us to find cheaper
alternatives. In 1955, Peaceman and Rachford [19]
introduced a numerical method for diffusion equa-
tion problem known as the ADI Method. One big
advantage of the ADI method is that the equations
to be solved in each step have a simpler structure
and can be solved efficiently with a tridiagonal
matrix algorithm. The idea behind this method
is to split time into two fractional time steps, one
with the x-derivative and the other one with the y-
derivative, both taken implicitly, and combine them
with the previous method of Crank-Nicolson method
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Fig. 5: A nonempty column showing interior points
and boundary points.

as follows:

V m
i, j = (1+

βτ

2
δ2

y)U
m
i, j Step1

(1−
ατ

2
δ2

x)U
m+ 1

2
i, j = V m

i, j Step2

(1−
βτ

2
δ2

y)U
m+1
i, j = 2U

m+ 1
2

i, j + V m
i, j Step3

(7)

where these formulas are applied at all interior
points of Ω.

Grid meshing (non-rectangular domain)

In this section , we will restrict our consideration to
the gridpoints which lie inside Ω and generate the
boundary points at each rows and columns (Fig. 5).

Consider the gridpoints at column i. Let jmin(i)
and jmax(i) be the smallest j and the largest j,
respectively, such that (x i ,y j) is the interior point
of domain ΩN . The boundary points for column i
are the points where the vertical line intersects the
boundary curves φ1 and φ2.

To describe these points of intersection, define
the constants for the lower boundary curves and
upper boundary curves as

φ(i,l) = φ1 and φ(i,u) = φ2.

Define U ′mi,l as the boundary value of the solution
U(x i , y j , tm) at the lower boundary and U ′mi,u for the
upper boundary as follows:

U ′mi,l = g2(x i ,φi,l) and U ′mi,u = g2(x i ,φi,u).

Similar to the gridpoints at row j, let imin( j) and
imax( j) be the smallest i and the largest i, respec-
tively, such that (x i ,y j) is an interior point. The
boundary points for row j are the points where the
horizon line intersects the boundary curves ψ1 and
ψ2. To describe these points of intersection, define
the constants for the lower boundary curves and
upper boundary curves as

ψ( j,l) =ψ1 and ψ( j,u) =ψ2.

Also define U ′′mj,l as the boundary value of the solu-
tion U(x i , y j , tm) at the lower boundary and U ′′mj,u for
the upper boundary as follows:

U ′′mj,l = g2(y j ,φ j,l) and U ′′mj,u = g2(y j ,φ j,u).

Computation of 2D ADI method for
non-rectangular domain

Step 1: Recall our difference quotient (7) on ir-
regular grids at step 1 of the ADI method. To
implement this step, we may consider the following
three possible cases.
(i) If jmax(i) = jmin(i), the column i contains only a

single interior point, so this point must be the
constant:

V m
i, j = Um

i, j +
βτ

2∆2
y

�

U ′mi,u −2Um
i, j +U ′mi,l

�

(8)

(ii) If jmax(i) 6= jmin(i), the column i contains two
or more interior points, then the difference
quotient must be matrix-vector equations as
following:

Vm
i,· =

�

I − B(i)
�

Um
i,·+















βτ
2∆2

y
U ′mi,l

0
...
0

βτ
2∆2

y
U ′mi,u















N−1

, (9)

where B(i) is the (N −1) × (N −1) tridiagonal
matrix

B(i) =
βτ

2∆2
y















2 −1
−1 2 −1

−1
...

. . .
. . . 2 −1

−1 2















,

and

Um
i,· =















Um
i, jmin(i)

Um
i, jmin(i)+1

Um
i, jmin(i)+2

...
Um

i, jmax(i)















, Vm
i,· =















V m
i, jmin(i)

V m
i, jmin(i)+1

V m
i, jmin(i)+2

...
V m

i, jmax(i)















for i = 0,1, . . . , N where column i is nonempty.
(iii) If the column i contains interior points but do

not lie next to the boundary in the y-direction,
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so the difference quotient is basically the central
difference:

δ2
y Um

i, j =
Um

i, j−1−2Um
i, j +Um

i, j+1

∆2
y

, (10)

for i, j = 1, . . . , N −1 and m= 0,1, . . . , M .

Step 2: Moving to step 2 of ADI method, which
needs to be implicitly considered at row j. Simi-
larly to the previous step, the computation can be
separated in three cases:
(i) If imax( j) = imin( j), the row j contains only a

single interior point so this point must be the
constant:

U
m+ 1

2
i, j −

ατ

2∆2
x

�

U
′′m+ 1

2
j,u −2U

m+ 1
2

i, j +U
′′m+ 1

2
j,l

�

= V m
i, j , (11)

which can be rearranged to get
�

1+
ατ

∆2
x

�

U
m+ 1

2
i, j = V m

i, j+
ατ

2∆2
x

�

U
′′m+ 1

2
j,u +U

′′m+ 1
2

j,l

�

. (12)

Note that (12) is a formula for U
m+ 1

2
i, j .

