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ABSTRACT: Let G be a metacyclic p-group, and let Z(G) be its center. The non-commuting graph ΓG of a metacyclic p-
group G is defined as the graph whose vertex set is G−Z(G), and two distinct vertices x and y are connected by an edge
if and only if the commutator of x and y is not the identity. In this paper, we give some graph theoretical properties
of the non-commuting graph ΓG . Particularly, we investigate planarity, completeness, clique number and chromatic
number of such graph. Also, we prove that if G1 and G2 are isoclinic metacyclic p-groups, then their associated graphs
are isomorphic.
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INTRODUCTION

There are many ways to associate a graph to a
group1–4. In this paper, we consider the non-
commuting graph of a metacyclic p-group G which
is denoted by ΓG . The non-commuting graph ΓG of G
is defined as the graph whose vertex set, denoted by
V (ΓG), is G − Z(G) and the edge set E(ΓG) contains
(x , y) as an edge if and only if x y 6= y x . Note that
G is abelian if and only if ΓG is without vertices.

The non-commuting graph of a group G was
first introduced by Erdös, when he posed this prob-
lem in 1975. If G is a group whose non-commuting
graph has no infinite complete subgraph, is it true
that there is a finite bound on the cardinalities
of complete subgraphs of G? Neumann5 gave an
affirmative answer to this question and this was
the origin of many similar questions and research.
Abdollahi et al6 studied the relation between some
graph theoretical properties of ΓG and the group
theory properties of G. A group G is called meta-
cyclic if it contains a normal cyclic subgroup whose
quotient is also cyclic. Beuerle7 classified all non-
abelian finite metacyclic p-groups which are stated
in Theorems 1, 2, and 3 as follows.

Theorem 1 Let G be a non-abelian metacyclic p-
group of nilpotency class 2. Then G is isomorphic to

exactly one group in the following list:
(1) G ' 〈a, b | apα = bpβ = 1, [a, b] = apα−γ〉, where

α,β ,γ ∈ N, α¾ 2γ, and β ¾ γ¾ 1;
(2) G ' Q = 〈a, b | a4 = 1, b2 = [b, a] = a−2〉, the

group of quaternions of order 8.

Theorem 2 Let p be an odd prime, and let G be a
metacyclic p-group of nilpotency class at least 3. Then
G is isomorphic to exactly one group in the following
list:
(3) G ' 〈a, b | apα = bpβ = 1, [b, a] = apα−γ〉, where

α,β ,γ ∈ N, γ−1< α < 2γ, and γ¶ β;
(4) G ' 〈a, b | apα = 1, bpβ = apα−ε , [b, a] = apα−γ〉,

where α,β ,γ,ε ∈ N, γ−1< α < 2γ, γ¶ β , and
α < β + ε.

Theorem 3 Let G be a metacyclic 2-group of nilpo-
tency class at least 3. If G is of positive type, then G is
isomorphic to exactly one group in the following list:
(5) G ' 〈a, b | a2α = b2β = 1, [b, a] = a2α−γ〉, where

α,β ,γ ∈ N, 1+γ < α < 2γ, and β ¾ γ;
(6) G ' 〈a, b | a2α = 1, b2β = a2α−ε , [b, a] = a2α−γ〉,

where α,β ,γ,ε ∈ N, 1+γ < α < 2γ, γ¶ β , and
α < β + ε.

If G is of negative type, then G is isomorphic to exactly
one group in the following list:
(7) G ' 〈a, b | a2α = 1, b2β = a2α−1

, [b, a] = a−2〉,
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where α¾ 3 and β ¾ 1;
(8) G ' 〈a, b | a2α = b2β = 1, [b, a] = a−2〉, where

α¾ 3 and β ¾ 1;
(9) G ' 〈a, b | a2α = b2β = 1, [b, a] = a2α−1−2〉,

where α¾ 3 and β ¾ 1;
(10) G ' 〈a, b | a2α = 1, b2β = a2α−1

, [b, a] =
a2α−γ−2〉, where α−γ > 1 and β > γ > 1;

(11) G ' 〈a, b | a2α = b2β = 1, [b, a] = a2α−γ−2〉,
where α−γ > 1 and β ¾ γ > 1.

