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ABSTRACT: In this paper, by using the Nevanlinna’s value distribution theory and the method of Zalcman-Pang, it
investigates the normality of a family of meromorphic functions, denoted byF , defined in a domain D, which concerns
the conditions for each f ∈F : (i) E(S1, f ) = E(S2, ( f (k))q); (ii) both zeros and poles of f −a have multiplicities at least
k (> 2 or ¾ 2) and k+ 1, respectively, or k (¾ 4) and k− 1, respectively, where k and q are positive integers, a is any
finite complex number, S1 = {a1, a2, a3} and S2 = {b1, b2, b3} are made up of finite complex numbers. The conclusion
still holds if condition (ii) is replaced by the assumption that zeros of f − ai have multiplicities at least k, where k ¾ 1
and i = 1,2, 3.
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INTRODUCTION

In this paper, we use the standard notations and
definitions of values distribution theory such as
T (r, f ), N(r, f ), N(r, f ) and S(r, f ), see [1, 2].

Let D be a domain in C and letF be a family of
meromorphic functions defined in D. F is said to be
normal in D in the sense of Montel if each sequence
{ fn} ⊂ F contains a subsequence that converges
spherically locally uniformly in D, to a meromorphic
function or∞, see [3, 4].

Let f and g be two meromorphic functions in a
domain D, and let a be any complex number in C. If
the zeros of f −a are the same as the zeros of g−a,
we say f and g share a IM, see [5, 6].

Let F be a family of meromorphic functions in
a domain D, if there exists a neighborhood (denoted
by∆(z0)) of point z0 such thatF is normal in∆(z0),
F is said to be normal at z0 ∈ D,see [7, 8].

Schwick [9] was the first one who gave a con-
nection between normality and shared values, and
proved the following result.

Theorem A ([9]) LetF be a family of meromorphic
functions in a domain D, let a1, a2 and a3 be three
distinct finite complex numbers. If f and f ′ share ai
IM for each f ∈F , where i = 1, 2,3, thenF is normal
in D.

Fang [10] generalized Theorem A as follows, and
proposed the concept of shared set.

Let f and g be two meromorphic functions in
a domain D, and let S = {a1, a2, a3}, where S con-
sists of finite complex numbers. Denote E(S, f ) =
⋃

ai∈S{z ∈ D : f (z) − ai = 0}, where i = 1, 2,3. If

E(S, f ) = E(S, g), we say that f and g share S.

Theorem B ([10]) LetF be a family of holomorphic
functions in a domain D, let a1, a2 and a3 be three
distinct finite complex numbers. If E(S, f ) = E(S, f ′)
for any f ∈ F , where S = {a1, a2, a3}, then F is
normal in D.

Since then, many results of normality criteria con-
cerning sharing values have been obtained, for ex-
ample in [11, 12]. It is natural to ask whether the
result is valid or not if a1, a2 and a3 (Theorem A) are
replaced by a set S := {a1, a2, a3}. In this direction,
Liu and Pang [13] proved the following result.

Theorem C ([13]) Let F be a family of meromor-
phic functions in a domain D, let a1, a2 and a3 be
three distinct finite complex numbers. If E(S, f ) =
E(S, f ′) for any f ∈ F , where S = {a1, a2, a3}, then
F is normal in D.

Zhang et al [14] showed the following result.

Theorem D ([14]) Let F be a family of meromor-
phic functions in a domain D, let a1, a2 and a3 be
three distinct finite complex numbers, let k > 2 be a
positive integer, let a be any finite complex number,
and let S = {a1, a2, a3}. If for each f ∈ F ,
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(i) E(S, f ) = E(S, f (k));
(ii) both zeros and poles of f − a are of multiplicities

at least k,
then F is normal in D.

We generalize Theorem D as follows.

Theorem 1 Let F be a family of meromorphic func-
tions in a domain D, let S1 = {a1, a2, a3}, S2 =
{b1, b2, b3}, where S1 and S2 are made up of finite
complex numbers, let k > 2 and q be two positive
integers, and let a be any finite complex number.
Suppose that for each f ∈ F ,
(i) E(S1, f ) = E(S2, ( f (k))q);
(ii) both zeros and poles of f − a have multiplicities

at least k,
then F is normal in D.

In Theorem 1, if condition (ii) is replaced by f −
ai (i = 1, 2,3) has zeros with multiplicities at least
k ¾ 1 or f −a has zeros and poles with multiplicities
at least k ¾ 2 and k + 1, respectively, or f − a has
zeros and poles with multiplicities at least k¾ 4 and
k−1, respectively, the conclusion still holds. We get
the following results.

Theorem 2 Let F be a family of meromorphic func-
tions in a domain D, let S1 = {a1, a2, a3}, S2 =
{b1, b2, b3}, where S1 and S2 consist of finite complex
numbers, and let k and q be two positive integers. If
for all f ∈ F ,
(i) E(S1, f ) = E(S2, ( f (k))q);
(ii) f −ai , i = 1,2, 3, has zeros with multiplicities at

least k,
then F is normal in D.

