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ABSTRACT: Biosensors are analytical tools that play an important role in advanced applications, especially in the
monitoring of biological molecules related to health conditions. A variety of biosensors have been described in this
review to emphasize the important applications in the biological field. These biosensors are categorized into four
groups depending on the bioreceptor molecules, including enzymatic biosensors, immuno-based biosensors, DNA-based
biosensors, and other interesting biosensors. Many platforms and materials have been developed with various benefits.
The detection principles of the biosensors in this review are focused on optical and electrochemical techniques due to
their characteristic advantages. Information of using novel materials for fabrication of biosensors is also provided.

KEYWORDS: Biosensors, enzymatic biosensors, immuno-based biosensors, DNA-based biosensors, electrochemical
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INTRODUCTION

Biosensors are analytical tools for converting biolog-
ical responses to detectable signals. The recognition
system of a biosensor utilizes a biochemical mecha-
nism that is highly specific and independent of phys-
ical limitations such as pH and temperature [1, 2].
Research and development of biosensors have been
universally studied, contributing to advancements
in drug discovery, monitoring disease-causing bac-
teria and markers, and detecting pollutants. The
characteristics of biosensors are (i) selectivity to the
analytes of interest, (ii) reproducibility to produce
identical responses, (iii) stability under ambient
disturbances, (iv) sensitivity to analytes down to
nano to femto-levels to ensure their existence in the
sample, and (v) linearity in the range of analyte
concentrations, which is related to the accuracy of
the measured response [3].

The typical components of a biosensor are
shown in Fig. 1, including the analyte of interest,
bioreceptor molecules, transducer, electronic sys-
tem, and display [2]. In a biosensor, the most
important component is the bioreceptor, which is
designed to specifically interact with the analyte of
interest. The key requirement of bioreceptors is high
selectivity to the analyte in the matrix of the sample

and contaminant. Biosensors are categorized into
four groups based on their bioreceptors, including
enzymes, antibodies/antigens, nucleic acids, and
others [1]. Various biosensor platforms for the
application of biological compound detection have
been employed on a variety of transducers, such
as optical, electrical, electrochemical, and thermal
transducers. Optical spectroscopy and electrochem-
istry are the most preferred transducers used in
biosensors due to their characteristic strength [4].
Optical biosensors, including fluorescence and col-
orimetry, work on the principle of the generation of
an optical signal from the specific on-site interaction
of biosensor elements such as enzyme substrates
and metal nanoparticles [5]. In electrochemical
biosensors, electrochemical signals are produced by
the redox reaction of electroactive species in the
biosensor system [6]. In this review, we emphasize
an overview of optical and electrochemical biosen-
sors for the application of biological compound
detection categorized by their bioreceptor mecha-
nisms.

Enzymatic biosensors

An “enzyme biosensor” is an analytical device in-
tegrating an enzyme as a bioreceptor with a trans-
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Fig. 1 Typical components of a biosensor.

Table 1 Summarized data of the enzymatic biosensors based on electrochemical and optical detection.

Detection Technique Analyte(s) Enzyme LOD Linear range Year

Electro- Amperometry Lactate Lactate oxidase 19 µM 50 µM–10 mM 2019 [7]
chemical Amperometry Lactate Lactate oxidase 5.0 µM 5 µM–5.0 mM 2019 [8]

Amperometry Cholesterol Cholesterol oxidase 0.52 mM 0.6–6.0 mM 2016 [9]
Amperometry Cholesterol Cholesterol oxidase 0.99 mg/dl 3.9–773.4 mg/dl 2015 [10]
Amperometry Cholesterol Cholesterol oxidase 0.25 mg/dl 0.4–270.7 mg/dl 2015 [11]
Amperometry Glucose Glucose oxidase 0.29 mM 1–10 mM 2015 [12]
Amperometry Cholesterol Cholesterol oxidase 1 µM 50 µM–10 mM 2014 [13]
Amperometry Glucose Glucose oxidase – 0–10 mM 2011 [14]
Amperometry Cholesterol Cholesterol oxidase 1 nM 1 µM–7 mM 2011 [15]
Amperometry Glucose Glucose oxidase 0.21 mM 0–100 mM 2009 [16]