We divide the above classification of metacyclic p-
groups into three cases, namely, Case I, II, and III
for convenience. These cases are described below.
Note that for all cases due to Beuerle7 presentation,
we consider α,β ∈ N and ε,γ¾ 0 as integers where
γ ¶ min{α− 1,β} and γ+ ε ¶ α. If p = 2, then in
addition α − γ > 1. We use the notation [b, a] =
bab−1a−1 = aba−1 for the commutator of b and
a. Thus the groups of Case I have the following
representation:

G = 〈a, b : apα = 1, bpβ = apα−ε , ab = ar〉, (1)

for some α,β ,ε,γ, where r = pα−γ + 1 and p is an
odd prime or α− γ ¾ 2. The groups of Case II are
shown by

G = 〈a, b : a2α = 1, b2β = a2α−ε , ab = a−1〉, (2)

where α ¾ 2 and ε ¶ 1. Finally, the groups of Case
III are represented by

G = 〈a, b : a2α = 1, b2β = a2α−ε , ab = ar〉, (3)

where α−γ¾ 2, β ¾ γ > 1, r = 2α−γ−1, and ε¶ 1.
The groups of Cases I, II, and III cover all

possible types of the classification. Indeed, they
correspond to three different values of r in ab = ar ,
or equivalently [b, a] = ar−1 that is r = pα−γ + 1:
r = −1, 2α−1 − 1, 2α−γ − 1. Then Case I covers the
types (1), (3), (4), (5), and (6), Case II covers the
forms (2), (7), and (8), and Case III covers the forms
(9), (10), and (11). In what follows, we will write
‘metacyclic p-group’ to mean metacyclic p-groups of
all cases.

In this paper, we show that if G1 ∼ G2 is an
isoclinic metacyclic p-group, then ΓG1

' ΓG2
. We

also obtain the clique number and chromatic num-
ber of the non-commuting graph ΓG . In particu-
lar, we show that the graphs associated with non-
isomorphic metacyclic p-groups in each Case I, II,
and III have the same clique number and chromatic
number.

SOME RESULTS ON THE NON-COMMUTING
GRAPHS OF METACYCLIC p-GROUPS AND
COMPUTING P(G)

This section provides a formula for the number of
edges of non-commuting graph ΓG in terms of α,β ,
and γmentioned in the above three representations.
Some properties of ΓG , and some relations between
this graph and commutativity degree of G, P(G), is
obtained.

For a finite group G, let A denote the set of
pairs of commuting elements of G:

A = {(a, b) ∈ G×G | ab = ba}.

The quantity |A |/|G|2, which is denoted by P(G),
measures the probability of two random elements
of G commuting, and is called the commutativity
degree of G. There are many results on the com-
mutativity degree of some particular groups8–10. By
Proposition 5 in Ref. 11, the number of edges in ΓG ,
denoted by |E(ΓG)|, is

|E(ΓG)|=
1
2 (|G|

2− k(G)|G|), (4)

where k(G) is the number of conjugacy classes of
group G. The following equation provides a formula
for the commutativity degree of group G in terms of
the number of edges of graph ΓG .

P(G) = 1−
2|E(ΓG)|
|G|2

. (5)

From the above consideration, we obtain the num-
ber of edges and commutativity degree of metacyclic
p-groups in terms of α,β , and γ.

For future reference, we need the following two
propositions that give formulas for the order, the
center, and the order of the center of metacyclic p-
groups. For the proof, we refer to Proposition 2.5 in
Ref. 7.

Proposition 1 Let G be a metacyclic p-group of
Case I. Then |G| = pα+β , Z(G) = 〈apγ , bpγ〉, and
|Z(G)|= pα+β−2γ.

Proposition 2 Let G be a metacyclic 2-group of
Cases II and III. Then |G| = 2α+β , Z(G) =
〈a2α−1

, b2max{1,γ}
〉, and |Z(G)|= 2β−max{1,γ}+1.

In the groups of Case II, since α¾ 3, β ¾ 1, and γ¶
min{α− 1,β}, then γ ¶ 1. Thus Z(G) = 〈a2α−1

, b2〉
and |Z(G)|= 2β .

