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ABSTRACT: Moringa oleifera pod husk (MOPH), an agricultural waste, is presented as a biosorbent for the adsorption
of crystal violet (CV) in water. MOPH was characterized using Scanning electron microscopy (SEM), Fourier transform
infrared spectroscopy (FT-IR) and Brunauer-Emmett-Teller (BET) analysis. The effects of adsorption parameters on
adsorption capacity were optimized. Adsorption of CV by MOPH was rapid in the first 10 min, and equilibrium was
approached within 60 min at all initial CV concentrations. The adsorption kinetics study revealed a good correlation
between the pseudo-second order model and the experimental results. The maximum monolayer capacity obtained by
Langmuir model was 156.25 mg/g at 25 °C. The negative values of thermodynamic parameters indicated a spontaneous
and exothermic sorption process. The desorption of CV from MOPH was highest in aqueous acetic acid solution, and
the re-adsorption study confirmed the reusability of the MOPH biosorbent. Taking into account its abundance, low cost,
non-toxicity and its effectiveness and reusability based on the present results, MOPH can be regarded as a promising
biosorbent for the CV removal.
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INTRODUCTION

Crystal violet (CV), a cationic dye, is extensively
used in textile dyeing, paper printing, veterinary
medicine and biological stain [1]. The effluents
released from the utilization of CV contain poi-
sonous and non-biodegradable dye and compounds,
which adversely affect the environment and the
quality of human life. Many routes such as biolog-
ical processes, membrane separation, coagulation,
photo-catalytic degradation, photo-oxidation and
adsorption can be used to eliminate dye from waste-
water [2]. Adsorption is frequently used because
it is inexpensive, easy and effective, and the adsor-
bents could be derived from various materials [3].
In recent years, lignocellulosic materials from agri-
cultural waste have gained interest as alternative
adsorbents since they are inexpensive and abun-
dant. The removal of CV using biomass materials
has been frequently published. Adsorption capaci-
ties higher than 100 mg/g were not often reported;
however, they have been achieved from grapefruit
peel [4], wood apple shell (Feronia acidissima) [5],
coffee waste [6] and almond shell [7].

Moringa oleifera (MO) is a member of the family

Moringacae. The leaves, pods and seeds of MO
are useful for medical and nutritional purposes be-
cause they contain a variety of essential phytochem-
icals [8–10]. Moreover, previous works reported
the use of pod, seed and bark of MO as biosor-
bents. Bhatti et al [8] presented the removal of
Zn(II) using MO pod biomass. MO bark (MOB) was
successfully applied to separate Ni(II) from aqueous
solutions [9]. MO seed was used for sorption of
yellow dye tartrazine [11]. Tie et al [12] studied the
adsorption of congo red using MO seed cake powder,
the residual solids from oil extraction.

To our knowledge, a biosorbent from MO pod
husk (MOPH), which is the useless part, has not
been reported. This work, therefore, presents a
study of MOPH as an alternative adsorbent for
the removal of hazardous CV dye. The MOPH
was characterized by scanning electron microscopy
(SEM), Fourier transform infrared (FT-IR) spec-
troscopy, Brunauer, Emmett and Teller (BET) anal-
ysis and the pH at point zeta charge (pHpzc). The
effects of adsorption parameters on CV adsorption
capacity were determined for the following factors:
adsorbent dosage, solution pH, adsorption time, ini-

www.scienceasia.org

http://dx.doi.org/10.2306/scienceasia1513-1874.2020.034
http://www.scienceasia.org/
mailto:watchanida.c@psu.ac.th
www.scienceasia.org


ScienceAsia 46 (2020) 187

tial concentration of CV solution and temperature.
Adsorption kinetics, isotherms and thermodynamics
were investigated. The desorptions of CV from
MOPH at different desorption agents and concen-
trations were also studied, as was the reusability of
used MOPH.

MATERIALS AND METHODS

Materials

MO pod used to prepare the adsorbent was collected
from the local market. CV cationic dye was from
Sigma Aldrich. NaOH, HCl and CH3COOH were
from Labscan. All reagents were used without
purification.