Remark 1 Theorem C is a corollary of Theorem 2.

Theorem 3 Let F be a family of meromorphic func-
tions in a domain D, let S1 = {a1, a2, a3}, S2 =
{b1, b2, b3}, where S1 and S2 consist of finite complex
numbers, let k ¾ 2 and q be two positive integers, and
let a be any finite complex number. If for each f ∈F ,
(i) E(S1, f ) = E(S2, ( f (k))q);
(ii) f − a has zeros and poles with multiplicities at

least k and k+1, respectively,
then F is normal in D.

Theorem 4 Let F be a family of meromorphic func-
tions in a domain D, let S1 = {a1, a2, a3}, S2 =
{b1, b2, b3}, where S1 and S2 consist of finite complex
numbers, let k ¾ 4 and q be two positive integers, and
let a be any finite complex number. Suppose that for
each f ∈ F ,
(i) E(S1, f ) = E(S2, ( f (k))q);

(ii) f − a has zeros and poles with multiplicities at
least k and k−1, respectively,

then F is normal in D.

The following example due to Zhang et al [14]
illustrates that the condition that the zeros of f −
a have multiplicities at least k > 2 is necessary in
Theorem 1.

Example 1 We denote the unit disk {z ∈C: |z|< 1}
by 4, let F = { fn} be a family of meromorphic
functions in 4, where fn = n(ew1z − ew2z), n =
1,2, . . . , w1 6= w2, wk

1 = wk
2 = 1, and k ¾ 2 be a pos-

itive integer. After a simple calculation, we obtain
f = f (k) for each f , getting | f ′(0)|/(1+ | f (0)|2) =
n(w1 −w2)→∞ for large n. According to Marty’s
normality criteria, we know F is not normal in 4.

LEMMAS

In order to prove our results, we need the following
lemmas.

Lemma 1 ([15]) Let F be a family of meromorphic
functions in the unit disk ∆ with the property that
for each f ∈ F , both zeros and poles of f − a are of
multiplicities at least k and p respectively. Suppose
that there exists a positive number A > 1 such that
| f (k)(z)| ¶ A whenever f (z) = 0. If F is not normal
in ∆, then for any real number α, p < α ¶ k, there
exists
(i) a sequence of complex numbers zn→z0, |zn|<r<1,
(ii) a sequence of functions fn ∈ F ,
(iii) a sequence of positive numbers ρn→ 0,
(iv) a real number r, 0< r < 1,
such that gn(ξ) = ρ−αn fn(zn+ρnξ) converges spheri-
cally locally uniformly to a non-constant meromorphic
function g(ξ) in C such that g#(ξ) = |g ′(ξ)|

1+|g(ξ)|2 ¶
g#(0) = kA+1, where g(ξ) has zeros and poles with
multiplicities at least k and p, respectively. Moreover,
g(ξ) is of order at most two.

Remark 2 If F is not normal at z0 ∈ ∆, the above
conclusion still holds when there exists points zn
such that zn→ z0 for large n.

Lemma 2 Suppose that f is a meromorphic function
of finite order, a1, a2 and a3 are three distinct finite
complex numbers. If the number of zeros of f is
finite in C and ( f (k))q ∈ S implies f (z) = 0, where
S = {a1, a2, a3}, then f is a rational function.
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Proof : By the second Nevanlinna fundamental the-
orem, we have

T (r, ( f (k))q)¶
3
∑

i=1

N
�

r,
1

( f (k))q − ai

�

+ S(r, ( f (k))q)

¶ N(r,
1
f
)+ S(r, ( f (k))q).

Obviously,

T (r, ( f (k))q)¶ qT (r, f (k))
¶ q(k+1)T (r, f )+ qS(r, f ). (1)

According to (1) and the assumption that f is a
meromorphic function of finite order, we see that
( f (k))q is also a meromorphic function with finite
order, and get

S(r, ( f (k))q) = O(log r). (2)

By the condition that the number of zeros of f (z) is
finite in C, we have

N
�

r, 1
f

�

= O(log r). (3)

It follows from (2) and (3) that

T (r, ( f (k))q)¶ O(log r),

which implies that f is a rational function. 2

Lemma 3 ([3]) Let f be a non-constant meromor-
phic function on the open complex plane, k be a
positive integer, then we get

N(r,
1

f (k)
)¶ T (r, f (k))− T (r, f )+N(r,

1
f
)+ S(r, f ),

N(r,
1

f (k)
)¶ N(r,

1
f
)+ kN(r, f )+ S(r, f ).

PROOF OF Theorem 1

Proof : Suppose thatF is not normal in a domain D,
without loss of generality, we assume that F is not
normal at z0 ∈ D. Then we consider two cases.

