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ABSTRACT: High temperature induces structural and physiological damage to plants. However, studies on the effects of
constant high temperature on climbing plant species are limited. To estimate the response of photosynthetic capacity
of two creeper species, Parthenocissus tricuspidata (Sieb. et Zucc.) and Parthenocissus quinquefolia (L.) Planch, to
constant high-temperature treatment at noon, we measured photosynthetic pigments, gas exchange, and chlorophyll
fluorescence parameters at 35, 40, and 45 °C (25 °C was the control treatment). High temperature significantly reduced
photosynthetic pigment content, whereas carotenoid content showed the opposite trend. Net photosynthetic rate,
stomatal conductance, transpiration rate, maximal quantum yield of PSII photochemistry, actual quantum yield of
PSII photochemistry, and the coefficient of photochemical quenching all showed a decreasing trend, with increasing
stress duration, whereas the non-regulated thermal energy loss and regulated thermal energy loss indexes increased.
As temperature increased, intercellular CO2 concentration initially decreased and then increased. Non-stomatal
restriction factors were the main cause of the decrease in photosynthetic rate when temperature exceeded 40 °C. These
parameters recovered to pre-stress levels only in plants grown at 35 °C upon stress relief. P. quinquefolia showed higher
photosynthetic heat resistance and resilience than P. tricuspidata. Our results revealed photosynthetic adaptation and
recovery mechanisms in two creepers grown under high-temperature stress. Molecular and genetic approaches should
be considered to gain deeper insight into the mechanism underlying high temperature adaptation in these two creepers.
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INTRODUCTION

Photosynthetic responses of various plant species
under abiotic stress such as water deficit [1] or
under biotic stress such as fungus infection [2] have
been reported; however, studies on the effect of high
temperature on photosynthetic capacity of creepers
are limited.

In the coming decades, the global average tem-
perature will gradually increase [3]. Especially
in China, the annual mean temperature will have
increased by up to 6 °C by the end of this century;
concomitantly, the frequency of extreme heat events
will increase by up to 40%, with duration potentially
increasing by up to 150% [4]. High temperature
stress is one of the key factors restricting normal
plant growth [5]. Therefore, it is very important
to investigate thermal adaptation mechanisms of
plants grown in a high-temperature environment
for the conservation and breeding of heat-resistant
varieties.

Photosynthesis is closely related to plant growth

and is considered the first process inhibited before
other cell functions [6]. High-temperature stress
can induce damage to the photosynthetic appa-
ratus [7], among which, photosystem II (PSII) is
considered one of the most temperature-sensitive
components [8]. The function of PSII is mainly
affected by high-temperature stress in the following
three aspects: first, separation of the PSII peripheral
antenna complex from its core complex; second,
inactivation and dissociation of the oxygen-evolving
PSII complexes [9]; and third, redox imbalance
between the primary acceptor plastoquinone and
the secondary acceptor plastoquinone [10, 11].

In recent years, chlorophyll fluorescence has
been widely used to diagnose environmental stress,
which mainly comes from PSII and can reflect the
structure and function of PSII in terms of different
aspects [12, 13]. The maximum quantum yield of
PSII photochemistry (Fv/Fm) is one of the most
widely used parameters, as it reflects photosyn-
thetic performance and overall photosynthetic plant
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health status. A decrease in the Fv/Fm ratio might
reveal whether the PSII reaction center is experi-
encing photoinhibition. Among the many photosyn-
thetic protection mechanisms that have been stud-
ied, non-regulated thermal energy loss (Φf,D) and
regulated thermal energy loss (ΦNPQ) are thought to
be the most effective in dissipating excess energy ab-
sorption [14]. Therefore, chlorophyll fluorescence
parameters are often selected as reliable indicators
of the activity of the photosynthetic apparatus to
evaluate plant stress tolerance [15, 16].

Parthenocissus tricuspidata (Sieb. et Zucc.)
Planch and Parthenocissus quinquefolia (L.) Planch
are considered two of the main vertical greening
creepers worldwide, as they can control soil water
loss and soil erosion in mountain slopes because of
their particularly high growth rate, large coverage
area, strong climbing ability, and high adaptability,
among other traits [17, 18]. Furthermore, creepers
are also valuable in the pharmaceutical industry
as sources of polysaccharides and phenols [19].
Unfortunately, owing to the exacerbation of global
warming in recent years, frequent overheating of
rocky slopes and building surfaces is threatening the
healthy growth of creepers, especially during the
initial colonization stage.

