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ABSTRACT: This paper investigates the finite-time stabilization problem of fractional-order delayed bidirectional
associative memory neural networks with the fractional-order α ∈ (1,2). Based on feedback control, a sufficient
condition is derived to realize the finite-time stabilization of systems by using the Cauchy-Schwartz inequality and
the generalized Gronwall inequality. Furthermore, two sufficient conditions are directly given to realize the finite-time
stabilization of systems via partial feedback control. In particular, these conditions can be expressed as some algebraic
inequalities, so the settling time can be easily calculated in practical applications. Finally, some numerical examples
are provided to present the feasibility and effectiveness of our main results.
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INTRODUCTION

In practical applications, the behaviour of many
interacting units is always required to be regulated.
It is desired that the unpredicted ultimate states
of systems can be controlled to the required ob-
jective ones1. This kind of stabilization problems
has attracted increasing attention from many re-
searchers starting from the pioneering work2. To
meet the practical requirements, some researchers
have proposed various types of stabilization, such
as exponential stabilization3, guaranteed cost sta-
bilization4, Mittag-Leffler stabilization5, and finite-
time stabilization6. Meanwhile, many suitable sta-
bilization control schemes have been put forward to
regulate the system behaviour.

Nowadays, fractional-order bidirectional asso-
ciative memory (BAM) neural networks have been
paid great attention due to their potential appli-
cations in many fields. These applications heavily
depend on the dynamical behaviour of networks,
such as stability and synchronization. In the last
decade, there have been a lot of important works
on fractional-order BAM neural networks7–10. For
example, Yang et al10 discussed the uniform sta-
bility of fractional-order BAM neural networks with
constant delays in the leakage terms. Ke7 reported
the finite-time stability of fractional-order BAM de-
layed neural networks. Wang et al9 investigated

the global asymptotic stability of Riemann-Liouville
fractional-order delayed BAM neural networks with
impulsive effects. Rajivganthi et al8 considered
the finite-time stability of a class of fractional-order
Cohen-Grossberg BAM neural networks with time
delays. Recently, Wu et al5 discussed the Mittag-
Leffler stabilization of fractional-order BAM neural
networks without time delays based on linear feed-
back control and partial feedback control.

In the abovementioned works, notice that the
fractional-order of systems lies in the interval (0,1).
However, it is also very significant to carry out
the study on fractional-order systems with the
fractional-order α ∈ (1,2). For example, for the
second order multi-agent dynamics, a fractional-
order observer with the fractional-order α ∈ (1, 2)
can be used to obtain the velocity information which
is not always available11. In addition, the fractional-
order systems with α ∈ (1,2) have been extensively
studied in mechanics, physics, and information sci-
ence12–14. To the best of the authors’ knowledge,
the results for the fractional-order α ∈ (1,2) would
not be easily obtained by generalizing those for
the case α ∈ (0,1) owing to the more complicated
mathematical theory. Thus it is very interesting to
investigate the problems on fractional-order BAM
neural networks with the fractional-order α ∈ (1, 2).
For example, Cao and Bai15 studied the finite-time
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stability for a class of fractional-order BAM neu-
ral networks with distributed delays. Xu et al16

considered the finite-time stability for fractional-
order BAM neural networks with time delays. In
these two references, the proofs mainly rely on
the Laplace transform, the generalized Gronwall-
Bellman inequality and some properties of Mittag-
Leffler functions. It is noted that the obtained
sufficient conditions are some inequalities related to
the Mittag-Leffler functions.

In this paper, we consider the finite-time sta-
bilization problem of fractional-order delayed BAM
neural networks with the fractional order α ∈ (1,2).
Based on linear feedback control, we derive a suffi-
cient condition to realize the finite-time stabilization
of systems. Different from those in Refs. 5, 15–17,
our method mainly relies on the Cauchy-Schwartz
inequality, the generalized Gronwall inequality and
some elementary inequalities. In particular, our con-
dition can be expressed as an algebraic inequality, so
the settling time can be easily calculated in practical
applications. Based on this result, we directly give
two sufficient conditions to realize the finite-time
stabilization of systems via partial feedback control.

