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ABSTRACT: In this note, we prove that some of recent Rotfel’d type inequalities are equivalent, which is an extension
of Huang, Wang and Zhang [Linear Multilinear Algebra 66 (2018) 1626-1632]. Among other results, it is shown that
if f:[0,00) — [0, 00) is a concave function and A € M,(M,,) is a normal matrix with its numerical range contained
in a sector: S, = {z € C:Rez = 0,|Imz| < (Rez)tana} for some a € [0, 7), then ||f (JAD|| < 2 ||f (SE%MH +A22|)|| for
any unitarily invariant norm ||-||. This inequality improves a recent result of Zhao and Ni [Linear Multilinear Algebra

66 (2018) 410-417].
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INTRODUCTION

Throughout this paper, let M, be the set of all
n x n complex matrices. For A € M, its singular
values are always arranged in decreasing order:
0.(A) = 04(A) = --- = 0,(A). We denote by ||A|| the
unitarily invariant norm of A, and |A| = (A*A)Y/2. If
A is Hermitian, we enumerate eigenvalues of A in
non-increasing order: A;(A) = A,(4) = --- = A,(A).
Note that tr is the usual trace functional. For two
Hermitian matrices A,B € M,,, we use A= B (A< B)
to mean that A— B is a positive (negative) semidef-
inite matrix. A matrix A € M, is called accretive-
dissipative if in its Cartesian (or Toeptliz) decompo-
sition, A = ReA+ iImA, the matrices ReA and ImA
are positive semidefinite, where ReA = %(A+A*),
ImA = %(A—A*). From Ref. 18 we know, for the
Cartesian decomposition of A, that A is normal if and
only if ReA ImA = ImA ReA.
The numerical range of A € M, is defined by

W) ={x*"Ax : x € C", x*x =1}.

For a € [0, %), S, and S/, denote, respectively, the
sector regions in the complex plane as follows.

S,={2€C:Rez >0, |Imz| < (Regz)tana}
and
S! ={z€C:Rez>0,0<Imz < (Rez)tana}.

Recent studies on matrices with numerical ranges in
a sector can be found in Refs. 5,6,11-13,15, 19 and
references therein.
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Consider a partitioned matrix A € M,, in the

form

A A

A= |: 11 12] , (1)
Ay Ap

where A;; and A,, are square matrices. By M,(M,,)

we mean

o) ={ [

Similarly, we can define M, (M ).

In the late 1960s, Rotfel’d proved a famous trace
inequality: let A,B = 0 and let f be a non-negative
concave function on [0, 00). Then

tr f(A+B) < trf(A) +tr f(B).

A12

Azz] (A EM,, 1, j= 1,2}. 2

Lee extended the Rotfel’d theorem to a partitioned
positive semidefinite matrix '°.

Theorem 1 Let A € M, be a positive semidefinite
matrix partitioned as in (1) and let f: [0,00) —
[0, o0) be a concave function. Then

I1f @I < 1F Al + 1L (A)l-

As a further extension of the classic Rotfel’d theo-
rem, Zhang'® extended Theorem 1 to matrices with
W(A) C S, for a €[0, Z) as follows.

Theorem 2 Let f:[0,00) — [0,00) be a concave
function and let A€ M, with W(A) C S, for a €[0, 5)
be partitioned as in (1). Then
LF UADIE< I1f (A DI+ 1LF (A2 DI
+2( [If (tan(a)|A;; DIl + I f (tan(@) A DI ).
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Later, Fu and Liu® obtained another generalization
of Theorem 1 as follows.

Theorem 3 Let f:[0,00) — [0,00) be a concave
function and let A€ M,, with W(A) C S, for a €[0, )
be partitioned as in (1). Then

£ CQADI < [|f (sec® (@A ])|| + [|f (sec*(@)lAgl)|| -

Hou and Zhang” considered the case: W(A)C S » for
a €[0, ). They derived the following result.

Theorem 4 Let f:[0,00) — [0,00) be a concave
function and let A€ M, with W(A) C S! for a €0, 5)
be partitioned as in (1). Then

I1FQADIE< 11f (A DI+ 1L (A2 DI
+11f (tan(a)|Aq; DI+ |If (tana)|Az )]l -

Let A be normal and W(A) € S,, a € [0, 5). Zhao
and Ni'” derived the following result.

Theorem 5 Let f:[0,00) — [0,00) be a concave
function and A € M,, be normal with W(A) € S,, for
a € [0, ), and let A be partitioned as in (1). Then

117 CADIE < 11 (A DI+ 117 (A2 DI
+1If (tan(@)|Ay; DIl + [1f (tan(a)|Ag, -

Huang et al® derived the following inequality.