Previous studies on creeper responses to the
environment mainly focused on water stress and nu-
trient stress, among other adverse conditions [17,
20, 21]. Nevertheless, studies on the effects of high-
temperature stress on their photosynthetic capacity
are scarce. To reveal the adaptive and recovery
mechanisms of P. quinquefolia and P. tricuspidata
grown under high-temperature stress (35, 40, and
45 °C), herein the responses of photosynthetic pig-
ments, gas exchange, and chlorophyll fluorescence
were investigated during a seven-day stress period
and a two-day recovery period.

MATERIALS AND METHODS

Plant species and treatments

The experiments reported herein were conducted
at the North China University of Science and Tech-
nology (39°37′ N; 118°37′ E). One-year-old P. quin-
quefolia and P. tricuspidata plants of uniform size
at the 5–8 fully expanded leaf stage were divided
into four groups, each containing five replicate
clones and grown in four controlled climate cham-
bers (RXZ-380, Ningbo Jiangnan Co. Ltd., Zhe-
jiang, China) under the same conditions (PPFD,
500 µmol m–2s–1; relative humidity, 65%±5%),
except for temperature. One group was subjected

to 25±0.1 °C/18±0.1 °C (day/night temperature)
as control treatment. The other groups were kept
at constant 35±0.1 °C, 40±0.1 °C, or 45±0.1 °C
for 7 days from 10:00–15:00 h. After the high-
temperature stress period, all treatment groups
were returned to control treatment conditions for
2 days. The selected parameters were measured
on days 0, 1, 3, 5, and 7 and then after the 2-day
recovery period.

Chlorophyll content

The concentration of chlorophyll was determined
according to Arnon [22]. Briefly, fresh plant leaf
samples (0.1 g) were extracted in 10 ml extraction
solution (absolute ethanol: 95.5% acetone, 1:1,
v/v) over 48 h under dark conditions at 25 °C.
Subsequently, the content of chlorophyll a (Chl
a), chlorophyll b (Chl b), chlorophyll (a+b) (Chl
(a+b)) and carotenoids (Car) contents were calcu-
lated based on measurements of absorbance of the
sample solutions at 470, 645, 652, and 663 nm
using a UV-visible spectrophotometer (UC-5500PC;
Shanghai Yuanxi Co. Ltd., Shanghai, China).

Gas exchange

The photosynthetic rate (Pn), intercellular carbon
dioxide concentration (Ci), stomatal conductance
(gs), and transpiration rate (Tr) were measured on
the third to fifth (from the top of the plants down)
fully developed functioning leaves of similar size
using a portable LI-6400XT Li-Cor device (Li-Cor,
Inc., Lincoln, NE, USA) under 500 µmol m–2s–1

PPFD.

Chlorophyll fluorescence measurements

First, minimum fluorescence yield (F0) and max-
imum fluorescence yield (Fm) were measured
on leaves adapted to darkness for approximately
30 min. Subsequently, the leaves were illumi-
nated continuously. After the leaves were suf-
ficiently photoactivated, steady-state fluorescence,
minimum fluorescence, and maximum fluorescence
were measured [23]. Illumination at 3000 µmol
m–2s–1 was used to determine maximum fluores-
cence levels. The Fv/Fm, ΦPSII, Φf,D, ΦNPQ, and
the coefficient of photochemical quenching (qP)
were calculated according to Humplik [24] and
Lazar [25].

Statistical analysis

All data were expressed as means± standard de-
viations (SD) of five replicates. One-way ANOVA
was performed using the SPSS version 19.0 software
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(IBM, Chicago, IL, USA) and Duncan’s multiple com-
parison (p < 0.05) method was used to determine
significant differences among means.

RESULTS

Pigment content

Photosynthetic pigment content of the two creep-
ers under study was negatively affected by high-
temperature treatments (Fig. 1). On the seventh
day of stress, Chl a content in P. quinquefolia de-
creased by 15.4% at 35 °C, 28.7% at 40 °C, and
47.1% at 45 °C, compared to control leaves (25 °C).
In contrast, leaf Chl a content for P. tricuspidata
decreased by 21.6%, 33.7%, and 51.8% at 35, 40,
and 45 °C, respectively. Similarly, Chl b content
decreased with increasing temperature. Conversely,
Car content and the Car/Chl (a+b) ratio showed the
opposite trend. Chl a and Chl b pre-stress contents
were almost completely restored in plants of the two
creepers grown at 35 °C upon stress relief, but they
were only partially restored in plants grown at 40 or
45 °C.