(ii) If imax( j) 6= imin( j), the row j contains two or
more interior points. Then we get a system
of equations which can be rearranged to get a

formula for U
m+ 1

2
i, j as matrix-vector equations:

(I + C ( j))Um+ 1
2

·, j = Vm
·, j +

















ατ
2∆2

x
U
′′m+ 1

2

j,l

0
...
0

ατ
2∆2

x

′′m+ 1
2

j,u

















, (13)

where C ( j) is the (N −1)× (N −1) tridiagonal
matrix

C ( j) =
ατ

2∆2
x















2 −1
−1 2 −1

−1
...

. . .
. . . 2 −1

−1 2















and

U
m+ 1

2
·, j =





















U
m+ 1

2
imin( j), j

U
m+ 1

2
imin( j)+1, j

U
m+ 1

2
imin( j)+2, j

...

U
m+ 1

2
imax( j), j





















for all j = 0, 1, . . . , N such that row j contains
more than one interior grid point.

(iii) If the row j contains interior points but do not
lie next to the boundary in the x-direction, so
the difference quotient is basically the central
difference:

δ2
x Um

i, j =
Um

i−1, j −2Um
i, j +Um

i+1, j

∆2
x

(14)

for i, j = 1, . . . , N −1 and m= 0,1, . . . , M .

Step 3: Lastly, the idea of step 3 is the same as
steps 1 and 2. At the column i, there are also three
possible cases:
(i) If jmax(i) = jmin(i), the column i contains only a

single interior point, so this point must be the
constant:

Um+1
i, j −

βτ

2∆2
y

�

U ′m+1
i,u −2Um+1

i, j +U ′m+1
i,l

�

= 2U
m+ 1

2
i, j +V m

i, j ,

(15)
which can be rearranged to get
�

1+
βτ

∆2
y

�

Um+1
i, j = 2U

m+ 1
2

i, j +V m
i, j+

βτ

2∆2
y

�

U ′m+1
i,u +U ′m+1

i,l

�

.

(16)
Note that (16) is a formula for Um+1

i, j .
(ii) If jmax(i) 6= jmin(i), column i contains two or more

interior points, then we get a matrix-vector
equations which can be rearranged to get an
formula for Um+1

i, j as follows:

(I+B(i))Um+1
i,· =2U

m+ 1
2

i,· +Vm
i,·+















βτ
2∆2

y
U ′m+1

i,l

0
...
0

βτ
2∆2

y
U ′m+1

i,u















, (17)

where

Um+1
i,· =















Um+1
i, jmin(i)

Um+1
i, jmin(i)+1

Um+1
i, jmin(i)+2

...
Um+1

i, jmax(i)















.

This is an equation to be evaluated for each i =
1, . . . , N −1.

(iii) If column i contains interior points but do not
lie next to the boundary in the y-direction, so
the difference quotient is basically the central
difference:

δ2
y Um

i, j =
Um

i, j−1−2Um
i, j +Um

i, j+1

∆2
y

,
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Table 1: The choice of parameters is chosen to
match the patient’s data by the pattern search
method.

Patient
Left-hand side Right-hand side

α β α β

1 −0.500 −1.000 −0.75 −3.000
2 −0.375 −0.500 0.75 1.000
3 −0.500 1.000 −3.00 −1.000

The unit of α and β is min−1.

for i, j = 1, . . . , N −1 and m= 0,1, . . . , M .

Our ROI (striatum area) should be considered
separately in the left and right sides, since the
concentration of each side gives a different sign for
diagnosis of the Parkinson’s disease.

Model evaluation

In this research, the difference of exact concentra-
tion values and the modelled values were calculated
over all internal grid points, that is:

eL2 =

(

∑

(x i ,y j∈ΩN )

∆x∆y

�

U M
i, j −u(x i , y j , tM )

�2

)
1
2

, (18)

where U M
i, j is the approximate concentration of ra-

dioactivity, u(x i , y j , tM ) is the actual concentration,
∆x and ∆y are spacing in the x- and y-directions,
respectively.

RESULTS

In this research, we examine the diffusion behavior
of 18F-FDOPA and compare the modelled result with
the actual data from three patients. Recall that all
three patients were diagnosed with different brain
disorders. The diffusion equation (2) is used to
describe the concentration of the pharmaceutical ra-
dioactivity. Then the pattern search method [21, 22]
is adopted to optimize the parameters α and β . The
parameters α and β adapt to the true diffusion in
the x- and y-directions, respectively. So this method
gives the parameter of α and β as shown in Table 1.

Segmentation

The pixel area of the striatum can be extracted
from PET/CT images using Otsu’s segmentation
technique. The pixel accuracy of Otsu’s method
is then validated by the dice score, which is cal-
culated by doubling the area of the overlapping
part divided by the area of the union. The dice
score is often used to quantify the performance of

Table 2: The dice scores of the patients.

