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ABSTRACT: Predominant corals of Samae San island, Thailand, including Acropora humilis, Acropora millepora, Porites
lutea and Platygyra sinensis, were cultured and identified for bacterial species by 16S rRNA gene sequencing. Of all
corals, dominant cultured bacteria were Firmicutes (46.75%), Proteobacteria (34.60%), Actinobacteria (17.18%) and
Bacteriodetes (1.47%). Firmicutes such as Staphylococcus, Bacillus and Sediminibacillus was relatively most abundant
(∼50%), except in P. sinensis that Proteobacteria was more abundant. Over culture temperature range of 20–50 °C,
different bacterial species were grown (ANOVA, p < 0.05). Coral P. lutea and A. humilis associated bacteria were able
to be cultured at the highest temperature (45 °C), followed by coral A. millepora (40 °C) and P. sinensis (35 °C) bacteria.
The high-temperature cultured bacteria were mostly Bacillus such as Bacillus amyloliquefaceins. Multiple sequence
alignment and phylogeny relationship of the bacterial species from these four corals showed that, for Firmicutes and
Proteobacteria, the bacterial species isolated from coral P. lutea, A. humilis and A. millepora rather shared clades. Overall,
the coral Acropora demonstrated more diversity of bacterial species than coral Porites. The culturing attempt at high
temperature allowed additional bacterial species findings.
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INTRODUCTION

Coral reefs are well-known resources to support
large, biodiverse communities of organisms and
microorganisms both in the marine ecosystem and
on Earth. For instance, coral reefs function as
shelters for many lives and are nutrient-rich habitat.
Coral-associated bacteria were reported either on a
coral’s surface, a calcium carbonate skeleton, or its
inside hollow [1, 2]. The co-living between corals
and bacteria shares mutual benefits, including but
not limited to, exchange of nutrients (e.g., corals
provide nutrient-rich resources while bacteria are
initial producers and final recyclers of organic food
chains) and support of coral resistance to high tem-
perature and pathogen (e.g., bacterial antioxidants
and secondary metabolites) [3, 4]. Hence, specific
bacteria were reported to correlate with disease-
resistant corals [3, 5–7], yet study on cultivation of
the coral-associated bacteria from prevalent species

of corals in Samae San island, Thailand, the re-
gion where coral reefs are abundant [8], had been
limited. Samae San island locates in the east Gulf
of Thailand. This study cultured and identified
coral bacteria in all prevalent species of corals in
Samae San island including Acropora humilis, Acro-
pora millepora, Porites lutea and Platygyra sinensis,
and analyzed their 16S rRNA gene sequence align-
ment and phylogenetic relationship. Additionally,
as global warming (thus rising water temperature)
is a cause of coral bleaching worldwide during the
last decade, we as well described the cultured coral-
associated bacteria that could survive at relatively
high temperature (up to 50 °C). This supports the
better understanding of the bacterial diversity and
coral species during high temperature, and the col-
lection of live bacterial isolates are also important
for future physiological studies.

Previously, culture and culture-independent
(metagenomics) studies reported that coral-
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associated bacteria are sometimes specific to
coral species and environments [1, 9, 10]. Given
cultivation allows to obtain live bacteria collection
for physiological and functional studies [11, 12] and
no bacteria collection associated with coral species
and high temperature had been cultivated before
in Samae San island coral reefs, thus signifying the
bacteria collection in this study.

MATERIALS AND METHODS

Sample collections

Healthy corals of A. humilis, A. millepora, P. lutea and
P. sinensis were collected around Samae San island
on April 28, 2014 (Fig. 1). Of each coral specie,
3 independent samples of 2 cm diameter size were
collected in separate sterile bags and transported on
ice immediately to laboratory.

Cultivation of bacteria

The protocols of cultivation followed established
protocols [13] with some modifications. Each coral
sample was ground and 1 g was serially diluted
from 10−1–10−5 with 0.2 µm filtered-sterile sea-
water. Each dilution (100 µl) was spread onto a
seawater nutrient agar (SNA; autoclaved seawater
supplemented with 0.3% beef extract and 0.5%
peptone in 1.5% agar) and incubated under aerobic
condition at 20, 25, 30, 35, 40, 45 and 50 °C for
2 weeks. Hence, each set of experiment consisted

of 5 serial dilutions, 7 incubation conditions and
2 independent replicate sets. Total colony count
represents the number of cultured bacteria in colony
forming unit (CFU) per g of coral. Then, colonies of
different morphologies were transferred to another
SNA for streaking to isolate colonies. Gram stain
and optical microscopic record were performed on
isolated colonies for confirmation.