Gas exchange

A significant decline in Pn was observed in plants
of both creepers under high temperature (Fig. 2).
After 7 days under high-temperature stress, Pn de-
creased by 19.3%, 30.1%, and 45.2% in leaves of
P. quinquefolia exposed to 35, 40, and 45 °C, re-
spectively. Meanwhile Pn in leaves of P. tricuspidata
decreased by 20.2%, 41.6%, and 65.6% at 35, 40
and 45 °C, respectively. In the early stage of high
temperature stress, Pn showed a faster and greater
decline in P. tricuspidata than in P. quinquefolia. In
turn, gs and Tr in both creepers showed similar
trends as Pn, whereas Ci showed an opposite trend
at 40 and 45 °C. After a two-day recovery, Pn of
both creepers recovered completely only in plants
exposed to 35 °C, whereas that of both creepers
grown at 40 and 45 °C remained strongly inhibited
by high-temperature stress.

Chlorophyll fluorescence

When plants were subjected to high-temperature
stress, the Fv/Fm ratio significantly decreased in
both creepers (Fig. 3). After 7 days, the values of
the Fv/Fm ratio in leaves of P. quinquefolia subjected
to 35, 40, and 45 °C decreased by 1.35%, 1.98%,
and 4.02%, respectively. However, Fv/Fm values
exhibited a larger decline in leaves of P. tricuspidata,
(1.37% at 35 °C, 2.75% at 40 °C, and 4.84% at 45 °C)

than in those of P. quinquefolia. The extended dura-
tion of stress treatment caused Φf,D and the ΦNPQ to
increase, whereas ΦPSII showed a decreasing trend;
further, ΦNPQ showed faster and larger differences in
P. quinquefolia than in P. tricuspidata. Concomitantly,
qP of both creepers showed a similar trend as ΦPSII.
Upon stress relief, all control values of chlorophyll
fluorescence parameters of P. quinquefolia grown at
35 and 40 °C were restored completely. On the
other hand, chlorophyll fluorescence parameters of
P. tricuspidata were restored to pre-stress levels only
in plants in the 35 °C treatment group.

DISCUSSION

Photosynthetic pigment content and its dynamic
accumulation are considered important factors af-
fecting plant biomass, and their level at any given
growth stage can reflect the health status of the
plants [26]. In this study, high-temperature stress
induced a decrease in chlorophyll content, with Pn
showing a similar trend. These findings are consis-
tent with the results reported by Xiao et al [27],
indicating that the observed decrease in chloro-
phyll content was one of the reasons for the ob-
served decrease of Pn. Car has been proven to
alleviate oxidative damage, and the increase in the
Car/Chl(a+b) ratio reflects the initiation of chloro-
plast self-protection mechanisms [28, 29]. In our ex-
periments, Car content increased, whereas Car/Chl
(a+b) decreased when the temperature exceeded
0 °C. This indicated that 45 °C is beyond the heat
tolerance range of both experimental creepers.

Photosynthesis is a temperature-sensitive fun-
damental biological process that allows for organic
matter accumulation [4]. In this study, a signifi-
cant decrease in biomass was observed at 35, 40,
and 45 °C, consistent with the report by Greer and
Weedon [30]. This indicates that photosynthetic
capacity in both creepers was reduced. Further,
the decrease in gs suggested that high-temperature
stress induced stomatal closure. In addition, a
larger decline in Tr than in gs in both creepers
indicated that high temperature induced excess leaf
water loss. Compared to control plants, Ci in both
creepers decreased initially and then increased with
the extended duration of heat stress. This indicated
that the decrease in Pn was mainly induced by non-
stomatal restriction factors when the temperature
exceeded 40 °C [31]. Altogether, our data suggested
that the photosynthetic capacity of P. quinquefolia
exhibited a much higher level of resistance to high
temperature than P. tricuspidata.