Case 1. a ∈ S1. Suppose that a = a1, by
Lemma 1, there exists zn → z0, fn ∈ F and ρn → 0
satisfying

gn(ζ) = fn(zn+ρnζ)− a1→ g(ζ)

uniformly on compact subsets of C, where g(ζ) is
a non-constant meromorphic function. Moreover,
both zeros and poles of g(ζ) have multiplicities at
least k > 2.

Subcase 1.1 There exists ζ0 ∈ C such that
g(ζ0) = 0.

Let Gn(ζ) = ρ−k
n ( fn(zn + ρnζ) − a1). In the

view of the condition, we know that zeros of Gn(ζ)
have multiplicities at least k. Obviously, there is a
neighbourhood |ζ−ζ0|< δ(ζ0) such that Gn(ζ) is a
holomorphic function. Now we claim that {Gn(ζ)}
is not normal at ζ0. Indeed, if {Gn(ζ)} is normal at
ζ0, we have Gn(ζn)→ G(ζ) uniformly in |ζ− ζ0| <
δ(ζ0) as n → ∞, where G(ζ) is a holomorphic
function. We have g(ζ) 6≡ 0 by the condition that
g(ζ) is non-constant. By Hurwitz’s theorem, we
choose a sequence of points ζn → ζ0 such that
gn(ζn) = fn(zn +ρnζn)− a1 = 0 and Gn(ζn) = 0 for
sufficiently large n. Clearly, there exists a deleted
neighborhood (denoted by 4′(ζ0,δ(ζ0)) = {ζ: 0 <
|ζ − ζ0| < δ(ζ0)}) of point ζ0 such that g(ζ) 6= 0
for all ζ ∈ 4′, that is to say, fn(zn + ρnζ) 6= a1 in
4′, without loss of generality, suppose that fn(zn +
ρnζ) = a2 in 4′, then we know that Gn(ζ) =∞ in
4′ as n→∞, which is conflicting.

Gn(ζ) = 0 is equal to fn(zn + ρnζ) = a1.
Based on the condition, we have ( f (k)n (zn +
ρnζ))q = (G(k)n (ζ))

q ∈ S2 and choose bi ∈ S2 such
that (G(k)n (ζ))

q = bi , from which we know that

|G(k)n (ζ)| ¶
∑3

i=1
q
p

|bi | + k whenever Gn(ζ) = 0,

where i = 1,2, 3. Suppose that A=
∑3

i=1
q
p

|bi |+ k.
Combining with Lemma 1, there exists ζn→ ζ0,

ηn → 0 and a subsequence of functions {Gn} such
that

Fn(ξ) = η
−k
n Gn(ζn+ηnξ)→ F(ξ)

uniformly on any compact subset of C. F(ξ) is
a non-constant meromorphic function such that
F#(ξ) = |F ′(ξ)|/(1+ |F(ξ)|2) ¶ F#(0) = kA + 1.
Moreover, F(ξ) has zeros with multiplicities at least
k and F(ξ) is of order at most 2. We claim that

(a) The number of distinct zeros of F(ξ) is finite
in C;

(b) F(ξ) = 0 ⇐⇒ (F (k)(ξ))q ∈ S2.

Let ζ0 be a zero of g(ζ) with multiplicity m,
we prove that F(ξ) has at most m different ze-
ros. Otherwise, if F(ξ) has m + 1 distinct points
ξ1,ξ2, . . . ,ξm+1 in C such that F(ξ j) = 0 for 1 ¶
j ¶ m + 1. From Hurwitz’s theorem and the fact
that F(ξ) 6≡ 0, there exists a sequence of points
ξn j
→ ξ j satisfying Fn(ξn j

) = 0, then we know that
fn(zn+ρn(ζn+ηnξn j

))−a1 = 0 when ζn+ηnξn j
→ ζ0

for large n, where j = 1, 2, . . . , m+ 1. We deduce
that ζ0 is a zero of g(ζ) with multiplicity m + 1
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by Hurwitz’s theorem, which contradicts the above
hypothesis. Thus the proof of claim (a) is complete.

If F(ξ0) = 0, by Hurwitz’s theorem and the
condition F(ξ) 6≡ 0, we can find points ξn→ ξ0 such
that Fn(ξn) = 0, so is fn(zn +ρn(ζn +ηnξn)) = a1.
By the assumption that E(S1, f ) = E(S2, ( f (k))q), we
know that (F (k)n (ξn))q = ( f (k)n (zn+ρn(ζn+ηnξn)))q ∈
S2 and limn→∞(F (k)n (ξn))q = (F (k)(ξ0))q ∈ S2.

