
R ESEARCH  ARTICLE

doi: 10.2306/scienceasia1513-1874.2021.018
ScienceAsia 47 (2021): 235–240

A three-term derivative-free projection method for
convex constrained monotone equations
Haisong Cao

School of Mathematics and Statistics, North China University of Water Resources and Electric Power,
Zhengzhou 450045 China

e-mail: hscao678@163.com
Received 9 Sep 2020

Accepted 14 Dec 2020

ABSTRACT: In this work, we propose a three-term derivative-free projection method to solve nonlinear monotone
equations with convex constraints based on the structures of the famous Dai-Yuan (DY) conjugate gradient method
and the three-term conjugate gradient method. The proposed derivative-free method is suitable for solving large-scale
problems due to its simple structure and lower storage requirement. The search direction satisfies the sufficient descent
property independent of any line search. The global convergence is established under some conditions. The preliminary
numerical results indicate that the proposed method is robust and effective.
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INTRODUCTION

Iterative projection method is one of the most pop-
ular and effective methods for solving large-scaled
nonlinear equations

F(x) = 0, x ∈ Ω, (1)

where F : Ω → Rn is a continuous and monotone
function, and Ω ⊆ Rn is a nonempty closed convex
set. A function F is said to be monotone if it satisfies

(F(x)− F(y))T(x − y)¾ 0, ∀ x , y ∈ Rn. (2)

Many practical problems can be transformed into
solving nonlinear equations, for example, the chem-
ical equilibrium systems [1], the economic equi-
librium problems [2], the power flow systems [3].
This is why many researchers are keen on iterative
projection methods for solving nonlinear equations
for many years, see recent references [4–14].

Three-term conjugate gradient method is one
of the most popular methods for solving large-scale
unconstrained optimization problems because of its
good descent property, computing performance and
stable convergence, see references [15–21]. This
stimulates many researchers to use the structures of
three-term conjugate gradient methods for solving
nonlinear equations. For example, based on the hy-
perplane projection method [22], Li and Wang [23]

proposed a three-term Fletcher-Reeves derivative-
free method for large-scale symmetric nonlinear
equations, which is an extension of the modified
Fletcher-Reeves conjugate gradient method [24].
Gao and He [25] chose a part of the Liu-Storey (LS)
conjugate parameter as a new conjugate parameter
and further proposed a three-term conjugate gradi-
ent (TTCG) method for solving nonlinear monotone
equations with convex constraints. Motivated by the
modified Dai-Yuan (DY) method [26], Koorapetse
and Kaelo [27] proposed a new three-term conju-
gate gradient-based projection method to solve non-
linear monotone equations with convex constraints.
The common feature of these methods is that they
are stable in descent property and convergence, and
the computing performance is satisfactory.

The DY conjugate gradient method [28] is one
of the most famous conjugate gradient methods
for solving unconstrained optimization problems,
which is known for the stability. In order to establish
the stable and effective method for solving mono-
tone nonlinear equations with convex constraints,
in this paper we propose a three-term derivative-
free projection method based on the structures of
the methods [25, 27] and the DY conjugate gradient
method [28]. This method inherits the stability of
the DY method, and greatly improves its computing
performance. The search direction of the proposed
method satisfies the sufficient descent property in-
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dependent of any line search. The global conver-
gence can be obtained under some conditions. The
numerical results show that the proposed method
is stable and effective by comparing with the PDY
method [5] and the TTCG method [25].

Throughout this paper, ‖·‖ denotes the Eu-
clidean norm of a vector.

ALGORITHM

In this section, we firstly give the projection operator
PΩ[·] which is defined as a mapping from Rn to a
nonempty closed convex set Ω, i.e.,

PΩ[x] = arg min{‖x − y‖ | y ∈ Ω}, x ∈ Rn.

This operator has a famous non-expansive property,
i.e., for any x , y ∈ Rn,

‖PΩ[x]− PΩ[y]‖¶ ‖x − y‖. (3)

The DY method [28] is one of the traditional
conjugate gradient methods for solving uncon-
strained optimization problems, in which its search
direction is defined as

d0 = −g0, dk = −gk +β
DY
k dk−1,

where gk is the gradient value of the objective
function f at point xk, βDY

k = ‖gk‖2/
�

dT
k−1 yk−1

�

,
yk−1 = gk − gk−1. This method is favored by many
researchers because of its stable convergence.

In the following, based on the DY method [28]
and the structure of the three-term conjugate gra-
dient method, the specific steps of our proposed
method are presented in Algorithm 1. For simplicity,
we abbreviate F(xk) as Fk.