PRELIMINARIES AND MODEL DESCRIPTION

In this section, we first recall some definitions and
properties associated with the Caputo fractional-
order derivative. Next we list some inequalities and
give the description of the network model.

Definition 1 [Ref. 18] The fractional integral with
non-integer order α> 0 of a function f (t) is defined
by

D−αt f (t) =
1
Γ (α)

∫ t

0

(t − s)α−1 f (s)ds, t ¾ 0,

where Γ (·) is the Gamma function, i.e., Γ (s) =
∫∞

0 t s−1 e−t dt.

Definition 2 [Ref. 18] The Caputo derivative
of fractional order α of a function f (t) ∈
Cn([0,∞),R) is defined by

C
0 Dαt f (t) =

1
Γ (n−α)

∫ t

0

(t−s)n−α−1 f (n)(s)ds, t ¾ 0,

where α> 0, n is a positive integer satisfying n−1<
α < n and Γ (·) is the Gamma function.

We now present some properties and some in-
equalities which are crucial to the proof of the main
results.

Proposition 1 (Ref. 19) Let α > 0 and let n be a
positive integer satisfying n− 1 < α < n. If f (t) ∈
Cn([0,∞),R), then

D−αt
C
0 Dαt f (t) = f (t)−

n−1
∑

k=0

f (k)(0)
k!

tk.

Proposition 2 (Ref. 20) Let x < 1 and x 6= 0. For
0 < n < 1, we have (1− x)n < 1− nx. Furthermore,
(1− (1− x)n)−1 < (nx)−1.

Proposition 3 (Generalized Gronwall21) Suppose
that h(t), v(t) and w(t) are nonnegative Lp functions
on the interval [0, T]. For 1¶ p <∞, if

h(t)¶ v(t)+w(t)
�

∫ t

0

hp(s)ds
�1/p

, t ∈ [0, T],

then
∫ t

0

hp(s)ds ¶
�

1− (1−W (t))1/p
�−p
∫ t

0

vp(s)W (s)ds,

where W (t) = exp(−
∫ t

0 wp(s)ds).

The network model is described as follows:

C
0 Dαt x i(t) = −ci x i(t)+

m
∑

j=1

ai j(t) f1 j(y j(t))

+
m
∑

j=1

bi j(t) f2 j(y j(t −τ))+ui(t),

C
0 Dαt y j(t) = −d j y j(t)+

n
∑

i=1

p ji(t)g1i(x i(t))

+
n
∑

i=1

q ji(t)g2i(x i(t −τ))+ v j(t),



























































(1)

for i = 1,2, . . . , n, and j = 1,2, . . . , m, where 1 <
α < 2, x i(t) and y j(t) denote the states of the ith
unit in the X-layer and the jth unit in the Y-layer,
respectively. The constants ci > 0 and d j > 0 are
the self-regulating parameters of the neurons. The
constant τ > 0 is the transmission delay. ai j(t)
and bi j(t) are the connections of the jth neuron to
the ith neuron at times t and t − τ, respectively.
p ji(t) and q ji(t) have the same meanings as ai j(t)
and bi j(t), respectively. ui(t) and v j(t) represent
the time-varying external controls. f1 j , f2 j , g1i ,
and g2i stand for the activation functions satisfying
f1 j(0) = 0, f2 j(0) = 0, g1i(0) = 0, and g2i(0) = 0.