Adsorbent preparation

The husks of pod were separated from the fresh
pods, followed by water washing. After drying, the
MOPH (Fig. 1a) was cut into small pieces and then
pretreated with water at 50 °C until colorless water
was obtained. The pieces of MOPH were then dried
at 50 °C for 24 h (Fig. 1b). Subsequently, they were
ground and sieved through a 250 µm sieve. The
obtained MOPH powder (Fig. 1c) was stored in a
desiccator for further study.

Adsorbent characterization

The morphologies of MOPH were studied us-
ing scanning electron microscopy (SEM JSM-5800,
JOEL). The chemical groups were analyzed by
Fourier transform infrared spectroscopy (FT-IR)
(Bruker EQUINOX 55). A laser particle size analyzer
(COULTER, LS 230) was carried out to find the par-
ticle size of MOPH. The surface area, pore volume
and average pore size of MOPH were measured from
the Brunauer-Emmett-Teller (BET) method.

The pHpzc of MOPH was evaluated using the pH
drift method [13]. MOPH of 0.03 g was filled to
50 ml of 0.1 M NaCl solutions at initial pH (pHinitial)
values from 2–10. After shaking the mixtures for
24 h, pH was measured and noted as the final pH
(pHfinal). The pHpzc was the point where the curve
of the plot of pHfinal versus pHinitial crossed the line
where pHfinal and pHinitial were equal.

Batch adsorption studies

The adsorption studies were conducted in 120 ml
sample bottles to study the effects on CV adsorption
of adsorbent dose (0.2–1.8 g/l), pH (2–10), initial
CV concentration (50–250 mg/l), adsorption time
(5–120 min) and temperature (25, 35, 45 °C). The
MOPH was added into sample bottles containing

50 ml of CV solution. After shaking the mixture at
60 rpm, the MOPH was isolated, and the remain-
ing dye in solution was then determined by UV-
Vis spectrophotometry (UV 1601) at a wavelength
of 588 nm. Adsorption testing was repeated three
times in each case.

The dye removal (%) and the adsorption ca-
pacity (q, mg/g) were respectively calculated from
Eqs. (1) and (2):

Dye removal (%) =
C0− Ct

C0
×100 (1)

q =
C0− Ct

m
V (2)

where the amounts of CV in dye solution (mg/l) at
initial time and time t were defined as C0 and Ct ,
respectively, V is the CV solution volume (l) and m
is the mass of adsorbent (g).

Batch desorption studies

CV-loaded adsorbent obtained from adsorption ex-
periments was mixed with 50 ml of desorbing agents
(0.5, 1.0, 1.5 and 2.0 mol/l of CH3COOH, NaOH
and NaCl solutions). After shaking, the remaining
CV in the solution (Cd , mg/l) was determined. The
percentage of desorption was evaluated from the
equation (3):

Desorption (%) =
Cd

C0− Ct
×100 (3)

RESULTS AND DISCUSSION

Adsorbent characterization

The SEM photographs of MOPH in Fig. 1 show
surfaces and cross-sections of MOPH before and
after pretreatment with water at 50 °C. Raw MOPH
(Fig. 1d) presented a rough surface, but after pre-
treatment the surface was even rougher (Fig. 1e)
and pores are visible in the cross-sectional frac-
tures (Fig. 1h). The SEM results suggest that the
pretreatment used in this work partially eliminated
lignin, hemicellulose and noncellulosic substances.
The SEM micrographs in Fig. 1(f,i) are of MOPH
adsorbent in powder form. Using a laser particle
size analyzer, the particle size of this powder was
found to be 28.35±21.77 µm, which corresponds
to the range of size and shape presented in Fig. 1f.
The rough surface and numerous pores present in
pretreated MOPH might facilitate the adsorption of
cationic dyes.