Thus we have proved F(ξ) = 0→ (F (k)(ξ))q ∈
S2. On the other hand, if (F (k)(ξ0))q ∈ S2, for a given
point ξ0 ∈ C, there exists (F (k)(ξ0))q = bi , where
i = 1, 2,3. First of all, we prove (F (k)(ξ))q 6≡ bi .
On the contrary, we suppose that (F (k)(ξ))q ≡ bi ,
from which we obtain that F(ξ) is a polynomial
with degree at most k, according to the fact that
each zero of F(ξ) is of multiplicity at least k, we
claim that F(ξ) is a polynomial of degree k such that
F(ξ) = (k!)−1 q

p

bi(ξ−ξ0)k. If q
p

bi 6= 0, we have

F#(0) =
|F ′(0)|

1+ |F(0)|2
=

q
p
|bi |

(k−1)! |ξ0|k−1

1+ (
q
p
|bi |)2
(k!)2 |ξ0|2k

,

F#(0)¶



















q
p
|bi |

(k−1)! |ξ0|k−1 ¶
q
p
|bi |
2 , |ξ0|< 1

qp|bi |
(k−1)! |ξ0|k−1

2
qp|bi |

k! |ξ0|k
¶ k

2 , |ξ0|¾ 1.

All in all, F#(0) ¶
q
p
|bi |
2 + k

2 . If q
p

|bi | = 0, the
above inequality also holds, which contradicts the
fact that F#(0) = kA+ 1. By Hurwitz’s theorem
and the condition that (F (k)(ξ))q 6≡ bi , we choose a
sequence of points ξn satisfying ξn→ ξ0, such that

(F (k)n (ξn))
q = ( f (k)n (zn+ρn(ζn+ηnξn)))

q = bi .

Combining with the assumption

E(S1, f ) = E(S2, ( f (k))q),

we obtain fn(zn + ρn(ζn + ηnξn)) ∈ S1. Next we
prove that there exists a subsequence of fn such that
fn(zn+ρn(ζn+ηnξn)) = a1 if n is sufficiently large.
Otherwise, without loss of generality, suppose that
fn(zn +ρn(ζn + ηnξn)) = a2 for large n, we obtain
F(ξ0) = limn→∞ρ

−k
n η

−k
n ( fn(zn + ρn(ζn + ηnξn)) −

a1) = limn→∞ρ
−k
n η

−k
n (a2− a1) =∞. This is incon-

sistent with the fact that (F (k)(ξ0))q = bi . Hence, we
get F(ξ0) = limn→∞ρ

−k
n η

−k
n ( fn(zn+ρn(ζn+ηnξn))−

a1) = 0. This illustrates that F(ξ) = 0 whenever
F (k)(ξ))q ∈ S2, thus claim (b) is proved.

By claims (a) and (b), and Lemma 2, we claim
that F(ξ) is a rational function. Next we prove that
F(ξ) is a polynomial.

Suppose that F(ξ) is a non-constant rational
function, but F(ξ) is not a polynomial. Set F =
H
Q , both H and Q are relatively prime polynomi-
als. Zeros of H are α1, . . . ,αs with multiplicities
m1, . . . , ms respectively. Zeros of Q are β1, . . . ,βt
with multiplicities n1, . . . , nt , respectively. We get
mi ¾ k by the hypothesis that zeros of F have
multiplicities at least k, where i = 1, 2, . . . , s. Let
M = deg H =

∑s
i=1 mi and N = degQ =

∑t
j=1 n j .

Write (F (k))q = (Hk)q

(Qk)q
. After a simple calculation, we

get deg((Qk)q)=q(N + kt), thus

2q(N + kt) log r ¶ 2T (r, (F (k))q).

According to the second Nevanlinna fundamental
theorem, we obtain

2T (r, (F (k))q)¶
3
∑

i=1

N
�

r, 1
(F (k))q−bi

�

+N(r, F)+O(1)

¶ N(r, 1
F )+N(r, F)+O(1)

¶ (t + s) log r +O(1).

We find that 2q(N+kt) log r ¶ (t+s) log r+O(1) and
s ¾ 2qN + 1. By the condition that zeros of F have
multiplicities at least k, we have M ¾ ks ¾ 2qNk+
k > 2N . After a simple calculation, we obtain

deg((Hk)
q)−deg((Qk)

q) = q(M −N − k)> 0. (4)

From (4), we have deg((Hk)q) = q((M−N−k)+N+
kt) = q(M + k(t −1))¾ M and get

2M log r ¶ (t + s) log r +O(1)
¶ (M +N) log r +O(1). (5)

It follows from (5) that M ¶ N , which is impossible.
Suppose that F(ξ) = Cpξ

p + Cp−1ξ
p−1 + · · · +

Ckξ
k+Ck−1ξ

k−1+ · · ·+C0, where Ci , i = 0,1, . . . , p,
is a complex number, and Cp 6= 0. Combining with
the condition that zeros of F have multiplicities at
least k, we obtain p ¾ k.