Theorem 6 Let A € M, be partitioned as in (1) and
let f: [0,00) — [0, 00) be a concave function. If A+
A* =0, then

£ (29| < 1FGADI+ 11 (Az DI

Recently, Yang et al'® presented a new refinement
of Rotfel’d type inequality as follows.

Theorem 7 Let f:[0,00) — [0,00) be a concave
function and A € M, be normal with W(A) € S, for
a €[0, Z) and let A be partitioned as in (1). Then

I1f (ADIT < 1f (sec(a)|An DI+ IIf (sec(@)lAgz DI -

Zhao and Ni presented an extension of Rotfel’d
theorem as follows!”.

Theorem 8 Let f:[0,00) — [0,00) be a concave
function, and A € M,(M,,) be a positive semidefinite
matrix, and let A be partitioned as in (2). Then

I1f A < 2[1f (A1) + f (Az)Il-

In this note, we show that Theorems 1-7 are equiv-
alent, which is an an extension of Huang et al®. In
addition, we present a new inequality that can be
viewed as a generalization of Theorem 8.
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MAIN RESULTS

We observe that. If f: [0, c0) — [0, 00) is concave,
then

0<A<SB = |IfAI <If B 3

Before we give the main results, let us present the
following lemmas that will be useful later.

Lemma 1 (Ref. 3) Let A M,,. Then
Ai(ReA)<oji(4), j=12,...,n

The above inequality implies that there exists a
unitary matrix U € M, such that

ReA < U|A|U*.

Zhao and Ni!” presented a decomposition lemma as
follows.

Lemma 2 Let A€ M,(M,,) be a positive semidefinite
matrix, and let A be partitioned as in (2). Then there
exist unitary matrices U,V € M,(M,,) such that

_1 A11+A22 O % 0 0 %
A—2{U[ 0 0U+V0 A11+A22V .

The next lemma was obtained by Aujla and Bourin?2.

Lemma 3 Let f:[0,00) — [0,00) be a concave
function, and A, B € M, be positive semidefinite ma-
trices. Then there exist unitary matrices U,V € M,
such that

f(A+B) <Uf(AU* +Vf(B)V*.

Bourin and Lee* obtained the following important
inequality.

Lemma 4 Let A,B >0 and f:[0,00) —[0,00) be
a concave function. Then

If(A+B)ll < IIf A+ fB)Il.

The following lemma was obtained by Yang et al'®.

Lemma 5 Let A=R+1S be the Cartesian decompo-
sition of Awith W(A) € S, for a €[0,Z). IFRS =SR
(i.e., Ais normal), then

|A] < sec(a)R.

Now we are ready to give the first main result.
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Theorem 9 Let f: [0,00) — [0,00) be a concave
function and A € M,(M,,) with W(A) C S, for a €
[0, ), and let Abe partitioned as in (2). IfA=R+iS
is the Cartesian decomposition of A with RS = SR,
then

IF AN < 2]|£ (

Proof: We suppose f(0) = 0, the general case fol-
lows directly by using Lee’s approach'®. Consider
the Cartesian decomposition A= R+ iS, where

R= |:R11 RIZ] Sll 812i|
R22 SZZ

Ry S
As RS = SR, It follows from Lemma 5 that
|A] < sec(a)R. This gives

seca R{;+R 0 0 0
< 11 22 * *
<= {Ul[ 0 0] Urth [0 RH+R22] ¢ }

< se;:a {Ule [|R11 + Ry, +0i(511 +5,5) 8

%A, +A22|)“- 4

and Sz[

Jusu;

0 0 -
+V1V2[0 |Ru+R22+i(su+522)|]vzvl}

[0 0 -
b 10 A +A22|]V Y }

seca
|A11 +A22| 0 *TTH
:U1U2[ 2 o|UsU;
[0 0

TV o smaps yay,)

where the first and the second equalities are ob-
tained by Lemma 2 and Lemma 1, with correspond-
ing unitary matrices U;, V;, and U,, V,, respectively.
By (3), Lemma 3 and the triangle inequality,
U,U,U, |:f( 2 |A61 +A22|) 0:| Uiuru;

0727173

£ AADI <

+ VsV, 0 seca 0 V;Vl*V*
0 f(T|A11+A22|) 3

[f (Sem|A11 +Azz| :|H

<

[8 f(=21A, +Azz|)]“
=2||f (

where U, V5 are unitary matrices in Lemma 3. O

AL + A )|

Remark 1 In Theorem 9, we can present another
form of (4) as

I1f IADII < 2|If (sec(@)lAr; +AzDI. (5)
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For a positive semidefinite matrix A, (5) and
Lemma 4 give

ILf A < 2[f (A1 +A)Il < 2[1f (A11) + f (Ag)Il.