In the following theorem, we obtain the number
of edges of the non-commuting graph ΓG of the
groups of Case I.
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Theorem 4 Let G be a metacyclic p-group of Case I.
Then |E(ΓG)|=

1
2 |G|

2(1−1/pγ−1/pγ+1+1/p2γ+1).

Proof : From Theorem 4 of Ref. 12, the number of
conjugacy classes of G is k(G) = |G|(1/pγ+1/pγ+1−
1/p2γ+1). Now, the result is followed by using
equation (4). 2

The following theorem gives a formula for the
number of edges in the non-commuting graph ΓG
associated with the groups of Case II.

Theorem 5 Let G be a metacyclic 2-group of Case II.
If ai b j , where 0 ¶ i < 2α and 0 ¶ j < 2β , is an
arbitrary element of G, then |E(ΓG)| =

3
8 |G|

2(1 −
1/2α−1).

Proof : Let G ' 〈a, b | a2α = b2β = 1, [b, a] = a−2〉,
be a split group (ε = 0) of Case II. According
to Proposition 2 we have Z(G) = 〈a2α−1

, b2〉 and
|Z(G)|= 2β . Since G is a 2-generated metacyclic 2-
group of order 2α+β with the relation ba= ar b, then
each element in the group can be written uniquely
in the form ai b j , where 0 ¶ i < 2α and 0 ¶ j < 2β .
Note that in the case [b, a] = a−2, we have ab =
bab−1 = a−1, from which it follows that ab j

= a(−1) j

and ai b j
= a(−1) j i . Hence b jai = ai(−1) j b j . Thus it is

easy to see that

(ai b j)a
s bt
= a(−1)t((i+s)−(−1) js)b j

=

¨

ai(−1)t b j , j is even,

a(−1)t(i+2s)b j , j is odd.

Hence there are three cases of elements x in the
group G. First, if x ∈ Z(G), then xG = {x} and
the number of conjugacy classes of this type equals
|Z(G)| which is already given. Next, if x = ai b j is
non-central and j is even, then i 6= 0, 2α−1, so in
this case xG = {ai b j , a−i b j} = {ai , a−i}b j has two
elements. Hence the number of conjugacy classes of
such elements equals 1

2 (2
α−2)2β−1 = (2α−1−1)2β−1,

where 2β−1 is the number of even j. Lastly, if x =
ai b j is non-central and j is odd, then

xG =
�

ai+2s b j , a−(i+2s)b j | 0¶ s < 2α
	

=
�

ai+2s b j | 0¶ s < 2α
	

=



a2
�

ai b j

has 2α−1 elements and each odd j contributes 2
conjugacy classes. Thus the number of conjugacy
classes of such elements equals 2 · 2β−1 = 2β where
2β−1 is the number of odd j. Hence the number
of conjugacy classes of G is k(G) = 2β + (2α−1 −
1)2β−1 + 2β = 1

4 |G|(1+ 3/2α−1). The results of the
split case are used to find a similar formula for k(G)
in the non-split case. We observe that k(G) for both

cases are the same. Now, using (4), we arrive at the
result. 2

The following theorem gives a formula for the
number of edges of graph ΓG in the Case III groups.

Theorem 6 Let ΓG be the non-commuting graph of
metacyclic 2-group of Case III. Then

|E(ΓG)|=
1
2
|G|2

�

1−
2γ−1
22γ−1

−
1

2γ+2
−

3
2α+1

�

.

Proof : The number of conjugacy classes of groups
of Case III is

k(G) = (2γ−1)2α+β−2γ−1+2α+β−γ−2+3 ·2β−1

= |G|
�

2γ−1
22γ−1

+
1

2γ+2
+

3
2α+1

�

,

(see also Ref. 13). Now, by combining recent for-
mula and (4), the result is obtained. 2

We now provide explicit formulas for the com-
mutativity degree of the groups of Cases I, II, and
III.

Corollary 1 Let ΓG be a non-commuting graph asso-
ciated with the metacyclic p-groups of Case I. Then
P(G) = 1/pγ+1/pγ+1−1/p2γ+1.

Proof : The proof can be deduced by Theorem 4 and
equation (5). 2

Now, calculation of the commutativity degree
for the groups of Cases II and III is a straightforward
consequence of Theorems 5 and 6.