By the second Nevanlinna fundamental theo-
rem, we have

2T (r, (F (k))q)¶
3
∑

i=1

N
�

r, 1
(F (k))q−bi

�

+N(r, F)+O(1)

¶ N(r, 1
F )+O(1)

= T (r, F)+O(1),

from which we obtain 2q(p−k) log r ¶ p log r+O(1)
and k ¶ p ¶ (1+ 1

2q−1 )k ¶ 2k.
Subcase 1.1.1 p = k. Then F is a polynomial

of degree k, so that (F (k)(ξ))q ≡ d, where d is a
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constant. If d ∈ S2, we get F(ξ) ≡ 0 by claim (b),
which is invalid. If d 6∈ S2, we know that F(ξ) is
a non-zero constant from the fact that F(ξ) is a
polynomial, which contradicts the condition that F
is a non-constant meromorphic function.

Subcase 1.1.2 p = 2k. If p = 2k, we know that
F is a polynomial with degree 2k. We claim that F
has only two distinct zeros or only one zero by the
condition that zeros of F have multiplicity at least k.

Subcase 1.1.2.1 F(ξ) has only one zero. From
the second Nevanlinna fundamental theorem and
claim (b),

2T (r, (F (k))q)¶
3
∑

i=1

N
�

r, 1
(F (k))q−bi

�

+N(r, F)+O(1)

¶ N(r, 1
(F (k))q )+O(1)

= T (r, (F (k))q)+O(1),

which is conflicting.
Subcase 1.1.2.2 F(ξ) has only two distinct ze-

ros. Write F(ξ) =m(ξ−ξ0)k(ξ−ξ1)k, where m 6= 0,
ξ0 and ξ1 are distinct finite complex numbers. For
any i = 1, 2,3, (F (k)(ξ))q − bi has at least one zero,
then we know that F(ξ) has at least three distinct
zeros by the fact that (F (k)(ξ))q ∈ S2 → F(ξ) = 0,
which is impossible.

Subcase 1.2 g(ζ) 6= 0. Suppose that there
exists ζ0 satisfying g(ζ0) = a2 − a1. Note that
g(ζ) 6≡ a2 − a1, by Hurwitz’s theorem, we find
a sequence ζn such that gn(ζn) = a2 − a1 when
ζn → ζ0, an equivalent statement is that fn(zn +
ρnζn) = a2. Since E(S1, f ) ⊆ E(S2, ( f (k))q), we
obtain ( f (k)n (zn + ρnζn))q ∈ S2 and find a subse-
quence of { fn} such that ( f (k)n (zn + ρnζn))q = s,
and therefore (g(k)(ζ0))q = limn→∞(g(k)n (ζn))q =
limn→∞(ρk

n f (k)n (zn + ρnζn))q = limn→∞ρ
kqsq = 0,

where s ∈ S2. This illustrates that E(a2 − a1, g) ⊆
E(0, (g(k))q). In a similar fashion, we can prove
E(a3 − a1, g) ⊆ E(0, (g(k))q). By the second Nevan-
linna fundamental theorem and the hypothesis that
poles of g are of multiplicities at least k and
Lemma 3,

2T (r, g)¶ N(r, g)+N(r, 1
g )

+
3
∑

i=2

N
�

r, 1
g−(ai−a1)

�

+ S(r, g)

¶ N(r, g)+N(r, 1
(g(k))q )+ S(r, g)

= N(r, g)+N(r, 1
g(k) )+ S(r, g),

which gives

2T (r, g)¶ 1
k N(r, g)+N(r, 1

g )+ kN(r, g)+ S(r, g)

¶ ( 1
k +1)T (r, g)+ S(r, g),

which contradicts the fact that k > 2.
Case 2. a 6∈ S1. By Lemma 1, there exists

zn→ z0, ρn→ 0 and a subsequence of fn ∈ F such
that

gn(ζ) = fn(zn+ρnζ)− a→ g(ζ)

uniformly on any compact subset of C, where g(ζ)
is a non-constant meromorphic function such that
both zeros and poles of g(ζ) have multiplicities at
least k. Similar to Subcase 1.2, we have E(ai −
a, g) ⊆ E(0, (g(k))q), i = 1, 2,3. By the second
Nevanlinna fundamental theorem and the fact that
both zeros and poles of g are of multiplicities at least
k and Lemma 3, we get

3T (r, g)

¶ N(r, g)+N(r, 1
g )+

3
∑

i=1

N(r, 1
g−(ai−a) )+ S(r g)

= N(r, g)+N(r, 1
g )+N(r, 1

(g(k))q )+ S(r, g)

= N(r, g)+N(r, 1
g )+N(r, 1

g(k) )+ S(r, g)

¶ 1
k N(r, g)+ 1

k N(r, 1
g )+N(r, 1

g )+N(r, g)+ S(r, g)

¶ ( 2
k +2)T (r, g)+ S(r, g),

which contradicts the fact that k > 2. Theorem 1 is
completely proved. 2

PROOF OF Theorem 2

Proof : Assume that F is not normal in a domain D,
without loss of generality, we suppose that F is not
normal at z0 ∈ D. By Lemma 1, we choose zn→ z0,
fn ∈ F and ρn→ 0 such that

gn(ζ) = fn(zn+ρnζ)→ g(ζ)

uniformly on compact subsets of C. We know
that at least one of g(ζ) − ai must have zeros by
the condition that g(ζ) is non-constant and Picard
theorem, where i = 1,2, 3. Let ζ0 be a zero of
g(ζ)− a1 with multiplicity k.