The initial conditions of system (1) are given as
follows:

x (k)i (t) =ψ
(k)
i (t), y (k)j (t) = φ

(k)
j (t), t ∈ [−τ, 0],
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or

x (k)(t) =ψ(k)(t), y (k)(t) = φ(k)(t), t ∈ [−τ, 0],

where k = 0,1. ψ(k)(t) and φ(k)(t) are two
real vector-valued continuous functions on [−τ, 0],
whose norms are defined as

‖ψ(k)‖= sup
s∈[−τ,0]

(
n
∑

i=1

|ψ(k)i (s)|),

‖φ(k)‖= sup
s∈[−τ,0]

(
m
∑

j=1

|φ(k)j (s)|).

To obtain our results, we make some necessary
assumptions22.

Assumption 1 The connection functions ai j(t),
bi j(t), p ji(t), and q ji(t) (i = 1,2, . . . , n,
j = 1, 2, . . . , m) are continuous and bounded on
[0,∞).

Assumption 2 The activation functions f1 j(x),
f2 j(x), g1i(x), and g2i(x) (i = 1,2, . . . , n,
j = 1,2, . . . , m) satisfy the Lipschitz conditions,
that is, there exist positive constants ζ1, ζ2, θ1, and
θ2 such that

| f1 j(x)− f1 j(y)|¶ ζ1|x − y|,
| f2 j(x)− f2 j(y)|¶ ζ2|x − y|,
|g1i(x)− g1i(y)|¶ θ1|x − y|,
|g2i(x)− g2i(y)|¶ θ2|x − y|,

for any x , y ∈ R.

Based on Refs. 5, 22, we introduce the following
definitions.

Definition 3 Let ui(t) = 0 (i = 1,2, . . . , n) and
v j(t) = 0 ( j = 1, 2, . . . , m). Suppose that δ and ε
are any positive constants such that δ < ε. Let
(x(t), y(t)) be the solution of system (1) with
‖ψ(k)‖ + ‖φ(k)‖ < δ, k = 0, 1. System (1) is said
to achieve the finite-time stability with respect to
{δ,ε, T}, if

‖x(t)‖+ ‖y(t)‖< ε, ∀t ∈ [0, T],

where ‖x(t)‖=
n
∑

i=1

|x i(t)| and ‖y(t)‖=
m
∑

j=1

|y j(t)|.

Definition 4 Suppose that δ and ε are any positive
constants such that δ < ε. System (1) is said to
achieve the finite-time stabilization with respect to
{δ,ε, T} if there exist suitable feedback controls u(t)
and v(t) such that system (1) is finite-time stable
with respect to {δ,ε, T}.

MAIN RESULTS

In this section, we will investigate the finite-time
stabilization problem of fractional-order BAM neu-
ral networks. Based on linear feedback control or
partial feedback control, we obtain some sufficient
conditions to guarantee the finite-time stabilization
of system (1).

For i = 1,2, . . . , n and j = 1, 2, . . . , m, the exter-
nal controls ui(t) and v j(t) are designed as follows:

ui(t) = −ki x i(t), v j(t) = −l j y j(t), (2)

where ki and l j are any positive constants.
We now introduce our main results. For simplic-

ity, we give the following notation. Let

a∗ = max
1¶ j¶m

n
∑

i=1

a∗i j , b∗ = max
1¶ j¶m

n
∑

i=1

b∗i j ,

p∗ = max
1¶i¶n

m
∑

j=1

p∗ji , q∗ = max
1¶i¶n

m
∑

j=1

q∗ji ,

where a∗i j = supt¾0|ai j(t)|, b∗i j = supt¾0|bi j(t)|,
p∗ji = supt¾0|p ji(t)|, and q∗ji = supt¾0|q ji(t)|. More-
over, let

ξ=max{a∗ζ1, p∗θ1} and η=max{b∗ζ2, q∗θ2}.