Lactate Lactate oxidase 0.36 mM 0–50 mM
Uric acid Uricase 1.38 mM 0–35 mM

Optical Fluorescence Organophosphorus and Acetylcholinesterase 0.05 mg/l (pirimicarb) – 2017 [17]
spectroscopy carbamate insecticides and Choline oxidase 0.01 mg/l (dichlorvos)

(pirimicarb, dichlorvos 0.01 mg/l (carbaryl)
and carbaryl)

Colorimetry Glucose Glucose oxidase 0.5 mM – 2010 [18]
Lactate Lactate oxidase 1.0 mM
Uric acid Uricase 0.1 mM

ducer (e.g., electrode) to generate a detectable sig-
nal correlated with a substrate/inhibitor/co-factor
concentration. The glucose sensor is one of the most
universal examples of the enzyme-based biosensors
that could save millions of lives from diabetes. In
essence, there are two main classes of enzymatic
assays: enzyme catalysis and enzyme inhibition. For
enzyme catalysis, the presence of the analyte can
increase the enzyme catalytic activity. Accordingly,
the response signal (such as glucose, lactate, uric
acid, and cholesterol) is increased. In contrast,
for enzyme inhibition, the presence of analyte can
inhibit the catalytic activity of the enzyme-substrate
since the analyte takes part as an inhibitor in
the substrate-enzyme system. Organophosphorus
pesticides, for instance, are a group of common
inhibitors that can inhibit the catalytic activity of
acetylcholinesterase and its substrate. Thus, a de-
crease in the response signal is observed. Selected

examples of enzymatic biosensors published by our
group are presented in Table 1.

Immuno-based biosensors

Immunosensors are biosensors that were estab-
lished based on the high affinity of antibodies to
form a stable complex with their antigens [1]. There
is a specific antibody for each antigen; thus, the
detection of antigen/antibody of interest can be
performed in the presence of others. The applica-
tion of antigen/antibody formation is important in
medical diagnostics for many diseases [19]. Several
optical and electrochemical transducers have been
employed.

One of the most attractive optical biosensors
is the combination of antigen-antibody specific
binding and the catalytic reaction of labeling en-
zymes that enable highly selective and sensitive
biochemical assays. Alkaline phosphatase (ALP) is
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Fig. 2 Illustration of (A) automated paper-based biosensor for hCG detection [20], (B) automated wax-printed paper-
based lateral flow device for AFP detection [21] and (C) wax-assisted one-step lateral flow test devices for mouse IgG
detection [22].

a frequently used enzyme for immunosystem la-
beling [20–22]. The introduction of 5-bromo-4-
chloro-3′-indolyl phosphate p-toluidine salt/nitro-
blue tetrazolium chloride (BCIP/NBT) and ALP sub-
strate into a system containing ALP-labeled anti-
bodies produced an insoluble blue to purple prod-
uct that can be observed visually [20–22]. In
the common scheme of ALP/BCIP/NBT-based im-
munosensors, the operation requires the addition
of an enzyme-substrate after antigen-antibody com-
plex formation, necessitates a complicated multi-
step process including mixing, washing, and in-
cubation [20]. Therefore, many automated im-
munosensors have been developed by creating a de-
lay platform and pre-depositing enzyme substrates
to allow the sequential reagent delivery system
by a single introduction of the sample solution,
which has been applied for the detection of var-
ious biological molecules such as human chori-
onic gonadotropin (hCG) [20], alpha-fetoprotein
(AFP) [21], and mouse IgG [22]. The designs of
automated immunosensors are shown in Fig. 2.