Algorithm 1 (TTMDY method)
Step 0: Select x0 ∈ Rn, ρ ∈ (0,1), β ,σ > 0, r > 1.
Set k = 0.
Step 1: Set d0 = −F0.
Step 2: Set zk = xk+αkdk, where the step-size αk =
max{βρi | i = 0, 1,2, . . .} satisfies

− F(xk +αkdk)
Tdk ¾ σαk‖dk‖2. (4)

Step 3: If zk ∈ Ω and F(zk) = 0, stop. Otherwise,
obtain the next iterative point as

xk+1 = PΩ[xk −λk F(zk)],

where

λk =
F(zk)T(xk − zk)
‖F(zk)‖2

.

Step 4: If F(xk+1) = 0, stop. Otherwise, obtain the
next search direction dk+1 as follows:

dk+1 = −Fk+1+β
mDY
k+1 dk +θk+1 yk. (5)

Here

βmDY
k+1 =

‖Fk+1‖2

dT
k wk

, θk+1 = −
FT

k+1dk

dT
k wk

,

where wk = yk + tkdk, yk = Fk+1 − Fk, and tk =
r‖Fk‖/‖dk‖+max

�

0,−dT
k yk/d

T
k dk

	

.
Step 5: Set k := k+1, go to step 2.

The following remark shows that the parame-
ters βmDY

k and θk defined in the TTMDY method are
meaningful before the solution of the problem (1) is
reached.

Remark 1 From the definitions of wk and tk, for
∀k ¾ 1 we have

dT
k−1wk−1 = dT

k−1 yk−1+ tk−1‖dk−1‖2

¾ dT
k−1 yk−1+ r‖Fk−1‖ · ‖dk−1‖− dT

k−1 yk−1

= r‖Fk−1‖ · ‖dk−1‖. (6)

The following theorem indicates that the search
direction dk obtained by the TTMDY method satis-
fies the sufficient descent property which plays an
important role in proving the global convergence.
Moreover, this property can guarantee the iterative
points to approach the solution of the problem (1)
step by step.

Theorem 1 Let the sequences {dk} and {Fk} be gen-
erated by the TTMDY method, then

FT
k dk ¶ −

�

1− 1
r

�

‖Fk‖2, ∀k ¾ 0. (7)

Proof : By (5), for k ¾ 1 we have

FT
k dk = −‖Fk‖2+βmDY

k FT
k dk−1+θk FT

k yk−1

= −‖Fk‖2+
FT

k Fk−1 · FT
k dk−1

dT
k−1wk−1

¶ −‖Fk‖2+
‖Fk‖2‖Fk−1‖ · ‖dk−1‖

r‖Fk−1‖ · ‖dk−1‖
= −

�

1− 1
r

�

‖Fk‖2,

where the first inequality follows from the Cauchy-
Schwarz inequality and (6). In addition, from Step
1 we have FT

0 d0 = −‖F0‖2. Thus, (7) holds. 2

www.scienceasia.org

http://www.scienceasia.org/
www.scienceasia.org


ScienceAsia 47 (2021) 237

GLOBAL CONVERGENCE

In this section, we always assume F(xk) 6= 0 for
any k ¾ 0, otherwise we obtain the solution of the
problem (1). We also need the following assump-
tions to prove the global convergence of the TTMDY
method.
Assumption A
(i) The function F(·) is monotone on Rn, and the

solution set Ω∗ of the problem (1) is nonempty.
(ii) The function F(·) is Lipschitz continuous on Rn,

i.e., there exists a positive constant L such that

‖F(x)− F(y)‖¶ L‖x − y‖, ∀x , y ∈ Rn.

The following lemma shows that if the sequence
{xk} is generated by the TTMDY method and x∗ is
a solution of the problem (1), then the sequence
{‖xk − x∗‖} is decreasing and convergent, thus the
sequence {xk} is bounded.

Lemma 1 Suppose that Assumption A holds, and the
sequences {xk} and {zk} are generated by the TTMDY
method. For any x∗ ∈ Ω∗ we have

‖xk+1− x∗‖2 ¶ ‖xk− x∗‖2− c‖xk−zk‖4, c ∈ (0, 1),

and the sequence {xk} is bounded. Furthermore,

lim
k→∞
‖xk − zk‖= 0. (8)

Proof : The conclusions can be proved follows from
Lemma 3.1 in [29]. Here we omit it. 2

Remark 2 From the continuity of the function F(·)
and the boundedness of the sequence {xk}, it holds
that the sequence {‖Fk‖} is bounded, i.e., there
exists a constant M > 0 such that

‖Fk‖¶ M , ∀k ¾ 0. (9)

Lemma 2 Suppose Assumption A holds, and the se-
quences {dk} and {Fk} are generated by the TTMDY
method. Then we have

‖dk‖¶
�

1+ M
r‖Fk−1‖

+ 2M
r‖Fk−1‖

�

‖Fk‖, ∀k ¾ 0. (10)

Proof : By (9) we have

‖yk−1‖¶ ‖Fk‖+ ‖Fk−1‖¶ 2M , ∀k ¾ 1.