Theorem 3 Suppose that Assumptions 1 and 2 hold.
Let δ and ε be any positive constants such that δ < ε,
and let max{‖ψ(0)‖+ ‖φ(0)‖,‖ψ(1)‖+ ‖φ(1)‖} < δ.
With control (2), system (1) can achieve the finite-
time stabilization with respect to {δ,ε, T} if

(1+ t)
�

1+2 e(β
2+1)t(1− e−β

2 t)1/2
�

<
ε

δ
, (3)

for all t ∈ [0, T], where β = (ρ+ξ+ηe−τ)
p

2Γ (2α−1)
2αΓ (α) with

ρ = max
1¶i¶n,1¶ j¶m

{ci + ki , d j + l j}.

Proof : According to Proposition 1, we have

x i(t) =ψ
(0)
i (0)+ψ

(1)
i (0)t

+
1
Γ (α)

∫ t

0

(t − s)α−1

�

− (ci + ki)x i(s)

+
m
∑

j=1

ai j(s) f1 j(y j(s))+
m
∑

j=1

bi j(s) f2 j(y j(s−τ))
�

ds.
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Furthermore, we obtain

|x i(t)|¶ |ψ
(0)
i (0)|+ |ψ

(1)
i (0)|t

+
1
Γ (α)

∫ t

0

(t − s)α−1
�

(ci + ki)|x i(s)|

+
m
∑

j=1

|ai j(s)|| f1 j(y j(s))|+
m
∑

j=1

|bi j(s)|| f2 j(y j(s−τ))|
�

ds

¶ |ψ(0)i (0)|+ |ψ
(1)
i (0)|t

+
1
Γ (α)

∫ t

0

(t − s)α−1
�

(ci + ki)|x i(s)|

+
m
∑

j=1

a∗i jζ1|y j(s)|+
m
∑

j=1

b∗i jζ2|y j(s−τ)|
�

ds.

In the same way, it follows that

|y j(t)|¶ |φ
(0)
j (0)|+ |φ

(1)
j (0)|t

+
1
Γ (α)

∫ t

0

(t − s)α−1
�

(d j + l j)|y j(s)|

+
n
∑

i=1

p∗jiθ1|x i(s)|+
n
∑

i=1

q∗jiθ2|x i(s−τ)|
�

ds.

Furthermore, we have

‖x(t)‖+ ‖y(t)‖=
n
∑

i=1

|x i(t)|+
m
∑

j=1

|y j(t)|

¶ ‖ψ(0)(0)‖+ ‖ψ(1)(0)‖t + ‖φ(0)(0)‖+ ‖φ(1)(0)‖t

+
1
Γ (α)

∫ t

0
(t − s)α−1(ρ‖x(s)‖+ a∗ζ1‖y(s)‖+ b∗ζ2‖y(s−τ)‖)ds

+
1
Γ (α)

∫ t

0
(t − s)α−1(ρ‖y(s)‖+ p∗θ1‖x(s)‖+ q∗θ2‖x(s−τ)‖)ds

= ‖ψ(0)(0)‖+ ‖φ(0)(0)‖+(‖ψ(1)(0)‖+ ‖φ(1)(0)‖)t

+
ρ+ξ
Γ (α)

∫ t

0
(t − s)α−1(‖x(s)‖+ ‖y(s)‖)ds

+
η

Γ (α)

∫ t

0
(t − s)α−1(‖x(s−τ)‖+ ‖y(s−τ)‖)ds.

Making use of the Cauchy-Schwartz inequality, we
obtain

‖x(t)‖+‖y(t)‖¶ ‖ψ(0)‖+‖φ(0)‖+(‖ψ(1)‖+‖φ(1)‖)t

+

�

ρ+ξ
Γ (α)

�∫ t

0

e−2s(‖x(s)‖+ ‖y(s)‖)2 ds

�1/2

+
η

Γ (α)

�∫ t

0

e−2s(‖x(s−τ)‖+ ‖y(s−τ)‖)2 ds

�1/2�

×
�∫ t

0

(t − s)2(α−1) e2s ds

�1/2

.