16S rRNA gene amplification and sequencing

Single colony from each isolate was picked into a
25-µl PCR reaction, comprising 1×EmeraldAmp GT
PCR Master Mix (TaKaRa, Shiga, Japan), 0.3 µM
of each of the forward and reverse primers and
template (single colony or 50 ng of DNA). If colony
PCR did not yield result, the isolate colony was
cultured in SN broth, and the bacterial genome
was extracted using GF1-Bacterial DNA Extraction
Kit (Vivantis, California, USA). The extracted DNA
was determined for the concentration and the purity
using nanodrop spectrophotometer, and 50 ng of
the DNA was used in PCR. Full-length 16S rRNA
gene is amplified using universal primers 27F (5′-
AGAGTTTGATCCTGGCTCAG-3′) and 1492R (5′-
GGTTACCTTGTTACGACTT-3′) [14, 15]. The PCR
thermocycling conditions were 95 °C 4 min, 30–35
cycles of 94 °C 1 min, 55 °C 1 min and 72 °C 2 min,
followed by 72 °C 10 min. An amplicon corre-
sponding to the full-length 16S rRNA gene (1500

Fig. 1 Photograph of coral samples and study sites.
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base pairs) was visualized by 1.5% agarose gel elec-
trophoresis, purified and sequenced using Sanger’s
sequencer ABI3730XL at Macrogen Inc., Korea.

Bacteria species identification, multiple
sequence alignment, and phylogenetic analysis

Ambiguous nucleotides on both ends of raw se-
quences were trimmed by manual inspection of
electropherographs showing mixed peaks of nu-
cleotides. Trimmed sequences were identified for
species by BLASTN against NCBI non-redundant
database with ¶ 10−4 E-value cutoff, unless spec-
ified otherwise [16]. The cultured bacterial se-
quences and reference sequences were also aligned
using CLUSTALX [17], and a neighbor joining tree
with 1000 bootstrap replicates was constructed us-
ing MEGA version 7 [18], in order to get the glimpse
on the putative distance between the cultured bac-
terial species and the references. A correlation
between coral species and a temperature in which
the different bacterial diversity were cultured was
determined by ANOVA statistic (p values).

RESULTS

Total colony count

The number of cultured colonies in CFUs (0.6–
3.8×103 CFU/g), including the number of different
colony morphologies (7–27 cultured bacterial IDs),
varied by both coral species and culture tempera-
tures. A. humilis and P. lutea showed the highest
total bacterial count, followed by P. sinensis and
A. millepora, respectively. The number of differ-
ent morphologies (cultured bacterial diversity) fol-
lowed the same order as the total bacterial count,
which is A. humilis, P. lutea, P. sinensis and A. mille-
pora (Table 1). For culture temperature, 30–35 °C
allowed the maximum total bacterial counts and
the number of bacterial diversity. P. sinensis and
A. millepora demonstrated the relatively narrow
temperature growth range whereas A. humilis and
P. lutea could be cultured at up to 45 °C (0.1–
0.4×103 CFU/g coral and 1–2 different colony mor-
phologies) (Table 1).

Identification of bacterial species

Unique colony morphologies of each coral species
were analyzed by gram stain (gram-positive or
gram-negative) and optical microscopy to confirm
distinct cell morphology. The confirmed distinct
isolates with at least 9% relative abundance were
sequenced and identified for species using BLASTN
(Table S1). Most bacterial species belonged to phyla

Table 1 Total colony counts in CFUs/g coral and the
number of different morphology colonies from four coral
species cultured at different temperatures.

Sample Temp. ( °C) CFU/g No. isolate

A. humilis 20 0 0
25 2200 9
30 3400 17
35 2700 14
40 1100 4
45 100 1
50 0 0

A. millepora 20 0 0
25 500 4
30 600 5
35 500 7
40 100 1
45 0 0
50 0 0

P. lutea 20 0 0
25 2700 27
30 2600 22
35 3200 27
40 700 4
45 400 2
50 0 0

P. sinensis 20 0 0
25 1900 6
30 1900 6
35 3800 11
40 0 0
45 0 0
50 0 0

Fig. 2 Percent distribution of cultured bacteria at phylum
level.

Firmicutes (35.30–46.15%), Proteobacteria (7.70–
52.94%) and Actinobacteria (0–46.15%), except
P. sinensis that also contain species in phylum Bacte-
riodetes for 5.88% (Fig. 2). Calculating the diversity
index via phylum richness and phylum evenness (a
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relative distribution of each phylum) showed that
A. millepora and P. sinensis provided the highest
bacterial diversity, although the minimal number
of cultured bacterial IDs was from A. millepora (6
different species) (Table S1). For differences in the
cultured temperatures, ANOVA statistic indicated an
association between temperature and the bacterial
diversity (p < 0.05).