Although the use of the catalytic reaction of a
labeling enzyme provides high sensitivity, some of
the disadvantages include instability of the enzyme
and substrate and the increased complexity of the
assay. Moreover, the addition of a substrate solution
is required to produce a measurable signal. Metal
nanoparticles are popular labeling materials for
antigens/antibodies in immunoassays. Compared
to an enzyme-labeled immunosensor, the color of
particular metal nanoparticles occurs naturally, and

there is no need for the substrate solution. Gold
nanoparticles (AuNPs) have gained much attention
as metal nanoparticles in colorimetric immunosen-
sors because of their long-term stability, easily con-
trollable size distribution, and good compatibility
with biological molecules, such as antibodies, anti-
gens, proteins, DNA, and RNA [19, 23]. AuNP-
conjugated antibodies/antigens have been applied
in various immunoassay platforms for the detection
of Salmonella typhi [23], ractopamine [24] and
cortisol [25]. However, the sensitivity of AuNP-
based immunosensors was not sufficient in a par-
ticular application. Many researchers have pro-
posed procedures to enhance the sensitivity, such
as modifying the surface of AuNPs with a europium
(III)-chelate fluorophore-doped silica shell for the
detection of human thyroid-stimulating hormone
(hTSH) [26] and using a silver enhancement solu-
tion after antigen-antibody complex formation for
the detection of cortisol [27]. This approach demon-
strated the versatility of metal nanoparticles in the
application of immunosensors.

Electrochemical detection is another popular
platform employed in biosensors for ultrasensitive
detection. The important key of electrochemical im-
munosensors is the presence of electroactive species
in the system. The electroactive species could exist
either as a labeling agent of an antibody/antigen
or working solution or the generated electroactive
species products. Various electroactive species have
been used as labeled agents, such as AuNPs for the
detection of hCG [28], Salmonella typhi [29] and
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Fig. 3 Illustration of (A) G/PANI-modified screen-printed carbon electrode for NGAL detection [35], (B) PANI-
modified screen-printed graphene electrode for IFN-γ detection [36], (C) origami paper-based immunosensor for CRP
detection [37] and (D) stopped-flow 3D sequential microfluidic platform for label-free electrochemical immunosensor
of AFP [38].

leptospirosis [30], platinum nanoparticles (PtNPs)
for the detection of hCG [31], anthraquinone for the
detection of c-reactive protein (CRP) [32] and Cd-
Se/ZnS quantum dots for the detection of phospho-
rylated bovine serum albumin [33]. Using these la-
beled materials, the electrochemical signals directly
generated their unique electrochemical properties.
Moreover, the catalytic enzyme reaction was applied
in an electrochemical immunosensor via the reac-
tion of enzyme-labeled antibodies and a particular
substrate to generate electroactive species products
such as the detection of mouse IgG using ALP as
the labeled enzyme and 2-phospho-L-ascorbic acid
as the substrate [34].

Label-free immunosensors are platforms that
eliminate complicated and time-consuming labeling
preparation. The direct conjugation of the tar-
get molecule is achieved by capture of antibod-
ies at the electrode surface. In one of these de-
signs, the electrochemical signal was monitored by
measuring the changes in the charge transfer effi-
ciency between the electrode and the redox couple
[Fe(CN)6]

3–/4– using an electrochemical technique.
Modifications of the electrode surface with various
nanomaterials were performed to anchor antibodies
on the electrochemical transducer surface and en-
hance the sensitivity of the detection, as shown in
Fig. 3. The fabrication of the biorecognition surface
was performed via EDC/NHS chemistry. Polyani-
line (PANI) and graphene (G) were presented as

modifiers on electrodes and applied in a different
design for the detection of neutrophil gelatinase-
associated lipocalin (NGAL) (Fig. 3A) [35] and hu-
man interferon-gamma (IFN-γ) (Fig. 3B) [36]. Ex-
cellent sensitivities were observed due to the elec-
trocatalytic properties and high surface area of the
PANI/G nanocomposite. AuNPs were also presented
as a modifier for the immobilization of antibodies.
The electrodeposition of AuNPs was performed fol-
lowed by the immobilization of antibodies via L-
cysteine and EDC/NHS. This approach was applied
in an origami paper-based immunosensor for the de-
tection of CRP, as shown in Fig. 3C [37]. In addition,
a stopped-flow 3D sequential microfluidic platform
has been developed and applied in label-free elec-
trochemical immunosensors (Fig. 3D) [38]. Using
this device, the detection of AFP could be achieved
using one-step manipulation, which eliminates the
complex procedure of multiple-step reagent manip-
ulation.