Together with the following inequality

∫ t

0

(t − s)2(α−1) e2s ds = e2t

∫ t

0

s2(α−1) e−2s ds

=
2 e2t

4α

∫ 2t

0

s2α−2 e−s ds <
2 e2t

4α
Γ (2α−1),

we obtain

‖x(t)‖+ ‖y(t)‖¶ ‖ϕ‖+ ‖ϕ‖t

+
et
p

2Γ (2α−1)
2αΓ (α)

§

(ρ+ξ)
�

∫ t

0

e−2s(‖x(s)‖+‖y(s)‖)2ds
�

1
2

+η
�

∫ t

0

e−2s(‖x(s−τ)‖+ ‖y(s−τ)‖)2 ds
�

1
2
ª

,

where ‖ϕ‖=max{‖ψ(0)‖+‖φ(0)‖,‖ψ(1)‖+‖φ(1)‖}.
Furthermore,

(‖x(t)‖+ ‖y(t)‖)e−t ¶ ‖ϕ‖e−t + ‖ϕ‖t e−t

+

p

2Γ (2α−1)
2αΓ (α)

§

(ρ+ξ)
�

∫ t

0

e−2s(‖x(s)‖+‖y(s)‖)2 ds
�

1
2

+η
�

∫ t

0

e−2s(‖x(s−τ)‖+ ‖y(s−τ)‖)2 ds
�

1
2
ª

. (4)

Let ω(t) = supt−τ¶ t̃¶t(‖x( t̃)‖+ ‖y( t̃)‖)e− t̃ . Then

(‖x(s)‖+ ‖y(s)‖)e−s ¶ω(s),

(‖x(s−τ)‖+ ‖y(s−τ)‖)e−(s−τ) ¶ω(s).

For (4), we obtain

ω(t)¶ ‖ϕ‖e−t + ‖ϕ‖t e−t +

p

2Γ (2α−1)
2αΓ (α)

×
§

(ρ+ξ)
�

∫ t

0

ω2(s)ds
�

1
2

+ηe−τ
�

∫ t

0

ω2(s)ds
�

1
2
ª

= ‖ϕ‖e−t + ‖ϕ‖t e−t

+
(ρ+ξ+ηe−τ)

p

2Γ (2α−1)
2αΓ (α)

�

∫ t

0

ω2(s)ds
�

1
2

= ‖ϕ‖(1+ t)e−t +β
�

∫ t

0

ω2(s)ds
�

1
2

. (5)

According to Proposition 3, we obtain

�

∫ t

0

ω2(s)ds
�1/2

¶

�

∫ t

0

�

‖ϕ‖(1+ s)e−s
�2

e−β
2s ds

�1/2

1−
�

1− e−β2 t
�1/2

.
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Combining this with (5), we have

ω(t)¶ ‖ϕ‖(1+t)e−t+β

�

∫ t

0

�

‖ϕ‖(1+s)e−s
�2

e−β
2sds

�
1
2

1−
�

1− e−β2 t
�1/2

.

Applying Proposition 2, we have

ω(t)¶ ‖ϕ‖(1+ t)e−t

+2β eβ
2 t

�∫ t

0

�

‖ϕ‖(1+ s)e−s
�2

e−β
2s ds

�

1
2

¶ ‖ϕ‖(1+t)e−t+2β‖ϕ‖eβ
2 t(1+t)

�∫ t

0

e−β
2sds

�

1
2

= ‖ϕ‖(1+t)e−t+2‖ϕ‖eβ
2 t(1+t)(1− e−β

2 t)
1
2 .

Hence

‖x(t)‖+‖y(t)‖¶‖ϕ‖(1+t)
�

1+2e(β
2+1)t(1−e−β

2 t)
1
2

�

.