In the FTIR spectra of pretreated MOPH
(Fig. 2), the transmittance peaks assigned to the
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(d)                                                  (e)                                                  (f)

(g)                                                   (h)                                                    (i)

(a)                                                  (b)                                                  (c)

Fig. 1 Photographs and SEM micrographs of surface and cross-section of raw (a,d,g) and pretreated MOPH (b,e,h).
Photograph (c) and SEM micrographs at different magnifications (f,i) of pretreated MOPH in powder form.
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Fig. 2 FTIR spectra of pretreated MOPH powder before
and after CV adsorption.

stretching of −OH and C−H groups of lignocellu-
lose are located at about 3415 and 2925 cm−1,
respectively [14, 15]. The peaks at 1728 and

1633 cm−1 are attributed to C−−O stretching of
hemicellulose [14–16]. The peaks around 1504
and 1423 cm−1 relate to the C−−C aromatic ring of
lignin [15, 17], and the band between 1200 and
1059 cm−1 indicates C−O stretching in lignocellu-
lose [17]. The peak at 896 cm−1 indicates the char-
acteristic structure of cellulose [17]. The hydroxyl
and carboxylic groups presented in MOPH could
bind with cationic dye via electrostatic interaction
and hydrogen boding [6, 18].

The BET surface area and average diameter of
pore of MOPH were 2.097 m2/g and 66.268 Å, re-
spectively. The surface area of MOPH is in the range
previously reported for other agricultural wastes,
which was 1.38–11.2 m2/g [18, 19].

Effect of adsorbent dose

Fig. 3a presents the effect of MOPH dose on CV
adsorption and demonstrates the high level of CV
removal at the higher dosages. The percentage dye
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Fig. 3 Effect of adsorbent dose (a,b) and pH (c) on CV biosorption; and pHpzc (d) of MOPH.

removal (%R) on a MOPH dosage of 0.2 g/l was
60%. Dye removal increased to 86.27% on a dosage
of 0.6 g/l (Fig. 3b). The increase in %R may be
attributed to the greater number of available sites
for dye-binding and the increased surface area of
biosorbent at the higher dosage [20]. At the dosage
above 0.6 g/l, %R did not considerably change due
to aggregation of adsorbent which would reduce the
number of binding sites available to dye molecules.
Consequently, increasing the dosage to a certain
level reduces the quantity of CV bound onto unit
mass of MOPH [18, 20]. From the above results,
a MOPH dosage of 0.6 g/l was selected for further
studies.

Effect of initial pH

The effect of solution pH on adsorption of CV is
shown in Fig. 3c. The pHpzc of MOPH was also
determined to elucidate the pH influence on CV
uptake, and it was found to be 5.1 (Fig. 3d). We
found that both %R and q were low as pH was
below pHpzc (Fig. 3c) because the electrostatic re-
pulsion occurred between the positive charges on
both MOPH and CV surfaces [18]. When pH of CV
solution was greater than 5, the electrostatic inter-

action was promoted between the electronegative
biosorbent surface and the cationic dye, resulting in
the enhancement of CV adsorption on MOPH [18].
According to the results, a CV solution at pH 6 was
used in further studies.

Adsorption kinetics

The kinetic experiment was performed by using a
MOPH dose of 0.6 g/l for different time intervals
in solutions of different initial CV concentrations
(50, 100 and 250 mg/l), all at pH 6 and 25 °C.
The result in Fig. 4a demonstrates that adsorption
was facilitated by the numerous binding sites on the
adsorbent surface during the first 10 min and took
place quickly at all initial CV concentrations [4, 20],
and the plateau was attained at 60 min assigned as
equilibrium time. Fig. 4a shows that increments of
initial dye concentration increased dye adsorption
capacity. At greater initial amount of CV in the
solution, a high driving force existed for dye transfer
from the liquid phase to adsorption sites of the
adsorbent [20].

The biosorption kinetics of CV on MOPH were
studied using pseudo-first order [21] and pseudo-
second order [22] kinetic models, which are respec-
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Fig. 4 Effect of contact time at different initial CV concentrations (a) and kinetic curves of CV adsorption on MOPH at
50 mg/l (b), 100 mg/l (c) and 250 mg/l (d).

tively expressed in Eqs. (4) and (5):

qt = qe

�

1− e−k1 t
�

(4)

qt =
k2q2

e t

1+ qek2 t
(5)

in which the mass of CV adsorbed per biosorbent
mass (mg/g) were defined as qe and qt at equi-
librium and at a given time t, respectively. k1 is
the pseudo-first order rate constant (min−1) while
k2 is the rate constant for pseudo-second order
(g/mg·min). The experimental kinetic curves and
the model kinetic curves are shown in Fig. 4(b–d).
Table 1 lists the calculated model constants with the
correlation coefficient values (R2). These findings
indicate that the data of the kinetics of adsorption
of CV on MOPH is suitably fitted with the pseudo-
second order model for all studied initial concen-
trations (R2 ¾ 0.998). These results imply that the
biosorption process of CV onto MOPH was governed
by chemisorption [4].