Thus, for any k ¾ 1 it follows from (6) and the
Cauchy-Schwarz inequality that

‖dk‖¶ ‖Fk‖+βmDY
k ‖dk−1‖+ |θk| · ‖yk−1‖

¶ ‖Fk‖+
‖Fk‖2

r‖Fk−1‖ · ‖dk−1‖
‖dk−1‖

+2M
‖Fk‖ · ‖dk−1‖

r‖Fk−1‖ · ‖dk−1‖

=
�

1+ M
r‖Fk−1‖

+ 2M
r‖Fk−1‖

�

‖Fk‖.

For k = 0, we have ‖d0‖ = ‖F0‖. Thus, the conclu-
sion (10) holds. 2

Theorem 2 Suppose Assumption A holds, and the
sequences {Fk} and {dk} are generated by the TTMDY
method. Then we have

lim inf
k→∞

‖Fk‖= 0. (11)

Proof : Assume that (11) does not hold, i.e., there
exists a constant m> 0 such that

‖Fk‖¾ m, ∀k ¾ 0. (12)

It follows from (10) that

‖dk‖¶
�

1+ 3M
rm

�

‖Fk‖, ∀k ¾ 0. (13)

From the line search (4), if αk 6= β , then α′k =
αk
ρ

satisfies

−F(xk +α
′
kdk)

Tdk < σα
′
k‖dk‖2.

This inequality together with (7) yield

�

1− 1
r

�

‖Fk‖2 ¶ −FT
k dk

= (F(xk +α
′
kdk)− Fk)

Tdk − F(xk +α
′
kdk)

Tdk

¶ Lα′k‖dk‖2+σα′k‖dk‖2

= (L+σ)α′k‖dk‖2.

where the second inequality follows from the
Cauchy-Schwarz inequality and Assumption A(ii).
Thus, we have

αk‖dk‖¾
ρ
�

1− 1
r

�

‖Fk‖2

(L+σ)‖dk‖
,

From (12) and (13) we have

αk‖dk‖¾
ρ
�

1− 1
r

�

m

(L+σ)
�

1+ 3M
rm

� ,

which contradicts (8). 2

NUMERICAL RESULTS

In this section, we test some nonlinear equa-
tions, and compare the performance of the TTMDY
method with those of the PDY method [5] and
the TTCG method [25]. The parameters used in
the TTCG method and the PDY method come from
the corresponding references. The parameters in
the TTMDY method are selected as ρ = 0.75, σ =
0.001, and r = 1.1. All the methods are coded in
MATLAB 7.0. In our experiments, the methods are
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stopped whenever the inequality ‖F(xk)‖¶ 10−6 or
‖F(zk)‖ ¶ 10−6, or the total number of iterations
exceeds 1000.
Problem 4.1. The problem is tridiagonal expo-
nential problem [30] with additional constrained
condition Ω= Rn

+, i.e.,

F1(x) = x1− ecos( x1+x2
n+1 ),

Fi(x) = x i − ecos( xi−1+xi+xi+1
n+1 ), i = 2,3, . . . , n−1,

Fn(x) = xn− ecos( xn−1+xn
n+1 ).

Problem 4.2. The problem comes from [31], i.e.,

Fi(x) = ex i −1, i = 1, 2,3, . . . , n

and Ω= Rn
+.

Problem 4.3. The problem comes from [25], i.e.,

Fi(x) = x i − sin(|x i | −1), i = 1, 2,3, . . . , n,

where Ω =
�

x ∈ Rn
�

�

∑n
i=1 x i ¶ n, x i ¾ −1, i =

1,2, 3, . . . , n
	

.
Problem 4.4. The problem can be viewed as a
modification of Problem 4 in [25], i.e.,

F1(x) = x1+ sin x1−1,

Fi(x) = −x i−1+2x i+sin x i−1, i = 2,3, . . . , n−1,

Fn(x) = xn+ sin xn−1,

and Ω= Rn
+.