In view of the assumptions of Theorem 3, it follows
that ‖x(t)‖ + ‖y(t)‖ < ε for any t ∈ [0, T]. This
indicates that system (1) can achieve the finite-
time stabilization with respect to {δ,ε, T} under
control (2). 2

Remark 1 Notice that the condition in Theorem 3
is independent of the Mittag-Leffler function. In
addition, this condition can be expressed as an
algebraic inequality, so the settling time T can be
easily calculated in practical applications.

Remark 2 In the existing literature, there have
been a few works15, 16 involved in the finite-time sta-
bility of fractional-order neural networks with the
order satisfying 1 < α < 2. The proofs mainly rely
on the Laplace transform, the generalized Gronwall-
Bellman inequality and some properties of Mittag-
Leffler functions. The obtained conditions are re-
lated to the Mittag-Leffler functions. Here, we
consider the finite-time stabilization of fractional-
order BAM neural networks with 1 < α < 2 based
on linear feedback control. Different from those in
some earlier works15–17, 22, our proof mainly relies
on the Cauchy-Schwartz inequality and the Gron-
wall inequality.

Remark 3 Following methods in Refs. 15–17, 22,
we can also derive a sufficient condition to ensure
the finite-time stabilization of system (1). This
condition is related to the Mittag-Leffler function,
which is given as follows:

e−γt(1+ t)Eα
�

(ξ+ηeγτ)Γ (α)tα
�

<
ε

δ
, (6)

where γ=min1¶i¶n,1¶ j¶m{ci + ki , d j + l j}.
Let all parameters be given. From (3), the

estimated settling time T1 can be easily obtained.
For (6), it is not easy to estimate the settling time
T2. Furthermore, even if we can obtain T2, it is very
difficult to derive the specific relationship between
T1 and T2 from a mathematical point of view.

Remark 4 For the case without time delays, i.e.,
bi j(t) = q ji(t) = 0, the finite-time stabilization with
respect to {δ,ε, T} can be ensured under control (2)
if max{‖ψ(0)‖+ ‖φ(0)‖,‖ψ(1)‖+ ‖φ(1)‖}< δ and

(1+t){1+2 e(β
2+1)t(1−e−β

2 t)1/2}<
ε

δ
, ∀t ∈ [0, T],

where β = (ρ + ξ)
p

2Γ (2α−1)/2αΓ (α) and ρ =
max1¶i¶n,1¶ j¶m{ci + ki , d j + l j}.

In practical applications, the scheme with par-
tial feedback control is always desirable due to its
lower complexity5. Assume that the external con-
trol ui(t) (i = 1,2, . . . , n) and v j(t) ( j = 1, 2, . . . , m)
are designed as follows:

ui(t) = −ki x i(t), v j(t) = 0, (7)

or ui(t) = 0, v j(t) = −l j y j(t), (8)

where ki and l j are positive constants.

Corollary 1 Suppose that Assumptions 1 and 2 hold.
Let δ and ε be any positive constants such that δ <
ε, and let max{‖ψ(0)‖+ ‖φ(0)‖,‖ψ(1)‖+ ‖φ(1)‖} <
δ. System (1) can achieve the finite-time stabiliza-
tion with respect to {δ,ε, T} under control (7), if
max{‖ψ(0)‖+ ‖φ(0)‖,‖ψ(1)‖+ ‖φ(1)‖}< δ and

(1+t){1+2 e(β
2+1)t(1−e−β

2 t)1/2}<
ε

δ
, ∀t ∈ [0, T],

where β = (ρ+ξ+ηe−τ)
p

2Γ (2α−1)/2αΓ (α) and
ρ =max1¶i¶n,1¶ j¶m{ci + ki , d j}.