Adsorption isotherms

Langmuir and Freundlich isotherms [23, 24] were
used to study the equilibrium adsorption behavior
of CV on MOPH. Adsorption isotherms was studied
using adsorption data acquired at a contact time
of 120 min to ensure that adsorption equilibrium
had been completely achieved. These isotherms are
described by the following equations:

(Langmuir) qe =
qmaxKLCe

1+ KLCe
(6)

(Freundlich) qe = KF C1/n
e (7)

in which Ce (mg/l) is the equilibrium dye con-
centration in liquid phase, qmax (mg/g) is the
maximum adsorption capacity, KL (l/mg) and KF
((mg/g)/(mg/l)1/n) are the constant values of Lang-
muir equilibrium constant and the Freundlich, re-
spectively, and n is adsorption intensity. The pa-
rameters obtained from both adsorption isotherms
are listed in Table 1. Based on the results obtained
from the modelled adsorption isotherms (Fig. 5a)
and the R2, in Table 1, the finding points for ad-
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Fig. 5 Equilibrium curves (a) and Van’t Hoff plot (b) for CV adsorption on MOPH.

Table 1 The pseudo-first order and pseudo-second order models and Langmuir and Freundlich isotherm parameters
for CV adsorption on MOPH.

Kinetic model Pseudo-first order Pseudo-second order

Co qe,exp qe k1 R2 qe k2 R2

(mg/l) (mg/g) (mg/g) (min−1) (mg/g) (g/mg·min)

50 73.85 3.92 0.055 0.893 74.07 0.045 0.999
100 130.80 10.05 0.045 0.769 131.58 0.008 0.999
250 154.09 124.59 0.079 0.966 158.73 0.001 0.998

Isotherm model Langmuir Freundlich

Parameter qmax KL R2 KF n R2

(mg/g) (l/mg) (mg/g)/(mg/l)1/n

156.250 0.372 0.999 55.043 4.431 0.931

sorption of CV on MOPH at equilibrium state fit best
with the Langmuir model. This correlation suggests
monolayer adsorption behavior. The qmax from the
Langmuir model was 156.25 mg/g, which is larger
than the capacity achieved by some biosorbents with
and without chemical treatment (Fig. 6). More-
over, the biosorbent in the present study showed
a high adsorption capacity by comparison with ef-
fective carbon-based adsorbents that required more
materials, energy or processing during fabrication
(Fig. 6). The adsorption capacities and equilibrium
adsorption times (teq) presented in Fig. 6 imply that
MOPH is an alternative, efficient and environmen-
tally friendly biosorbent for adsorption of CV in
water.

Adsorption thermodynamics

The adsorption of CV on MOPH was studied at 298,
308 and 318 K. The Gibb’s free energy (∆G◦) can

be calculated using Eqs. (8) and (9):

KC =
Cae

Ce
(8)

∆G◦ = −RT ln KC (9)

ln KC =
∆S◦

R
−
∆H◦

RT
(10)

where KC is the constant value at equilibrium. T
(K) and R (J/K·mol) are temperature and the gas
constant, respectively. The enthalpy (∆H◦) and
entropy (∆S◦) can be evaluated using Eq. (10). The
slope and intercept from the plot in Fig. 5b yielded
the ∆H◦ and ∆S◦ values, respectively.