In order to show the performance of the
TTMDY method, we test the given problems
with various dimensions n = 1000, 3000, 5000,
7000, 10 000 and some different initial points:
x1

0 = (0.1,0.1, · · · , 0.1)T, x2
0 = (0.5,0.5, · · · , 0.5)T,

x3
0 = (1, 1, · · · , 1)T, x4

0 = (2,2, · · · , 2)T, x5
0 =

(3, 3, · · · , 3)T, respectively. The results are pre-
sented in Tables 1–4, where we report the dimension
of the problem (Dim), the number of iterations
(Niter), the number of the function evaluations
(NF), and the CPU time in seconds (time). Tables 1–
4 indicate that these methods are able to solve all
given test problems successfully.

To compare the three methods with respect to
the number of iterations, the number of the function
evaluations and the CPU time comprehensively and
intuitively, in this paper we apply the performance
profiles of Dolan and Moré [32], which is an efficient
tool for evaluating and comparing the performances
of iterative methods. From the reference [32], we
know that the performance profile for each method
is measured by the ratio of its computational out-
come compared to the computational outcome of

Table 1 The numerical results of Problem 4.1.

Dim TTMDY TTCG PDY

Niter/NF/time Niter/NF/time Niter/NF/time

x1
0 1000 17/71/0.01 36/145/0.01 16/34/0.01

3000 18/76/0.01 37/149/0.03 17/36/0.02
5000 15/62/0.02 38/153/0.04 17/36/0.02
7000 13/53/0.02 38/153/0.05 17/38/0.03

10000 18/76/0.03 38/153/0.07 15/35/0.04
x2

0 1000 17/71/0.01 36/145/0.01 16/34/0.01
3000 13/53/0.01 37/149/0.03 16/34/0.02
5000 20/86/0.02 37/149/0.04 17/36/0.02
7000 15/62/0.03 38/153/0.05 17/36/0.03

10000 17/71/0.04 38/153/0.07 17/38/0.04
x3

0 1000 20/86/0.01 35/141/0.01 16/34/0.01
3000 15/62/0.01 36/145/0.03 16/34/0.02
5000 19/81/0.02 37/149/0.04 16/34/0.02
7000 15/62/0.04 37/149/0.05 17/36/0.03

10000 13/53/0.03 38/153/0.07 17/36/0.04
x4

0 1000 22/96/0.01 34/137/0.01 15/32/0.01
3000 17/71/0.02 35/141/0.03 15/32/0.02
5000 17/72/0.02 35/141/0.04 16/34/0.02
7000 18/77/0.02 36/145/0.05 16/34/0.03

10000 13/53/0.03 36/145/0.06 16/34/0.04
x5

0 1000 20/87/0.01 32/129/0.01 14/30/0.01
3000 18/77/0.02 33/133/0.02 15/32/0.02
5000 12/49/0.02 33/133/0.03 15/32/0.02
7000 17/72/0.02 34/137/0.04 15/32/0.03

10000 14/58/0.03 34/137/0.06 15/32/0.03

Table 2 The numerical results of Problem 4.2.

Dim TTMDY TTCG PDY

Niter/NF/time Niter/NF/time Niter/NF/time

x1
0 1000 8/32/0.01 30/121/0.01 7/15/0.01

3000 9/36/0.01 31/125/0.01 8/17/0.01
5000 9/36/0.01 31/125/0.01 8/17/0.01
7000 9/36/0.01 32/129/0.02 8/17/0.01

10000 9/36/0.02 32/129/0.02 8/17/0.01
x2

0 1000 8/32/0.01 32/129/0.01 12/25/0.01
3000 9/36/0.01 33/133/0.01 12/25/0.01
5000 9/36/0.01 34/137/0.02 12/25/0.01
7000 9/36/0.01 34/137/0.02 13/27/0.01

10000 9/36/0.01 34/137/0.02 13/27/0.02
x3

0 1000 9/37/0.01 33/133/0.01 13/27/0.01
3000 9/37/0.01 34/137/0.01 13/27/0.01
5000 9/37/0.01 34/137/0.02 14/29/0.01
7000 9/37/0.01 34/137/0.02 14/29/0.01

10000 9/37/0.02 35/140/0.02 14/29/0.02
x4

0 1000 10/45/0.01 34/138/0.01 15/32/0.01
3000 10/45/0.01 35/142/0.01 15/32/0.01
5000 11/49/0.01 35/142/0.02 14/32/0.01
7000 11/49/0.01 35/142/0.02 14/32/0.01

10000 11/49/0.02 36/146/0.02 15/36/0.02
x5

0 1000 10/47/0.01 35/144/0.01 15/33/0.01
3000 10/47/0.01 36/148/0.01 12/31/0.01
5000 11/51/0.01 36/148/0.02 12/31/0.01
7000 11/51/0.01 36/148/0.02 12/31/0.01

10000 11/51/0.02 37/152/0.03 15/42/0.02

the best method, which means that the method with
high performance profile is preferable or represents
the better method. By the technique in the reference
[32], I obtained the performance profiles of the
TTMDY method, TTCG method and PDY method,
see Figs. 1–3. These figures show the TTMDY
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Fig. 1 Performance profiles with respect to the number of
iterations.
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Fig. 2 Performance profiles with respect to the number of
the function evaluations.