Write Gn(ζ) =ρ−k
n ( fn(zn+ρnζ)−a1). According

to the assumption, we claim that zeros of Gn(ζ) have
multiplicities at least k. In the same manner as
in the proof of Subcase 1.1 in Theorem 1, we can
prove that {Gn(ζ)} is not normal at ζ0. Combining
with the assumption that E(S1, f ) = E(S2, ( f (k))q),
we know that |G(k)n (ζ)| ¶

∑3
i=1

q
p

|bi |+ k whenever

Gn(ζ) = 0. Suppose that A=
∑3

i=1
q
p

|bi |+ k.
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By Lemma 1, there exists ζn→ ζ0, ηn→ 0 and a
sequence of {Gn} such that Fn(ξ) = η−k

n Gn(ζn+ηnξ)
which converges spherically locally uniformly to a
non-constant meromorphic function F(ξ) satisfying
F#(ξ) = |F ′(ξ)|/(1+ |F(ξ)|2) ¶ F#(0) = kA+ 1 on
C; moreover, zeros of F(ξ) are of multiplicities at
least k, and F(ξ) is of order at most 2.

Also as in the proof of Subcase 1.1 in Theorem 1,
we claim that

(c) The number of distinct zeros of F(ξ) is finite
in C;

(d) F(ξ) = 0 ⇐⇒ (F (k)(ξ))q ∈ S2.

According to claims (c) and (d), and Lemma 2,
we know that F(ξ) is a rational function. In the simi-
lar fashion to the proof of Subcase 1.1 in Theorem 1,
we claim that F(ξ) is a polynomial.

Set F(ξ) = Cpξ
p + Cp−1ξ

p−1 + · · · + Ckξ
k +

Ck−1ξ
k−1 + · · · + C0, where Ci (i = 0,1, . . . , p) is a

complex number, and Cp 6= 0. We get p ¾ k by the
fact that zeros of F(ξ) have multiplicities ¾ k.

Next we can prove Theorem 2 by using the same
argument as in Subcase 1.1 of Theorem 1. 2

PROOF OF Theorem 3

Proof : Suppose thatF is not normal in a domain D,
without loss of generality, we assume that F is not
normal at z0 ∈ D. Then we consider two cases.

Case 1. a ∈ S1. Suppose that a = a1, by
Lemma 1, there exists
(i) a sequence of complex numbers zn → z0, |zn| <

r < 1;
(ii) a sequence of functions fn ∈ F ;
(iii) a sequence of positive numbers ρn→ 0,
such that gn(ζ) = fn(zn +ρnζ)− a1 converges uni-
formly with respect to the spherical metric to a non-
constant meromorphic function g(ζ) in C. More-
over, g(ζ) is of order at most 2, all of whose zeros
and poles have multiplicities at least k¾ 2 and k+1,
respectively.

Subcase 1.1 There exists ζ0 ∈ C such that
g(ζ0) = 0. Set Gn(ζ) = ρ−k

n ( fn(zn +ρnζ)− a1). By
the condition, we know that zeros of Gn(ζ) have
multiplicities at least k ¾ 2. Obviously, there is a
neighbourhood |ζ−ζ0|< δ(ζ0) such that Gn(ζ) is a
holomorphic function.

Also as in the proof of Subcase 1.1 in Theorem 1,
we claim that {Gn(ζ)} is not normal at ζ0 and
|G(k)n (ζ)|¶

∑3
i=1

q
p

|bi |+ k whenever Gn(ζ) = 0, i =
1,2, 3. Suppose that A=

∑3
i=1

q
p

|bi |+ k.
Combining with Lemma 1, there exists ζn →

ζ0, ηn → 0 and a subsequence of functions {Gn}

such that Fn(ξ) =η−k
n Gn(ζn+ηnξ) converges locally

uniformly to a non-constant meromorphic func-
tion F(ξ) such that F#(ξ) = |F ′(ξ)|/(1+ |F(ξ)|2)¶
F#(0) = kA+ 1 on any compact subset of C, where
F(ξ) has zeros with multiplicities at least k and F(ξ)
is of order at most 2. We claim that

(e) The number of distinct zeros of F(ξ) is finite
in C;

(f) F(ξ) = 0 ⇐⇒ (F (k)(ξ))q ∈ S2.