Thus Theorem 9 can be considered as a natural
generalization of Theorem 8.

Remark 2 Putting f(t) =t in Theorem 9, we ob-
tain the inequalities

ILf CLADIN = [1|Al|
<2||f (

= sec(a) [[|A1; +Ax||l = sec(a) |A1; + Ayl

52 AL +A22|)H

<sec(a) (J|Aq1 Il + (1A
= sec(a) ([[|Aq1 ]Il + 1Azl
= ||f (sec(a)|A11 DI + [ (sec(a) Az )] -

Under this condition, Theorem 9 is a refinement of
Theorem 7.

We borrow an example from Ref. 15 to show
that the equality in (4) may happen.

Example 1 Let f(t) =t be concave and

_ [ cosa sina], aelo, E).
—sina cosa 2
By simple calculation, we have
01(A)=0,(A) =1.

Specifying the unitarily invariant norm in this exam-
ple to the trace norm ||-||,. Thus we have |||Al||,=
01(A)+0,(A) =2 and |||A;; +Ag||lx= 2 cos a, which
leads to

1F QAN = Al = 2|25 1Ay, +Ag ||, = 2

Corollary 1 Let f: [0,00) — [0,00) be a concave
function, and A € M,(M,,) with W(A) € S, for a €
[0, ), and let A be partitioned as in (2). f A=R+
iS is the Cartesian decomposition of A with RS = SR,
then

IFQADI < 2(]|F (2 1an )| + || (22 14s1)|)) -

Proof: It follows from Theorem 9 that there exists
unitary matrices U,V € M,(M,,) such that

£ CADI < 2 ||f (32214, + Az ) |
<2||f (
<2 HUf (seca|A11|) U* "er (seca|A22|)V*”

2(]lF 1Al + £ (52 1421)]).

L (UIAL U™+ V]Ap V)|



http://www.scienceasia.org/
www.scienceasia.org

ScienceAsia 45 (2019)

where the third inequality is from Lemma 4. a
We can also obtain Corollary 1 by utilizing The-
orem 7 as follows.

ILf JADII < [1f (sec(a)|Aq1 DI + |1f (sec(a) Az ]
<2(flF Czian ]| +[|f (<5 1A1)])-

Note that matrix A is accretive-dissipative if and only
if W(e™™/4A) c Sy/4- Let a = 1/4 be in Corollary 1,
we obtain

)

17l < 2( | £ (Liant)|+]|7 (Bma)

which coincides with (3.1) in Ref. 16. If we put a =
11/4 in Theorem 9, then

17Dl < 2| (i + Az

We give a refinement of Corollary 1 without the nor-
mality assumption on A in the following theorem.

Theorem 10 Let f: [0,00) — [0, 00) be a concave
function, and A€ M,, with W(A) € S, for a € [0, Z),
and let A be partitioned as in (1). Then

£ QAN < 2(]1F (C51Aanl)|| + ||f (52 1A)]))-

Proof: Let A= U|A| be the polar decomposition of A,
and A= R +1S be the Cartesian decomposition of A
with R, S being partitioned as in (1). Thus by Ref. 4,
there exist unitary matrices U;, V; such that

R
r=[offs oJuienlo walv]

491

which gives

Se; %R+ U*RV)

_seca Ry, O], 0 0 |,,.
-5l ey

* Rll 0 * * 0 0 *
+U Ul[o O]U1U+U Vl[o RZZ]VlU}

sec R, +1iS 0
< a{U1U2[| 11 +1Sq4] ]U;‘Ui‘

Al <

0 0

0 0 i
0 |R22+i522|i|v2 "

IRyy + 1Syl
0

+m%[
+U U U, 0|UsUTU

+U vlvz[O |R22+1522|]V2 v, U}

_seca |A11| 0 kT Tk 0 0 kY 7k
== {UIUZ[ o o|UUitViValg (Ve Vi

A, | 0

+U*U1U2[ o

]U2U1U+U WV, [0 |A22|]v2 V; U}

seca
SolAnl 0] 0 0
— 2 KT TR Ky 7*
_Ule[ 0 o |BUI+IV | o secaly | A
=2A,] 07,
+U*U1U2[ 2 (|) il 0] U;UU
. 0 0
+U'WV, [O %|A22|:|V2*V1*U’

where the first inequality is obtained by the previous
equality® and the second inequality is obtained by
Lemma 1 with unitary matrices U;, V;, and U,, V;,
respectively.