In addition, the cultured bacteria and the ref-
erence sequences were aligned to observe pair-
wise distances among sequences (Table S2). In
Firmicutes, the cultured bacteria from P. sinensis
showed a relatively separate clade compared with
those in the other three coral species, which were
clustered at 76% confidence. Shared bacterial
species among these three coral species included
unidentified species of Staphylococcus (i.e., Staphy-
lococcus sp.), Staphylococcus epidermidis and Bacillus
amyloliquefaciens (Fig. S1a). For bacteria in phyla
Proteobacteria and Actinobacteria, the P. sinensis-
associated bacteria showed overlapped similarities
(Table S2: smaller number of base substitutions and
Fig. S1b: shared clades of trees). Nevertheless,
sequences in this study were from a single sequenc-
ing reaction (700 base pairs), so the alignment
and the phylogenetic relatedness compared with the
reference sequences remained elusive.

DISCUSSION

Diverse bacterial communities were reported on
coral reefs worldwide [2, 19]. This report repre-
sented the first cultured coral-associated bacteria
diversity from prevalent coral species (A. humilis,
A. millepora, P. lutea and P. sinensis) in Samae San
island. Different coral species contained diversity
and frequencies of bacteria (2750 CFUs/g coral),
and bacteria from certain coral species were able to
survive and grow at high temperature (i.e., A. hu-
milis and P. lutea). These bacteria could be im-
portant for future physiological studies that involve
temperature resistance.

Most cultured bacteria were gram-positive, sup-
porting a general gram stain type reported in ma-
rine elsewhere [13] because gram-positive bacteria
cell membrane with thick peptidoglycan layer allow
bacteria to be more resistant than gram-negative
bacteria cell membrane. Identified species of Fir-
micutes were capable of forming endospore (i.e.,
Bacillus sp.), which is a resistant form of bacteria to
a harsh environment such as hot and dry. Addition-
ally, Bacillus and Actinobacteria species are produc-
ers of antimicrobial compounds such as bacitracin
and polymyxin B that might help protect corals

from pathogenic bacteria [10, 20, 21]. Supportively,
Liang et al [22] reported that Acropora had the
relatively high bacteria diversity, yet coral pathogen
bacteria detected, thus highlighting a relationship
between this coral-associated bacteria community
with the coral resistance to pathogens.

However, our reported diversity of cultured
bacteria was far fewer than that published by
metagenomics combined next generation sequenc-
ing (culture-independent) methods, although the
finding of high prevalence of proteobacteria remains
common [19, 23]. The far fewer number by cultured
method was consistent with many publications that
compared the cultured and culture-independent
methods [13].

Appendix A. Supplementary data

Supplementary data associated with this arti-
cle can be found at http://dx.doi.org/10.2306/
scienceasia1513-1874.2020.018.
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Appendix A. Supplementary data

Fig. S1 Neighbor-joining tree of cultured bacterial IDs and their reference species in phyla (a) Firmicutes and
(b) Proteobacteria, Actinobacteria and Bacteroidetes. Number at node represents percent bootstrap replicates (cluster
confidence), and < 50% bootstrap replicates were not displayed. A bar at a bottom of the tree represents a unit of
genetic distance.
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Table S1 Species and phylum identification by BLASTN.

ID GenBank No. Species identification Nucleotide (%) Phylum

A. humilis coral
AH25(1) KP236214.1 Staphylococcus haemolyticus strain 0078 100 Firmicutes
AH25(2) KU821699.1 Staphylococcus warneri strain LLP-12 99 Firmicutes
AH25(3) KU323914.1 Staphylococcus sp. ZW-3 100 Firmicutes
AH30(1) LC125158.1 Brachybacterium rhamnosum strain: VB-2.1.2 99 Actinobacteria
AH30(2) KR906081.1 Brachybacterium sp. HBUM178917 95 Actinobacteria
AH30(3) KU362955.1 Mycobacterium abscessus strain DS27 97 Actinobacteria
AH35(1) AB617555.1 Bacillus sp. T10-2M 91 Firmicutes
AH35(2) KU821699.1 Staphylococcus warneri strain LLP-12 100 Firmicutes
AH35(3) KU362960.1 Mycobacterium chelonae strain DS32 99 Actinobacteria
AH35(4) HQ908757.1 Ruegeria sp. F75200 99 Proteobacteria
AH35(5) EU841643.1 Actinomadura bangladeshensis strain HBUM174800 99 Actinobacteria
AH40(1) KT036409.1 Staphylococcus pasteuri strain SMJ33 99 Firmicutes
AH40(2) LT547841.1 Micrococcus yunnanensis isolate 54 SP633 95 Actinobacteria