By claims (e) and (f) and, Lemma 2, we claim that
F(ξ) is a rational function. In a similar fashion to
the proof of Subcase 1.1 in Theorem 1, we claim
that F(ξ) is a polynomial.

Next, the proof of Subcase 1.1 in Theorem 3 is
completely similar with the proof of Subcase 1.1 in
Theorem 1.

Subcase 1.2 g(ζ) 6= 0. If there exists ζ0 such
that g(ζ0) = a2 − a1. By the fact that g(ζ) 6≡ a2 −
a1 and Hurwitz’s theorem, we find a sequence ζn
such that gn(ζn) = a2 − a1 when ζn → ζ0, which
means that fn(zn+ρnζn) = a2. We obtain ( f (k)n (zn+
ρnζn))q ∈ S2 and find a subsequence of { fn} such
that ( f (k)n (zn + ρnζn))q = s by the condition that
E(S1, f )⊆ E(S2, ( f (k))q), and therefore (g(k)(ζ0))q =
limn→∞(g(k)n (ζn))q = limn→∞ρ

k
n f (k)n (zn+ρnζn))q =

limn→∞ρ
kqsq = 0, where s ∈ S2. This illustrates that

E(a2 − a1, g) ⊆ E(0, (g(k))q). In a similar fashion,
we can prove E(a3 − a1 g) ⊆ E(0, (g(k))q). By the
second Nevanlinna fundamental theorem and the
hypothesis that poles of g are of multiplicities at
least k+1, and Lemma 3, it is known that

2T (r, g)¶ N(r, g)+N(r, 1
g )

+
3
∑

i=2

N(r, 1
g−(ai−a1)

)+ S(r, g)

¶ N(r, g)+N(r, 1
(g(k))q )+ S(r, g)

= N(r, g)+N(r, 1
g(k) )+ S(r, g)

¶ 1
k+1 N(r, g)+N(r, 1

g )+ kN(r, g)+ S(r, g)

¶ ( 1
k+1 +

k
k+1 )T (r, g)+ S(r, g)

= T (r, g)+ S(r, g),

which is conflicting.
Case 2. a 6∈ S1. By Lemma 1, there exists

zn → z0, ρn → 0 and a subsequence of fn ∈ F
such that gn(ζ) = fn(zn+ρnζ)−a converges locally
uniformly to a non-constant meromorphic function
g(ζ) on any compact subset of C, where both zeros
and poles of g(ζ) have multiplicities at least k and
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k + 1, respectively. It is similar to Subcase 1.2, we
have E(ai − a, g) ⊆ E(0, (g(k))q), i = 1,2, 3.

By the second Nevanlinna fundamental theorem
and the fact that both zeros and poles of g are of
multiplicities at least k and k+ 1, respectively, and
Lemma 3, we get

3T (r, g)¶ N(r, g)+N(r, 1
g )

+
3
∑

i=1

N(r, 1
g−(ai−a) )+ S(r, g)

= N(r, g)+N(r, 1
g )+N(r, 1

(g(k))q )+ S(r, g)

= N(r, g)+N(r, 1
g )+N(r, 1

g(k) )+ S(r, g)

¶ 1
k+1 N(r, g)+ 1

k N(r, 1
g )+N(r, 1

g )

+ k
k+1 N(r, g)+ S(r, g)

¶ ( 1
k +2)T (r, g)+ S(r, g),

which contradicts the fact that k ¾ 2. Theorem 3 is
proved completely. 2

PROOF OF Theorem 4

Proof : If F is not normal in a domain D, without
loss of generality, we suppose that F is not normal
at z0 ∈ D. Next, we consider two cases.

Case 1. a ∈ S1. Assume that a = a1, by
Lemma 1, there exists zn → z0, fn ∈ F and ρn → 0
satisfying

gn(ζ) = fn(zn+ρnζ)− a1→ g(ζ)

uniformly on compact subsets of C, where g(ζ)
has zeros and poles with multiplicities at least k ¾
4 and k − 1, respectively, g(ζ) is a non-constant
meromorphic function of order at most 2.

Subcase 1.1 There exists ζ0 ∈ C such that
g(ζ0) = 0. Write Gn(ζ) = ρ−k

n ( fn(zn + ρnζ)− a1).
We know that Gn(ζ) has zeros with multiplicities at
least k ¾ 4 by the condition. It is clear to find a
neighbourhood |ζ−ζ0|< δ(ζ0) such that Gn(ζ) is a
holomorphic function.