The Fv/Fm value is a good proxy of plant health
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Fig. 1 Effects of constant high-temperature treatments on the content of chlorophyll (Chl) a, Chl b, carotenoid (Car),
and Car/Chl (a+b) in the leaves of P. tricuspidata (Sieb. et Zucc.) Planch (a, c, e, g) and P. quinquefolia (L.) Planch
(b, d, f, h).
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Fig. 2 Effects of constant high temperature treatments on Pn, Ci, gs and Tr in the leaves of P. tricuspidata (Sieb. et
Zucc.) Planch (a, c, e, g) and P. quinquefolia (L.) Planch (b, d, f, h). Pn, photosynthetic rate; Ci, intercellular carbon
dioxide concentration; gs, stomatal conductance; Tr, transpiration rate.
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Fig. 3 Effects of constant high temperature treatments on Fv/Fm, ΦNPQ, Φf,D, ΦPSII, and qP in the leaves of P. tricuspidata
(Sieb. et Zucc.) Planch (a, c, e, g, i) and P. quinquefolia (L.) Planch (b, d, f, h, j). Fv/Fm, quantum yield of PSII
photochemistry; Φf,D, thermal energy loss; ΦNPQ, regulated thermal energy loss; ΦPSII, actual quantum yield of PSII
photochemistry; qP, coefficient of photochemical quenching.
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status [32]. In the present study, a reduction in
Fv/Fm values was observed in both creepers under
high-temperature stress; further, the ratio decreased
continuously with the prolongation of the stress.
This indicated that possible damage occurred to
the PSII reaction centers. Compared to control
values, ΦPSII and qP showed a decreasing trend,
whereas the Φf,D showed the opposite trend. This
indicated that the activity of PSII was inhibited
and that photodamage occurred due to exposure
to high-temperature, an effect that increased with
increasing stress duration [13, 25].

Absorbed light energy is usually distributed
through three main paths, namely, ΦNPQ, Φf,D,
and ΦPSII. These three paths are somewhat in-
terchangeable [13]. To maintain photosynthetic
carbon-assimilation ability, chloroplasts must en-
hance excess-energy dissipation processes through
ΦNPQ, whereby the reaction center closes. During
the entire duration of stress exposure, ΦNPQ of
P. quinquefolia showed faster and wider response
ranges than ΦNPQ of P. tricuspidata. This finding
indicated that P. quinquefolia has a higher adaptive
capacity to high temperature than P. tricuspidata.

To further investigate the photosynthetic capac-
ity in both creepers, photosynthetic recovery upon
relief of high-temperature stress treatment was an-
alyzed. The results of Greer [30] and Yamori [33]
proved that the CO2 fixation process is also sensitive
to high-temperature stress and is likely disrupted.
In our study, Pn did not recover in either creeper
after they were exposed for 7 days to 40 or 45 °C.
This indicated that high temperature might induce
irreversible damage to the CO2 fixation process.
Thus, enhancing heat stability of CO2 fixation might
be an effective way for both creepers to deal with
the greenhouse effect. The extent of recovery of
PSII performance under high-temperature stress can
reflect the capacity of photosynthetic components
for self-repair.

In the present study, the fluorescence parame-
ters of P. quinquefolia showed greater resilience than
those of P. tricuspidata. This indicated that as far as
photosynthesis is concerned, P. quinquefolia shows
important advantages over P. tricuspidata to deal
with the challenge posed by global warming.

CONCLUSION

A significant reduction in photosynthetic pigment
content was observed in both creepers studied with
increasing temperature; concomitantly, Car levels
showed the opposite trend. Non-stomatal limita-
tions were the main cause for the decrease in Pn

when air temperature exceeded 40 °C. Carotenoids
play a key role in the adaptation of both species
to high-temperature stress. Simultaneously, the
process of excess energy dissipation through ΦNPQ
is an important mechanism for protecting the photo-
synthetic machinery. Overall, P. quinquefolia showed
greater resistance and resilience to heat stress than
P. tricuspidata.

Although we discussed the tolerance mecha-
nism of the two creepers to high temperature,
a complete understanding of the heat resistance
mechanism remains limited. The climatic environ-
ment of plants varies among regions. We must
further explore the adaptive mechanism of the two
creepers under study in different high temperature
environments. At the same time, we should also
utilize molecular and genetic methods to further
reveal the mechanisms underlying the response of
the two creepers to high-temperature stress.
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