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ABSTRACT: Fluoro-substituted zinc(II)phthalocyanines (RS)4ZnPcs were prepared. All the structures of newly
synthesized compounds was evaluated by IR and 1H NMR spectral analysis. They were tested against human
adenocarcinoma prostate cancer cells. A type II membrane antigen highly expressed in prostate cancer, namely
prostate-specific membrane antigen, has been an attractive target for imaging and therapy. To investigate the structure-
activity relationships of (RS)4ZnPcs 4a–c in human adenocarcinoma prostate cancer cell model, 3 fluoro-substituted
zinc(II)phthalocyanines with different terminal heteroaromatic rings have been designed and evaluated for their anti-
proliferative potency in vitro. The detailed LD50 values of the targeted compounds were reported. Our preliminary in
vitro studies confirm that (RS)4ZnPcs 4a–c could act as an attractive photosensitizer for the early diagnosis of prostate
cancer.
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INTRODUCTION

Phthalocyanines (Pcs) – especially, metallophthalo-
cyanines bearing an aluminum, zinc, indium, or
silicon as a central metal atom – are excellent pho-
tosensitizers (PSs) (second generation) for photody-
namic therapy (PDT) in several types of tumors [1].
They offer effective properties for an ideal PS [2].
They are absorbed in the red and near infrared
regions of the visible spectrum [3]. In addition, Pcs
have high photo and chemical stability [4].

Zinc phthalocyanines (ZnPcs) are valuable
PSs [5–10]. When they functionalized with het-
erocycles units such as 4-pyridylmethyloxy and
pyridyloxy groups [11, 12], adamantylethoxy zinc
phthalocyanines [13], hexadecafluoro zinc ph-
thalocyanine [14], tetracarboxy zinc phthalocya-
nine [15] with pentalysine peptidyl moiety (ZnPc-
(Lys)5) [16]. A number of cell lines [17–19]
showed the efficiency of zinc phthalocyanines as
photosensitizers as a result of their excellent fluo-
rescence quantum yields [20, 21]. Recent advances
in drug-delivery caused by zinc phthalocyanines are
commonly used in cancer treatment with an addi-
tional benefit including the enhancement of drug-

therapeutic efficiency. It enhances the pharmaco-
logical properties by altering pharmacokinetics. In
addition, it improves the drug hydro-solubility and
drug half-life [22]. Prostate cancer is the second
highest cancer mortality in American men. There
are 238 590 new cases of prostate cancer examined.
Also, 720 men died due to the prostate cancer in
the United States in 2013. The local radiother-
apy, radical prostatectomy, chemotherapy, or hor-
monotherapy is used in treating localized prostate
cancer [23].

Prostate-specific membrane antigen (PSMA) is
a membrane-bound glycoprotein. It presents in
the human prostate adenocarcinoma cell line from
hormone-refractory patients [24]. In addition,
PSMA is a talented target for treatment of prostate
cancer [25]. Previously, Liu et al [26] reported
PSMA inhibitors for targeted PDT in vitro. Watan-
abe et al [27] reported recently effective PSMA-
targeted photoimmunotherapy. It targets both full
antibodies and antibody fragments. Synthesized
fluorinated compounds such as steroids containing
5-Fluorouracil revealed high potential therapeutic
effect with implications to biological activities [28].

In this sense, zinc phthalocyanines substituted
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with fluorine atoms are becoming the most appeal-
ing answer to solve chemotherapy problems such
as degradation and nonspecific toxicity [29]. In
addition, Chen et al [30] used a PSMA-targeted Lys-
Glu-Lys urea based theragnostic agent for prostate
cancer imaging and PDT. Previously, our group has
described series of phthalocyanines with their an-
titumor activity [31–34]. In the present work, the
zinc(II) phthalocyanines carrying trifluoromethyl
groups have been prepared. Their biological screen-
ing results have been described.