Table 3 The numerical results of Problem 4.3.

Dim TTMDY TTCG PDY

Niter/NF/time Niter/NF/time Niter/NF/time

x1
0 1000 9/53/0.01 14/57/0.01 15/45/0.01

3000 9/53/0.01 14/57/0.01 16/48/0.01
5000 9/53/0.01 14/57/0.01 16/48/0.01
7000 9/53/0.02 14/57/0.01 16/48/0.01

10000 9/53/0.02 14/57/0.01 16/48/0.02
x2

0 1000 8/45/0.01 11/44/0.01 6/14/0.01
3000 8/45/0.01 11/44/0.01 6/14/0.01
5000 8/45/0.01 12/48/0.01 6/14/0.01
7000 8/45/0.01 12/48/0.01 7/17/0.01

10000 8/45/0.03 12/48/0.01 7/17/0.01
x3

0 1000 9/51/0.01 14/56/0.01 17/51/0.01
3000 9/51/0.01 15/60/0.01 17/51/0.01
5000 9/51/0.01 15/60/0.01 18/54/0.01
7000 9/51/0.02 15/60/0.01 18/54/0.02

10000 9/51/0.02 15/60/0.01 18/54/0.02
x4

0 1000 10/55/0.01 15/59/0.01 18/53/0.01
3000 10/55/0.01 15/59/0.01 18/53/0.01
5000 10/55/0.01 15/59/0.01 19/56/0.01
7000 10/55/0.02 15/59/0.01 19/56/0.02

10000 10/55/0.02 16/63/0.01 19/56/0.02
x5

0 1000 10/54/0.01 15/59/0.01 17/49/0.01
3000 10/54/0.01 15/59/0.01 19/55/0.01
5000 10/54/0.01 16/63/0.01 19/55/0.01
7000 10/54/0.01 16/63/0.01 19/55/0.02

10000 10/54/0.02 16/63/0.01 20/59/0.02

Table 4 The numerical results of Problem 4.4.

Dim TTMDY TTCG PDY

Niter/NF/time Niter/NF/time Niter/NF/time

x1
0 1000 8/48/0.01 13/53/0.01 8/22/0.01

3000 9/54/0.01 13/53/0.01 8/22/0.01
5000 9/54/0.01 13/53/0.01 9/25/0.01
7000 9/54/0.01 13/53/0.01 9/25/0.02

10000 9/54/0.02 14/57/0.02 9/25/0.02
x2

0 1000 7/42/0.01 10/41/0.01 10/30/0.01
3000 7/42/0.01 11/45/0.01 10/30/0.01
5000 7/42/0.01 11/45/0.01 11/33/0.01
7000 7/42/0.01 11/45/0.01 11/33/0.02

10000 7/42/0.01 11/45/0.02 11/33/0.02
x3

0 1000 8/47/0.01 13/53/0.01 15/45/0.01
3000 8/47/0.01 14/57/0.01 15/45/0.01
5000 8/47/0.01 14/57/0.01 15/45/0.02
7000 8/47/0.02 14/57/0.02 16/48/0.02

10000 8/47/0.02 14/57/0.02 16/48/0.02
x4

0 1000 8/46/0.01 15/61/0.01 15/45/0.01
3000 9/52/0.01 15/61/0.01 16/48/0.01
5000 9/52/0.01 15/61/0.01 16/48/0.02
7000 9/52/0.02 15/61/0.02 16/48/0.02

10000 9/52/0.01 15/61/0.02 16/48/0.02
x5

0 1000 9/51/0.01 14/56/0.01 16/47/0.01
3000 9/51/0.01 14/56/0.01 15/45/0.01
5000 10/57/0.01 14/56/0.01 16/48/0.02
7000 10/57/0.02 15/60/0.02 19/58/0.02

10000 10/57/0.02 15/60/0.02 20/62/0.03

method is the most effective method for the most
cases.
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of the paper.
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