In a similar fashion to the proof of Subcase 1.1
in Theorem 1, we claim that {Gn(ζ)} is not normal at
ζ0 and |G(k)n (ζ)|¶

∑3
i=1

q
p

|bi |+k whenever Gn(ζ) =
0, i = 1, 2,3. Suppose that A=

∑3
i=1

q
p

|bi |+ k.
By Lemma 1, there exists ζn → ζ0, ηn → 0 and

a subsequence of functions {Gn} such that

Fn(ξ) = η
−k
n Gn(ζn+ηnξ)→ F(ξ)

uniformly on any compact subset of C. F(ξ), whose
zeros have multiplicities at least k ¾ 4, is a non-
constant meromorphic function such that F#(ξ) =

|F ′(ξ)|/(1+ |F(ξ)|2) ¶ F#(0) = kA+ 1, and F(ξ) is
of order at most 2. We claim that

(g) The number of distinct zeros of F(ξ) is finite
in C;

(h) F(ξ) = 0 ⇐⇒ (F (k)(ξ))q ∈ S2.

We claim that F(ξ) is a rational function according
to claims (g) and (h), and Lemma 2. In a similar
fashion to the proof of Subcase 1.1 in Theorem 1,
we claim that F(ξ) is a polynomial.

Next, also as in the proof of Subcase 1.1 in
Theorem 1, we can prove Subcase 1.1 in Theorem 4.

Subcase 1.2 g(ζ) 6= 0. Without loss of gen-
erality, we assume that there exists ζ0 satisfying
g(ζ0) = a2 − a1. Combining with Hurwitz’s theo-
rem and the fact that g(ζ) is non-constant, there
exists a sequence ζn such that gn(ζn) = a2 − a1
and fn(zn + ρnζn) = a2 for ζn → ζ0. We get
( f (k)n (zn + ρnζn))q ∈ S2 and choose a subsequence
of { fn} such that ( f (k)n (zn + ρnζn))q = s by the
condition, so (g(k)(ζ0))q = limn→∞(g(k)n (ζn))q =
limn→∞(ρk

n f (k)n (zn + ρnζn))q = limn→∞ρ
kqsq = 0,

where s ∈ S2. This illustrates that E(a2 − a1, g) ⊆
E(0, (g(k))q). In a similar fashion, we can prove
E(a3 − a1, g) ⊆ E(0, (g(k))q). By the second Nevan-
linna fundamental theorem and the hypothesis that
poles of g are of multiplicities at least k − 1 and
Lemma 3, it is known that

2T (r, g)¶ N(r, g)+N(r, 1
g )

+
3
∑

i=2

N(r, 1
g−(ai−a1)

)+ S(r, g)

¶ N(r, g)+N(r, 1
(g(k))q )+ S(r, g)

= N(r, g)+N(r, 1
g(k) )+ S(r, g)

¶ 1
k−1 N(r g)+N(r, 1

g )+
k

k−1 N(r, g)+S(r, g)

= ( 2
k−1 +1)T (r, g)+ S(r, g),

which contradicts the fact that k ¾ 4.
Case 2. a 6∈ S1. According to Lemma 1, there

exists zn→ z0, ρn→ 0 and a subsequence of fn ∈F
such that

gn(ζ) = fn(zn+ρnζ)− a→ g(ζ)

uniformly on any compact subset of C, where g(ζ)
is a non-constant meromorphic function such that
both zeros and poles of g(ζ) have multiplicities at
least k¾ 4 and k−1, respectively. By using the same
argument as in Subcase 1.2, we have E(ai − a, g) ⊆
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E(0, (g(k))q), i = 1,2, 3. By the second Nevanlinna
fundamental theorem and the fact that both zeros
and poles of g are of multiplicities at least k and
k−1, respectively, and Lemma 3, we get

3T (r, g)¶ N(r, g)+N(r, 1
g )

+
3
∑

i=1

N(r, 1
g−(ai−a) )+ S(r, g)

= N(r, g)+N(r, 1
g )+N(r, 1

(g(k))q )+ S(r, g)

= N(r, g)+N(r, 1
g )+N(r, 1

g(k) )+ S(r, g)

¶ 1
k−1 N(r, g)+ 1

k N(r, 1
g )+N(r, 1

g )

+ k
k−1 N(r, g)+ S(r, g)

< ( 2+k
k−1 +1)T (r, g)+ S(r, g)

¶ 3T (r, g)+ S(r, g)

which contradicts the fact that k ¾ 4. Theorem 4 is
proved completely. 2

OPEN QUESTION

In Theorem 1, if S1 and S2 consist of holomorphic
functions, and we replace a with a(z) being any
holomorphic function, it is natural to ask:
Open question: Let F be a family of
meromorphic functions in a domain D, let
S1 = {a1(z), a2(z), a3(z)}, S2 = {b1(z), b2(z), b3(z)},
where S1 and S2 consist of holomorphic functions,
let k > 2 and q be two positive integers, and let
a(z) be any holomorphic function. Suppose that for
each f ∈ F ,
(i) E(S1, f ) = E(S2, ( f (k))q);
(ii) both zeros and poles of f −a(z) have multiplic-

ities at least k,
then F is normal in D.
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