MATERIALS AND METHODS

Materials

Fluoro-substituted zinc(II) phthalocyanines,
(RS)4-ZnPcs, were prepared previously from
their thiophenyl phthalonitriles derivatives: 3a–c
obtained from 2a–c, 4-methylthiophenol (2a),
4-(trifluoromethyl)thiophenol (2b), and 3,5-bis
(trifluoromethyl)thiophenol (2c) as described by
Youssef et al [34]. 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyl tetrazolium bromide (MTT) and
dimethylsulfoxide (DMSO) were purchased from
the Sigma-Aldrich Co. All the other chemicals were
of analytical grade and were used without further
purification.

Biological screening

In vitro assay: cell culture

In brief, all in vitro antitumor screening on hu-
man adenocarcinoma prostate cancer cells (Amer-
ican Type Culture Collection) has been performed
at National Research Centre, Cairo-Egypt. Hu-
man adenocarcinoma prostate cancer cell line was
obtained from America Type Culture Collection
(ATCC) through VACSERA, Cairo, Egypt. Cells
were cultured in Roswell Park Memorial Institute
medium, RPMI-1640 (Sigma St. Lous, USA). Cells
were always incubated at 36 °C in a humidified
atmosphere containing 5% CO2 and subcultured
twice a week. For normal transformed cell line, a
similar process was followed [35], and the raw data
was filtered to remove erroneous entries.

Statistical analysis

The experiment values used in statistical analysis
were means±SD and repeated more than 3 times.
A SPSS 10.0 software program (Student’s unpaired
two-tailed t-test) was used to calculate the differ-
ences in the mean values of the measured activities
statistically. The probability values of p< 0.01 were
statistically significant.

 

 

 

  

Scheme 1 Reaction pathways of zinc(II)phthalocyanines (4a-c) 

Fig. 1 Reaction pathways of zinc(II) phthalocyanines
(4a–c).

RESULTS AND DICUSSION

Chemistry

Zinc(II) phthalocyanines (4a–c) were synthesized
from their thiophenyl phthalonitrile derivatives
(3a–c) as described previously by Youssef et al [34]
with 78% of the pure phthalonitrile (3a), 70% (3b)
and 62% (3c). The general synthetic scheme is
shown in Fig. 1 to afford the corresponding 4a–c
with 71% (4a), 75% (4b), and 78% (4c) yields.

3a–c precursors were formed with bands at ν =
2235–2233 cm−1 (CN) and (SH stretch) at 2595–
2596 cm−1 indicated by the FT-IR spectra. The
protons of the methyl protons of phtalonitrile 3a at
δ = 1.44 (s) ppm and phenyl protons of phtaloni-
trile 3a at 8.31–8.42 (m) ppm were indicated with
the 1H NMR spectra and showed non-aggregated
spectra. UV-Vis spectroscopy was performed in DMF
with constant concentration at λmax (nm) [(10−5

log ε dm3 mol−1 cm−1)]. The characteristic Q
absorption bands of zinc(II) phthalocyanines (4a–c)
with extinction coefficient at around 691(5.51),
686(4.9), and 681(5.16) nm, respectively, (Fig. 2)
showed that these compounds are non-aggregated
under these aqueous conditions.

In vitro anti-prostate cancer

In vitro cytotoxicities of the synthesized Zn(II)
phthalocyanine (RS)4ZnPc derivatives were deter-
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Fig. 2 UV-vis of zinc(II) phthalocyanines (4a–c).

Table 1 IC50, KM of zinc(II) phthalocyanines (4a–c)
against adenocarcinoma prostate cells.

Compound no. Cytotoxicitya

(IC50, µm) PSMA

ZnPc 4a 26.2
ZnPc 4b 32.7
ZnPc 4c 7.13
Doxorubicin 7.05

a IC50: ZnPc 50%. Values of 3 repeated experiments.

mined by performing prostate cancer cell viability
assays. The ability of the Zn(II) phthalocyanines to
inhibit growth of human adenocarcinoma prostate
cancer cell lines was measured. A doxorubicin
HCl was used as a reference drug for human ade-
nocarcinoma prostate cancer cells using MTT as-
say method [36, 37]. Table 1 shows the results of
LC50 (µm) as the lethal concentration of (RS)4ZnPc
derivatives to cause death of 50% of the cells in 24 h.