Corollary 2 Suppose that Assumptions 1 and 2 hold.
Let δ and ε be any positive constants such that δ <
ε, and let max{‖ψ(0)‖+ ‖φ(0)‖,‖ψ(1)‖+ ‖φ(1)‖} <
δ. System (1) can achieve the finite-time stabiliza-
tion with respect to {δ,ε, T} under control (8), if
max{‖ψ(0)‖+ ‖φ(0)‖,‖ψ(1)‖+ ‖φ(1)‖}< δ and

(1+t){1+2 e(β
2+1)t(1−e−β

2 t)1/2}<
ε

δ
, ∀t ∈ [0, T],

where β = (ρ+ξ+ηe−τ)
p

2Γ (2α−1)/2αΓ (α) and
ρ =max1¶i¶n,1¶ j¶m{ci , d j + l j}.
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Remark 5 For the fractional-order 0 < α < 1, Wu
et al5 considered the global Mittag-Leffler stabi-
lization of fractional-order BAM neural networks
without time delays. Based on feedback control
or partial feedback control, they obtained three
sufficient conditions to realize the global Mittag-
Leffler stabilization of systems by using the Lya-
punov method.

NUMERICAL SIMULATIONS

In this section, we will give three examples to illus-
trate the effectiveness of our results.

Example 1 The network model is as follows:

C
0 Dαt x i(t) = −ci x i(t)+

2
∑

j=1

ai j(t) f1 j(y j(t))

+
2
∑

j=1

bi j(t) f2 j(y j(t −τ))+ui(t),

C
0 Dαt y j(t) = −d j y j(t)+

3
∑

i=1

p ji(t)g1i(x i(t))

+
3
∑

i=1

q ji(t)g2i(x i(t −τ))+ v j(t),



















































(9)

or
C
0 Dαt x(t) = −C x(t)+A(t) f1(y(t))

+ B(t) f2(y(t −τ))+u(t),
C
0 Dαt y(t) = −D y(t)+ P(t)g1(x(t))

+Q(t)g2(x(t −τ))+ v(t),



















(10)

where α= 1.4, τ= 0.1,

C = diag[0.003, 0.002,0.001],
D = diag[0.002, 0.001]

f1(y) = [0.1 tanh y1, 0.1 tanh y2]
T,

f2(y) = [0.1 sin y1, 0.1 sin y2]
T,

g1(x) = [0.1 tanh x1, 0.1 tanh x2, 0.1 tanh x3]
T,

g2(x) = [0.1 sin x1, 0.1 sin x2, 0.1 sin x3]
T,

ui(t) = −ki x i(t), v j(t) = −l j y j(t), and

A(t) =





0.06cos t 0.01 e−t

0.02 0.03 sin t
0.04 sin t 0.025cos t



 ,

B(t) =





−0.03 e−t 0.05 sin t
0.02cos t 0.025e−t

−0.01 0.04 cos t



 ,

P(t) =
�

1.15 e−t 1.6 1.2 cos t
1.45 cos t −1.1 sin t 1.4e−t

�

,

Q(t) =
�

−1.3 1.9e−t −1.7 sin t
1.2e−t 1.4 sin t 1.5cos t

�

.

By calculating, we obtain a∗ = 0.12,
b∗ = 0.115, p∗ = 2.7, q∗ = 3.3. The activation
functions f1 j(x), f2 j(x), g1i(x), g2i(x) satisfy
Assumption 2 with ζ1 = ζ2 = θ1 = θ2 = 0.1.
The initial conditions of system (9) are given
as x(t) = [0.002e−t , 0.003, 0.001sin t]T,
x ′(t) = [−0.002 e−t , 0, 0.001 cos t]T, y(t) =
[0.003t + 0.004,0.002 sin t − 0.001]T and
y ′(t) = (0.003,0.002 cos t)T for any t ∈ [−0.1, 0].
Fig. 1a shows the time evolution of system (9)
without external control. Let ki = 0.9 (i = 1,2, 3)
and l j = 0.9 ( j = 1,2). The feedback control is
written as

u(t) = [−0.9x1(t),−0.9x2(t),−0.9x3(t)]
T,

v(t) = [−0.9y1(t),−0.9y2(t)]
T.