Patient Left-hand side Right-hand side

1 0.825 0.870
2 0.883 0.810
3 0.870 0.875

Table 3: The L2 error between actual data and
numerical solution.

Patient Right-hand side Left-hand side

1 6.55% 6.36%
2 6.98% 5.79%
3 4.31% 5.77%
4 5.24% 5.15%

an image segmentation technique. The dice scores
for striatum segmentations are shown in Table 2.
Our pixel accuracies are between 0.8–0.875, and
are relatively high following [23]. The results of
striatum segmentation of the patients are shown as
Figs. 6–8.

Numerical solution

Recall that our goal is to approximate the concentra-
tion of 18F-FDOPA using the Diffusion equation (2)
by means of the ADI method. Hence the two
parameters α and β are needed to be determined
in order to best fit our model with the true data.
With respect to this, the pattern search method is
used to improve the choice of α and β . The initial
choice of the parameters of α and β are naturally
chosen to be α = 1 and β = 1 to normalize the
diffusability in both directions. The same optimal
parameters can also be reached by using other initial
parameters. The uptake values of this radioactivity

(a) (b)

Fig. 6: Image segmentation of patient No. 1 by
using Otsu’s Algorithm with gray scale. (a) Original
PET/CT imaging and (b) image segmentation of
striatum.
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(a) (b)

Fig. 7: Image segmentation of patient No. 2 by
using Otsu’s Algorithm with gray scale. (a) Original
PET/CT imaging and (b) image segmentation of
striatum.

(a) (b)

Fig. 8: Image segmentation of patient No. 3 by
using Otsu’s Algorithm with gray scale. (a) Original
PET/CT imaging and (b) image segmentation of
striatum.

were collected every 5 min since the patient get into
PET/CT scan during 0 to 90 min after the injection.
The initial time (t0) is set at 15 min to imitate the
fact that the brain tissue starts to absorb 18F-FDOPA
15 min after the injection [24]. The concentra-
tion map of patients No.1–No.3 simulated by ADI
method (Eq. (7)) are presented in Figs. 9–11. The

Table 4: Average concentration at the initial and
final time.

Patient No. Initial data Actual data Numerical
(t0) (t15 = 90) (t15 = 90)

1 Left striatum 8009.940 7529.076 7602.163
Right striatum 8635.867 7669.282 7731.602

2 Left striatum 9635.571 11101.446 10806.775
Right striatum 10082.866 10752.791 10643.788

3 Left striatum 12126.508 10749.044 10958.852
Right striatum 12421.571 10018.326 10251.406

numerical solution is then compared with the true
data and the accuracy is presented in terms of the L2
error (RMS), as can be seen in Table 3. Finally, we
consider the average concentration of 18F-FDOPA in
the striatum at the initial and final time and compare
the actual data with the numerical solution in the
Table 4.

DISCUSSIONS AND REMARKS

The striatum area segmented by the Otsu’s tech-
nique gives high pixel accuracy on which we can
conveniently model the diffusion behavior and the
numerical simulation of the concentration of FDOPA
obtained. By applying the 2D ADI method on
segmented region, we successfully approximate the
concentration across the striatum at each time step
with a reasonable overall accuracy no worse than
6.55%. The numerical solution of the concentration
is also consistent with the patient profiles in all
cases. One may see the variations in the concentra-
tion of 18F-FDOPA in the striatum in Table 4. Notice
the large decay in the final concentration of Patients
No. 1 and No. 3 from both the actual and modelled
data. On the contrary, note that the concentration
in Patient No. 2 is quite static. This has confirmed
that the numerical solutions from our model agree
with the actual data and therefore lead to the same
diagnosis of the possible PD.

Finally, we remark that this method can be used
to interpolate the concentration in a more refined
timescale or when some of the data is missing. It is
also interesting to improve the model by imposing
the behavior of the pharmaceutical substance as
studied in [24]. In term of Clinical Pathology, this
work can explain the decay of concentration at
specific area. The results of this paper have the
following advantages: (1) The proposed method
is based on Otsu’s segmentation technique which
remove the unrelated effects outside the striatum
area. (2) The simulation can be used to replace
the missing or corrupted PET/CT scans. (3) The
simulation can be used to interpolate the concentra-
tion of the radiopharmaceutical in the missing time.
Finally, the proposed method can be futher extended
to study the diffusion behavior of other radioactivity
substances, for example 18F-FDG which is used in
cancer diagnosis.
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Fig. 9: Concentration map of patient No. 1 simulated by ADI method (Eq. (7)): (a) right striatum and
(b) left striatum.
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Fig. 10: Concentration map of patient No. 2 simulated by ADI method (Eq. (7)): (a) right striatum and
(b) left striatum.
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Fig. 11: Concentration map of patient No. 3 simulated by ADI method (Eq. (7)): (a) right striatum and
(b) left striatum.
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