DNA-based biosensors

Biosensors play a vital role in several areas of life
science, especially in medical diagnosis. Currently,
biosensors are extensively used as tools to accu-
rately identify a disease. However, to access a
related biomarker of a disease at an early stage
or a superficial level, a sensitive biosensor is re-
quired. A biosensor consists of three main parts:
a biorecognition element, transducer, and a pro-
cedure for displaying data. Among these compo-
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Fig. 4 Illustration of the hybridization-induced conformation (A and B) for the detection of target DNAs [40, 43].

nents, the recognition layers (e.g., enzyme, an-
tibody, DNA, or DNA-analogs and aptamers) are
the most significant parts and have been utilized
for sensitive and selective binding with the target
molecules. According to previous studies, pep-
tide nucleic acid (PNA) probes have been shown
to offer higher sensitivity, specificity, and fast hy-
bridization kinetics. Additionally, the hybridization
process of PNA requires a shorter probe length than
DNA. Recently, a new conformationally restricted
pyrrolidinyl PNA was developed. The structure
of this newly introduced PNA is made up of a
α/β-peptide backbone derived from D-proline/2-
aminocyclopentanecarboxylic acid (acpcPNA). This
structural PNA system exhibits advantages, includ-
ing a more durable binding affinity and a higher
specificity towards a complementary target DNA
than the initially discovered PNA or other DNA
analogs. Because of these excellent properties,
acpcPNA has been widely applied as a sensor probe
to detect target biomarkers in combination with
various detection methods, such as electrochemical
detection and colorimetric detection. Hence, the
utilization of acpcPNA probes combined with these
strategies for disease identification will be the focus.
Electrochemical detection is a promising method for
the sensitive and selective determination of target
DNAs. The detection principles of this approach are
based on the hybridization-induced conformational
or resistant changes in redox tags or mediators
used (e.g., anthraquinone (AQ) or [Fe(CN)6]

3–/4–,
resulting in differences in signal responses. For
medical diagnosis, acpcPNA has been successfully
used as a probe to selectively detect the high-risk
group of human papillomavirus DNAs (HPV DNA)
and Mycobacterium tuberculosis DNA in practical

samples for the evaluation of cervical cancer and
tuberculosis, respectively (Fig. 4A) [39–42]. In
addition, acpcPNA has been utilized as a specific
probe for the detection of isothermally amplified
shrimp white spot syndrome virus DNA in agricul-
tural applications (Fig. 4B) [43]. These fabricated
platforms might be an alternative tool for broader
applications in medical diagnosis.

To the best of our knowledge, colorimetric de-
tection is particularly attractive and can achieve the
rapid detection of a disease, as naked-eye obser-
vation can only interpret a screening result. To
date, colorimetric assays based on the aggregation
of nanoparticles, such as silver (AgNPs) and gold
nanoparticles (AuNPs) enhancing the signal, have
received considerable interest in medical diagnosis.
In 2017, Teengam reported a colorimetric assay
for the simultaneous detection of virus MERS-CoV,
MTB, and HPV DNAs based on acpcPNA-induced
nanoparticle aggregation [44]. This proposed plat-
form was successfully applied to determine real
DNA samples and provided satisfactory results. By
using this method, three DNA sequences related to
the target diseases can simultaneously be evaluated,
reducing turn-around-time (TAT).

Other applications

There are biosensors that have not been used in
the aforementioned bioreceptors. Numerous chem-
ical substances related to health conditions have
been demonstrated. The direct colorimetric as-
say presented the simplest detection of biological
molecules. As the simplest demonstration, the
determination of the albumin (AL) to creatinine
(CR) ratio has been employed for the screening of
diabetes. Bromocresol green was used to evaluate
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Table 2 The merits of other applications of biosensors.

Receptor Analyte(s) Transducer Description Ref.