Corollary 2 Let G be a group of Case II, and let ΓG
be its non-commuting graph. If ai b j is an arbitrary
element of G, where 0 ¶ i < 2α, 0 ¶ j < 2β , then
P(G) = 1

4 (1+3/2α−1).

Proof : It is straightforward from Theorem 5 and
(5). 2

Corollary 3 Consider the metacyclic 2-group G of
Case III. If ΓG is the non-commuting graph of G, then
P(G) = (2γ−1)/22γ−1+1/2γ+2+3/2α+1.

Proof : The result is obtained directly by using The-
orem 6 and (5). 2

Proposition 3 Let G1 and G2 be two metacyclic p-
groups of Case I. If their associate graphs ΓG1

and ΓG2

are isomorphic, then P(G1) = P(G2).

Proof : Suppose that G1 and G2 are two groups of
Case I, using the proof of Theorem 4 in Ref. 12, we
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have k(G1) = k(G2). Now, by applying Proposition 1
and (4), we obtain

|E(ΓG1
)|=

|G1|
2
(|G1| − k(G1))

=
|G2|

2
(|G2| − k(G2)) = |E(ΓG2

)|.

From this equality and v(5), the result follows. We
use the results of Theorems 5 and 6 to pose a similar
argument for proving the identity P(G1) = P(G2),
when G1 and G2 are the groups of Case II or III. 2

In the following example, we see that the non-
commuting graph of metacyclic 2-group D2α+1 is not
complete. But, this graph is hamiltonian, and the
commutativity degree P(G) = 5

8 , where α= 2.

Example 1 Consider the metacyclic 2-group
D2α+1 = 〈a, b : a2α = b2 = 1, ab = a−1〉. The degree
of every vertex of the non-commuting graph ΓD2α+1

can be calculated as follows: deg(ai) = 2α, i 6= 2α−1;
deg(b) = 2α+1−4; deg(ai b) = 2α+1−4, i 6= 2α−1, and
deg(a2α−1

b) = 2α+1−4. Since |V (ΓD2α+1 )|= 2α+1−2,
deg(x) = 2α − 1 and deg(x) 6= 2α − 3 for every
vertex in the graph, so ΓD2α+1 is hamiltonian and
non-complete. We can extend this result to any
metacyclic p-group.

Proposition 4 The non-commuting graph of every
metacyclic p-group is not complete.

Proof : Suppose that ΓG is a complete graph. Then
for each x ∈ G − Z(G), deg(x) = |G| − |Z(G)| − 1.
On the other hand, we know that deg(x) = |G| −
|CG(x)|. Hence |G| − |Z(G)| − 1 = |G| − |CG(x)|.
Thus |CG(x)| = |Z(G)| + 1. Since |Z(G)| divides
|CG(x)|, thus |Z(G)| = 1, which is a contradiction
to Propositions 1 and 2. 2

The above proposition shows that non-
commuting complete graph associated with
metacyclic p-groups cannot be constructed, or
equivalently there is no metacyclic p-group with
commutativity degree

P(G) =
2|Z(G)|
|G|

−
|Z(G)|2

|G|2
+

1
|G|
−
|Z(G)|
|G|2

.

Proposition 5 The non-commuting graph of every
metacyclic p-group is hamiltonian.

Proof : For non-commuting graph ΓG , we have
deg(x) = |G − CG(x)|, also since x ∈ G − Z(G),
CG(x) 6= G, then |G|/|CG(x)| 6= 1. Thus

|G|/|CG(x)|¾ 2, that is |G|¾ 2|CG(x)|. Hence

|G| − |Z(G)|< |G|= 2|G| − |G|
¶ 2|G| −2|CG(x)|= 2deg(x).

Hence deg(x) > 1
2 (|G| − |Z(G)|) =

1
2 |V (ΓG)|. Also,

since G is non-abelian, |V (ΓG)| ¾ 3. Thus using
Dirac’s condition (Theorem 4.3 in Ref. 14), the re-
sult follows. 2

Corollary 4 Let G be a metacyclic p-group. Then the
non-commuting graph ΓG is connected.

Proof : This is an immediate result of the proof of
Proposition 5. 2

We recall that the star graph K1,n is a tree on n
vertices with one vertex having degree n−1 and the
others having degree 1.

Corollary 5 There is no metacyclic p-group G with
non-commuting star graph.