A. millepora coral
AM30(1) HQ908678.1 Ruegeria lacuscaerulensis strain F75168 99 Proteobacteria
AM30(2) FJ613575.1 Staphylococcus epidermidis strain EIV-17 99 Firmicutes
AM30(3) KU198778.1 Kytococcus sp. RKEM 512A 98 Actinobacteria
AM35(1) KC172053.1 Bacillus tequilensis strain SH145 98 Firmicutes
AM35(2) KJ004620.1 Erythrobacter flavus strain N54 99 Proteobacteria
AM40(1) KX681803.1 Bacillus sp. strain CEB13 98 Firmicutes

P. lutea coral
PL25(1) AB008115.1 Paracoccus sp. MBIC3024 99 Proteobacteria
PL25(2) HQ288801.1 Erythrobacter nanhaisediminis strain F75112 99 Proteobacteria
PL25(3) AB429073.1 Erythrobacter sp. OC8S 99 Proteobacteria
PL30(1) HQ439523.1 Ruegeria sp. MR31c 100 Proteobacteria
PL30(2) FJ613576.1 Staphylococcus sp. EIV-18 96 Firmicutes
PL30(3) KX245016.1 Bacillus thuringiensis strain AB04 100 Firmicutes
PL30(4) KU051664.1 Staphylococcus sp. CKT4K 100 Firmicutes
PL35(1) NR_119252.1 Staphylococcus caprae strain DSM 20608 99 Firmicutes
PL35(2) HQ908705.1 Ruegeria lacuscaerulensis strain F77045 99 Proteobacteria
PL35(3) KX665550.1 Bacillus amyloliquefaciens strain WZS01 99 Firmicutes
PL35(4) KU560505.1 Ruegeria sp. LMB 98 Proteobacteria
PL35(5) KP236210.1 Staphylococcus epidermidis strain 0074 99 Firmicutes
PL35(6) KC429803.1 Ruegeria sp. JZ10IS2 95 Proteobacteria
PL40(1) EU685817.1 Bacillus sp. PK-8 96 Firmicutes
PL40(2) KM083802.1 Staphylococcus sp. JPR7 92 Firmicutes
PL40(3) KT200230.1 Bacillus sp. K21 98 Firmicutes
PL40(4) KR006239.1 Acinetobacter gyllenbergii strain 8T 99 Proteobacteria
PL45(1) KX155823.1 Bacillus amyloliquefaciens strain HQB606 98 Firmicutes

P. sinensis coral
PS25(1) FJ157159.1 Halobacillus trueperi strain B6 98 Firmicutes
PS25(2) KC429883.1 Ruegeria sp. JZ10ML44 99 Proteobacteria
PS25(3) DQ868675.1 Bacillus sp. SMB9 99 Firmicutes
PS25(4) FJ161368.1 Ruegeria atlantica strain D7087 94 Proteobacteria
PS25(5) HE584770.1 Phaeobacter daeponensis isolate AP12 99 Proteobacteria
PS25(6) AB617555.1 Bacillus sp. T10-2M 99 Firmicutes
PS30(1) KM010131.1 Sediminibacillus halophilus strain muz2b 87 Firmicutes
PS30(2) KC751078.1 Pseudovibrio denitrificans strain A-25 98 Proteobacteria
PS30(3) KF282363.1 Alteromonadaceae bacterium GUDS1097 98 Proteobacteria
PS30(4) KJ645918.1 Corynebacterium glycinophilum strain AJ 3170 96 Actinobacteria
PS30(5) KF933616.1 Virgibacillus pantothenticus strain BDH21 99 Firmicutes
PS35(1) HQ908670.1 Ruegeria lacuscaerulensis strain F71078 99 Proteobacteria
PS35(2) JX317743.1 Aquimarina sp. RKVR24 99 Bacteroidetes
PS35(3) FJ952779.1 Microbulbifer sp. 2ta13 98 Proteobacteria
PS35(4) KU321281.1 Pseudovibrio sp. RKEM 536 99 Proteobacteria
PS35(5) DQ448795.1 Bacillus sp. CNJ901 PL04 98 Firmicutes
PS35(6) NR_118542.1 Phaeobacter caeruleus strain DSM 24564 99 Proteobacteria

Of each coral species, data were ordered by cultured temperature and within the same temperature, data were
ordered by relative abundance. The first 2 letters of cultured bacterial ID (ID) represent coral species, the following
number is the lowest cultured temperature that the colony was found, and the number in parenthesis represents a
dilution where the colony was taken from. Only distinct morphology colonies with at least 9% relative abundance
on individually cultured SNA plates were sequenced, and only cultured bacterial IDs that received the significant
E-value cutoffs by BLASTN were displayed.
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