– Albumin (AL) and Colorimetry Bromocresol green for total AL and CR [45]
Creatinine (CR) Jaffé picric acid for selective CR

APBA and ESM Total hemoglobin and EIS Affinity sensor [46]
glycated hemoglobin (HbA1c) Label-free

Paper-based SPCE
APBA HbA1c EIS Affinity sensor [47]

Label-free
Gold microelectrode array (IDA) chips

CDP-choline CRP EIS Affinity sensor [48]
Label-free
Phosphocholine-modified SPCE

PMPC-SH CRP DPV Affinity sensor [49]
Label-free
AuNPs modified SPCE

– Glucose Chronoampero- Nonenzymatic sensor [51]
metry CoPc/G/IL paper-based SPCE

– Glucose Chronoampero- Nonenzymatic sensor [52]
metry Pt/Au/BDD electrode

– Creatinine Amperometry Nonenzymatic sensor [53]
CuO/IL/ERGO modified paper-based SPCE

– Dopamine SWV Nonenzymatic sensor [55]
G/PANI/PS nanofiber-modified SPCE

– Dopamine SWV Nonenzymatic sensor [54]
SDS modified ePAD

– Norepinephrine and SWASV Nonenzymatic sensor [56]
Serotonin BDDPE

– Norepinephrine, serotonin DPV Nonenzymatic sensor [57]
and p-aminophenol Janus-ePAD

BDDPE

EIS: electrochemical impedance spectroscopy, DPV: differential pulse voltammetry, SWV: square wave voltammetry,
SWASV: square wave anodic stripping voltammetry, SPCE: screen-printed carbon electrode, APBA: 3-aminophenyl
boronic acid, ESM: boronate-modified eggshell membrane, CDP-choline: cytidine 5′-diphosphocholine sodium
salt dihydrate, PMPC-SH: thiol-terminated poly(2-methacryloyloxyethyl phosphorylcholine), CoPc/G/IL: cobalt
phthalocyanine-ionic liquid-graphene composite, Pt/Au/BDD electrode: Bimetallic Pt-Au nanocatalysts electro-
chemically deposited on boron-doped diamond electrode, CuO/IL/ERGO: copper oxide/ionic liquid/electrochem-
ically reduced graphene oxide composite, G/PANI/PS: graphene/polyaniline/polystyrene, SDS modified ePAD:
sodium dodecyl sulfate-modified electrochemical paper-based analytical device, BDDPE: boron doped-diamond
paste electrode.

the total Al and CR, while Jaffé picric acid was used
for selective detection of CR. The distinguished color
change can be observed by the naked eye [45].

Affinity sensors are point-of-care devices based
on either a biological recognition element or chem-
ical recognition that are highly suitable for moni-
toring biomarkers [46]. For example, boronic acid
and phosphocholine have been presented as chem-
ical recognition sites for the detection of glycated
hemoglobin [46, 47] and c-reactive protein [48, 49],
respectively. Through the modification of these
recognition molecules on the electrode surface, elec-
trochemical detection was performed to examine

the concentration of the target analyte.
Nonenzymatic electrochemical assays are an-

other platform that is applied as a biosensor. Nonen-
zymatic biosensors are based on the catalytic re-
action of the analyte of interest by a variety of
materials on the electrochemical transducer [50].
The concentration of the analytes was determined
by direct electrochemical detection. Nonenzymatic
biosensors have been applied for the detection of
many substances, such as glucose [51, 52], creati-
nine [53], dopamine [54, 55], and neurotransmit-
ters [56, 57]. The merits of other applications are
shown in Table 2.
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CONCLUSION

Various biosensor platforms have been developed
and categorized based on their bioreceptors. Each
type of biosensor presents fascinating properties.
The development of biosensors mainly includes
miniaturizing biosensors, automating operations,
using novel biorecognition molecules, employing
new material devices, and improving the ana-
lytical performance of biosensors towards target
molecules. With a wide range of target molecules,
many bioreceptors are used including enzymes,
antigens/antibodies, nucleic acids, and synthetic
receptors, and a variety of detection methods have
been employed including electrochemical, colori-
metric and spectroscopic detection. Thus, the de-
velopment of biosensors plays an important role
in many applications, such as those regarding the
environment and food contaminants, especially in
the diagnosis of many diseases. Future work should
include the integration of technology that enables
biosensors to be empowered in a wide range of
applications with simple, user-friendly, inexpensive,
less time analysis, low reagent and sample volumes.
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