The values of ∆G◦ were −4.557 (298 K),
−3.653 (308 K) and −3.346 kJ/mol (318 K), im-
plying the spontaneous process [19]. The incre-
ment of∆G◦ with temperature implies that sorption
proceeded more easily at lower temperatures [6].
The ∆H◦ value was negative (−22.483 kJ/mol),
suggesting that the sorption of CV on MOPH was
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Fig. 6 Maximum adsorption capacity of various adsorbents from Langmuir isotherm model for CV removal and their
equilibrium adsorption time.
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Fig. 7 Effect of desorbing agents and their concentrations on the desorption of CV from MOPH (a) and adsorption-
desorption cycle of MOPH by 1 M acetic acid solution (b).

exothermic, and a reduction in randomness of CV
at interface between solid and liquid was implied
by the negative ∆S◦ (−60.446 J/mol·K) [30]. Sim-
ilar findings were reported for adsorption of CV
by coffee waste [6] and Artocarpus heterophyllus
(jackfruit) leaf powder [19].

Desorption studies

The recovery of adsorbed CV and the regeneration
of the MOPH biosorbent were investigated in a

bath desorption study using aqueous solutions of
CH3COOH, NaOH and NaCl at 0.5, 1.0, 1.5 and 2.0
mol/l at 25 °C. The aqueous solution of CH3COOH
exhibited the highest desorption capacity at all con-
centrations (Fig. 7a). Desorption capacity increased
from 42.86±2.87% for 0.5 mol/l CH3COOH to
55.17±1.08% for 1 mol/l CH3COOH. Thereafter,
desorption capacity did not change significantly.
The desorption capacity of CH3COOH solution was
attributed to the ability of protons in the acidic
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Fig. 8 Proposed adsorption mechanism of CV on MOPH.

solution to replace the cations adsorbed on the
adsorbent [31]. The inverse effect was obtained
with the NaOH medium. These results suggest the
formation of electrostatic attraction between the
biosorbent and the cationic dye [18]. Based on the
efficient desorption of CV from the biosorbent and
low cost, a CH3COOH solution of 1 M was selected
as the desorption agent for further study.

Although CV was not completely desorbed
from MOPH, the re-adsorption of MOPH after des-
orption by 1 M CH3COOH solution was investi-
gated to evaluate the reusability of the biosorbent.
Fig. 7b demonstrates that the adsorption of CV de-
creased from 89.72±0.70% in the initial cycle to
78.45±3.31% in the first recycling. In the fourth
cycle, the percentage of dye adsorbed decreased
to 53.81±2.19%. Many reasons could describe a
reduction of adsorption capacity: occupation by CV
molecules of the adsorption sites on the MOPH,
degradation of cellulosic biosorbent in acidic media
and generation of positive charges on MOPH surface
by the acidic desorbing agent [32].

Adsorption mechanism

The adsorption revealed by FTIR in Fig. 2 shows
that the peak at 1583 cm−1 derived from C−N
groups of the CV molecule was observed in CV-
loaded MOPH. The peaks present in pretreated
MOPH at 3415 and 1633 cm−1 moved to 3330 and
1647 cm−1, respectively, in the CV-loaded adsor-
bent. Moreover, the peak at 1157 cm−1 shifted to
1166 cm−1. These results indicated the presence
of intermolecular between MOPH and CV. Moreover,
the desorption results proved that CV was strongly
adsorbed on MOPH. It can be inferred that CV
adsorbed on MOPH not only by electrostatic interac-

tion of the positive and negative charges between CV
and MOPH but also by hydrogen bonding between
nitrogen atoms in CV and hydrogen atoms in hy-
droxyl or carboxylic groups of MOPH [1, 18]. The
proposed adsorption mechanism of CV on MOPH
was depicted in Fig. 8.

CONCLUSION

A biosorbent was prepared from Moringa oleifera
pod husk and investigated for adsorption of CV
in water. SEM micrograph of the lignocellu-
losic biomass revealed a porous and rough sur-
face that facilitated the interaction between CV and
MOPH. The MOPH presented a BET surface area of
2.097 m2/g and pHpzc of 5.1. The adsorption ca-
pacity of MOPH increased as pH and initial CV con-
centration increased. The experimental data agreed
well with the pseudo-second order and the Lang-
muir isotherm models. The thermodynamic study
of CV adsorption on MOPH indicated a spontaneous
and exothermic process. Desorption of the adsorbed
CV and regeneration of the MOPH was possible
using acetic acid solution. The results of this study
indicated that the environmentally friendly and low
cost MOPH biosorbent could provide an alternative
means of cationic dye removal.
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