(11)

By a simple calculation, we obtain β = 0.8577.
According to the initial conditions, we can take δ =
0.01 > max{‖ψ(0)‖+ ‖φ(0)‖,‖ψ(1)‖+ ‖φ(1)‖}. Let
ε = 1, from Theorem 3, we obtain the estimated
settling time T1 = 1.7485. Fig. 1b shows the time
evolution of system (9) with control (11).

Example 2 Let initial conditions of system (9) be

x(t) = [0.003 cos t,−0.001,0.012t2]T,

x ′(t) = [−0.003sin t, 0, 0.024t]T,

y(t) = [0.002+0.001 sin t, 0.002t −0.004]T,

y ′(t) = [0.001 cos t, 0.002]T

for any t ∈ [−0.1, 0]. Fig. 2a shows the time evolu-
tion of system without external control.

Let ki = 0 (i = 1,2, 3) and l j = 0.9 ( j = 1,2).
The feedback control is written as

u(t) = [0, 0,0]T,

v(t) = [−0.9y1(t),−0.9y2(t)]
T.

(12)

By calculation, we obtain β = 0.8572. In view of
the initial conditions, we can choose δ = 0.01 >
max{‖ψ(0)‖ + ‖φ(0)‖,‖ψ(1)‖ + ‖φ(1)‖}. Let ε = 1,
from Corollary 2, we obtain the estimated settling
time T2 = 1.7492. Fig. 2b presents the time evolu-
tion of system with control (12).

Example 3 Suppose that some parameters
of system (9) are given as follows: C =
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Fig. 1 The time evolution of system in Example 1, (a) without external control and (b) under control (11).

0 50 100 150 200
0

10

20

30

40

50

60

70

80

90

t

||x
(t

)|
|+

||y
(t

)|
|

0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

t

||x
(t

)|
|+

||y
(t

)|
|

Fig. 2 The time evolution of system in Example 2, (a) without external control and (b) under control (12).

diag(0.002, 0.003,0.001), D = diag(0.002,0.005),

A(t) =





0.8 cos t 0.55e−t

1 0.15+0.5 sin t
0.7 sin t 1.25cos t



 ,

B(t) =





−0.65 e−t 0.75 sin t
0.25+0.6cos t 0.625 e−t

−0.9 0.7 cos t



 ,

P(t) =
�

0.05 e−t −0.06 −0.02cos t
0.05 cos t −0.01 sin t 0.04 e−t

�

,

Q(t) =
�

−0.012 0.01e−t −0.03 sin t
−0.02e−t −0.04 sin t 0.015 cos t

�

.

The other parameters of system (9) are the same
as those in Example 1. The initial conditions of
system (9) are taken as follows: x(t) = [0.002 e−t ,
0.003, −0.001sin t]T, x ′(t) = [−0.002 e−t , 0,

−0.001 cos t]T and y(t) = [0.002 cos t, −0.001]T

and y ′(t) = [−0.002 sin t, 0]T for any t ∈ [−0.1,0].
Fig. 3a shows the time evolution of system with-

out external control. By calculation, we can obtain
a∗ = 2.5, b∗ = 2.4, p∗ = 0.1, and q∗ = 0.05. Let
ki = 0.9 (i = 1,2, 3) and l j = 0 ( j = 1, 2). The
feedback control is written as

u(t) = [−0.9x1(t),−0.9x2(t),−0.9x3(t)]
T,

v(t) = [0,0]T.
(13)

By calculation, it follows that β = 0.7986. Fig. 3b
shows the time evolution of system with con-
trol (13). We choose δ = 0.01 > max{‖ψ(0)‖ +
‖φ(0)‖,‖ψ(1)‖ + ‖φ(1)‖} and ε = 1. According to
Corollary 1, we obtain the estimated settling time
T3 = 1.8450.
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Fig. 3 The time evolution of system in Example 3, (a) without external control and (b) with control (13).
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