To study the effect of zinc(II) phthalocyanines
(4a–c) on tumor cell line, namely human adeno-
carcinoma prostate cancer cells, they were com-
pared with normal human fibroblast healthy cells
using MTT assay as shown in Fig. 3. All the tested
compounds were found to have potent anti-prostate
cancer activities compared to normal cells. They
did not exhibit any toxicity against adenocarcinoma
prostate cells in the absence of (RS)4ZnPcs 4a–c.
The structure-activity data acquired indicated that
the presence of trifluoromethyl groups (CF3) consti-
tutes a promising design novel zinc(II) phthalocya-
nines with promising cytotoxicity. Previously results
with the above method indicated that meta (tri-
fluoromethyl) substituted zinc(II) phthalocyanine is
more effective than the corresponding para com-
pound [34]. In comparison with our work, the
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Fig. 3 The proliferation of adenocarcinoma prostate cells
(orange bar) and normal cells (grey bar) at different
concentrations of (RS)4ZnPcs 4a–c.

bis meta (trifluoromethyl) substituted zinc(II) ph-
thalocyanine compound 4c showed higher activities
compared to those of para compound 4b, and the
order in the antitumor effect is 4c > 4b > 4a.

Our work describes the majority of zinc(II) ph-
thalocyanine compounds which are typically com-
mon compounds present in most pharmaceuticals.
They are intrinsically versatile and have unique
physicochemical properties. They showed activ-
ity against human adenocarcinoma prostate cancer
cells with IC50 values 26.2, 32.7 and 7.13 µm,
respectively, as described in Table 1. All the tested
compounds exhibited significant cytotoxicity in hu-
man adenocarcinoma prostate cancer.

Imaging has the highest sensitivity for detect-
ing the prostate cancer, in accordance with recent
observational study of 925 patients who underwent
radiation therapy [38]. Few studies have described
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cases of men with prostate cancer with hypogonadal
serum testosterone levels (<250 ng/dl) [39]. Re-
cent studies for chemotherapy dosing recommend
the use of body surface area (BSA). Only older
patients are expected to be affected significantly
with more toxicity from anticancer therapies. It also
tends to be under-represented in clinical trials.

Considering preliminary results and the struc-
ture – activity study, 4c that contains 8 trifluo-
romethyl groups (CF3) has the most active an-
titumor activity against human adenocarcinoma
prostate cancer cell line (7.13 µm). In case of 4a,
a decrease in the potency against the human adeno-
carcinoma prostate cancer cell was observed due to
the absence of trifluoromethyl groups. The most po-
tent compounds (4b, and 4c) showed impressive cy-
totoxicity against human adenocarcinoma prostate
cancer cell line. It was found 4c that was effective
against human adenocarcinoma prostate cancer cell
line. This current study involves in vitro studies
because many of the in vivo challenges have not
been completely resolved yet. We demonstrated in
vitro that zinc(II) phthalocyanines 4a–c are effective
“cell-killing” agents. They could reach regions deep
in the body and be a safe clinical approach.

CONCLUSION

Zinc(II) phthalocyanines 4a–c have been synthe-
sized and characterized. The synthesized com-
pounds 4a–c were evaluated for in vitro anticancer
activity. They have activity against human ade-
nocarcinoma prostate cancer cells. The trifluo-
romethyl groups present at zinc(II) phtalocyanine
4c has the highest potent activity against the tested
cancer cell line as shown in MTT cytotoxicity stud-
ies. The structural activity study provided good
indication for cancer activity. In human adeno-
carcinoma prostate cancer cell line, the order in
the antitumor effect is 4c > 4b > 4a. Taken
together, selective enhancement of cell death in
aggressive prostate cancer cell line suggests that
zinc(II) phtalocyanines 4a–c are promising poten-
tial compounds. Additional research is needed on
mechanism study.
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