By (3) and Lemma 3, we have

seca
Uguluz[f( 7Wnl) 0} U3U;U;

IF DI < o

0

O * * *
TATATA [0 f (SES“IAZZI)] A TAA

=eianl) 0
0 0

+ UsU*U, U, [f( ]U;Ufuugj

0 0
0 f(=£2|Azl)

+V3U*V1VZ[ ]VZ*Vl*UVB* ,

IF QD] < 2 H[f (%)lAnD g}H

+2

'[8 f(se§g|A22|)}H
=2(|[F (5*1an ||+ [|f (5*1421)]

).
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in which Us, V5 correspond to the unitary matrices
in Lemma 3. O

Letting f(t) = t in Theorem 10, we obtain the
following corollary.

Corollary 2 Let A be partitioned as in (2) with
W(A) C S, for a €[0, 5). IfAis normal, then

lA]l < sec(a) [|A1; +Ax]l. (6)

Next we shall extend inequality (6) to a higher
number of blocks. First of all, let us introduce some
relevant conceptions.

A matrix A = (A;)} o1 € M, (M) is said to
be positive partial transpose (PPT) if A is positive
semidefinite, and its partial transpose A* = (A;
is also positive semidefinite.

In Ref. 9, Kuai defined a new conception called
sectorial partial transpose (SPT). A matrix A =
(A7 ij=1 € M, (M) is said to be SPT if W(A) C S,
and W(A") C S,.

]ll] 1

Lemma 6 (Ref. 9) If Ais SPT, then ReA is PPT.

Lemma 7 (Ref. 19) Let A€M, be such that W(A) €
Sy Then

llAll < sec(a) [[ReAll.

Lemma 8 (Ref. 14) Let A= (A;
a PPT matrix. Then

ij 1] 1 € M, (M) be

ZA” .

We note that the following theorem is an extension
of Corollary 2 and Lemma 8 to sector matrices.

Theorem 11 Let A= (4; € M,,(M,) be an SPT
matrix. Then

llAll <

l)l]l

n
DA

i=1

Proof: As A is SPT, we obtain by Lemma 6 that ReA
is PPT. Hence we have

1Al < sec(a)

llAIl < sec(a)[|ReAll

Z ReA;
i=1
n
Re (ZAH)
i=1

(by Lemma 7)

< sec(a) (by Lemma 8)

n
DA
i=1

=sec(a) < sec(a)

O
Next we give our second main result, which proves
the equivalence of some recent Rotfel’d type theo-
rems.
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Theorem 12 Let f: [0,00) — [0, 00) be a concave
function and A € M, be partitioned as in (1). The
following statements are equivalent.

(a) If A€ M, be a positive semidefinite matrix,

then '©
£ I < IF @I+ 1f (A)II-
(b) IfA+A* >0, then®
[I£ (25| < 1£ QAnDI+ 11 LAz DIl -

(c) f W(A)C S/ for a €[0,3), then’
£ CADIF < [1f (A1 DI+ (L (1A DI
+|If (tan(a)|Aq1 DIl + |1 (tan(a) Az DI -

(d) If A is normal and W(A) C S, for a € [0, 5),
then!”

£ CADIF < Nlf (A DI+ 1F (A2 DI

+|If (tan(a)|Aq1 DIl + |1 (tan(a) Az, DI -
(e) f W(A)C S, for a €[0, %), then™
£ CADIF < [1f (A2 DI+ [1f (1A D]

+2(||f (tan(a)|A17 DI + || f (tan(a)|Ag, DI

(f) If A is normal and W(A) C S, for a € [0, 3),
then®®

1 AADI < 1f (sec(a)lAr DI+ 1 (sec(a)lAz2 DI -

(g) IfW(A)CS, for a €[0,%), then®

ILF QADIT < || Gsec®(@)lAg D]+ 1 (sec2 (@A) -

Proof: The equivalence from (a)-(e) was shown by
Huang et al®, we thus only need to prove (b) = (f),
(b) = (g), () = (a), and (g) = (a).

(b) = (f): Consider the Cartesian decomposi-
tion A=R+18S. It follows from Lemma 5 that

|A] < sec(a)R.

Then, by (3) and (b), we have

lfADII <
_ (sec(a)A) + (sec(a)A)*
A a—

< |If (sec(@)lAr DI+ [1f (sec(a)lAz DIl -

ILf (sec(a) Rl
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(b) = (g): For the Cartesian decomposition
A =R+18S, it follows from Ref. 5 that there exists
a unitary matrix U € M, such that

|A] < sec?(a) URU*,

and the rest of the proof is the same as above.
() = (a): For a positive semidefinite matrix
A, we have a = 0 in (f), which implies (a) directly.
Similarly, we obtain (g) = (a). O
Apparently, Theorem 12 is an extension of
Huang et al® (Theorem 3.1).
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