Proof : It is straightforward from the results of the
proof of Proposition 5. 2

This corollary also shows that the non-
commuting star graph associated with a metacyclic
p-group cannot be constructed, and there is no
metacyclic p-group with commutativity degree
P(G) = 1−2(|G| − |Z(G)| −1)/|G|2.

In the following corollary, we prove that there
is no complete bipartite non-commuting graph, or
equivalently there is no metacyclic p-group G with
commutativity degree

P(G) = 1+
|Z(G)|
|G|

−
|Z(G)|2

|G|2
.

Using Propositions 1 and 2, there is no metacyclic
p-group (p is an odd prime) with commutativity
degree P(G) = 1+1/p2γ−1/p4γ, where γ¾ 1, and
there is no metacyclic 2-group with commutativity
degree P(G) = 1+1/2α−1/22α, where α¾ 2.

We recall that a complete bipartite graph is a
bipartite graph with bipartition (X , Y ) in which each
vertex of X is joined to each vertex of Y , if |X | = m
and |Y |= n, such a graph will be denoted by Km,n.

Corollary 6 There is no non-commuting complete
bipartite graph for any metacyclic p-group G.

Proof : It is also a result of the proof of Proposition 5.
If ΓG is a bipartite graph with bipartition (X , Y )
where X 6= Y , then ΓG is non-hamiltonian14. 2

Proposition 6 Consider a metacyclic p-group G. The
graph ΓG is planar if and only if G ' Q8 or D8, the
quaternion group and the dihedral group of order 8,
respectively.
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Proof : If G has nilpotency class 2 then G is isomor-
phic to Q8. It is easy to see that ΓQ8

is a planar graph.
Let the nilpotency class of G be at least 3. Then
from Theorem 3, G is isomorphic to D8, and ΓD8

is
a planar graph. Now we suppose that ΓG is planar.
Then by using Corollary 9.5.3 in Ref. 14 there exists
a vertex x ∈ G− Z(G) such that deg(x) ¶ 5. Hence
deg(x) = |G| − |CG(x)| ¶ 5. From which it follows
that |CG(x)| ¶

1
2 |G|, and so |G| ¶ 10. Since G is

non-abelian metacyclic p-group of order pα+β , then
pα+β ¶ 10, where α ¾ 2, β ¾ 1, and p ¾ 2. Thus
|G| = 8. Since G is metacyclic, G is isomorphic to
Q8 or D8. 2

Theorem 7 Let G be metacyclic 2-group of Case II or
III. Then χ(ΓG/N )¶ χ(ΓG)¶ 2α+γ−1.

Proof : Since G is a metacyclic 2-group, G contains a
normal subgroup K . Suppose that χ(ΓG) =m. Then
using Lemma 4.1 in Ref. 6, m is the minimum num-
ber of abelian subgroups of G whose union is G. We
let G1, G2, . . . , Gm represent the abelian subgroups of
G, so we have G =∪m

i=1Gi . Furthermore, since K is a
normal subgroup of G, thus G/K = ∪m

i=1KGi/K . On
the other hand, we have KGi/K ' Gi/(K∩Gi)which
is an abelian subgroup of G/K . Hence the vertices of
graph ΓG/K in KGi/K are not adjacent, from which
it follows that χ(ΓG/K) ¶ m = χ(ΓG). Now using
Proposition 2, we have [G : Z(G)] = 2α+γ−1. Thus
G = ∪2α+γ−1

i=1 x i Z(G) for x i ∈ G, when 1 ¶ i ¶ 2α+γ−1.
It is easy to see that x i Z(G) is an independent subset

in ΓG for each i. Since G − Z(G) =
⋃2α+γ−1

i=1 x i Z(G),
so χ(ΓG)¶ 2α+γ−1. 2

From the above consideration, we have a similar
result for the metacyclic p-groups of Case I.

Theorem 8 Let G be a finite metacyclic p-group of
Case I. Then χ(ΓG/N )¶ χ(ΓG)¶ p2γ.

Proof : We use a method similar to that in Theorem 7
to find an upper bound for the chromatic number of
graph ΓG . From Proposition 1 and a straightforward
calculation, we conclude that [G : Z(G)] = p2γ.
Hence χ(ΓG/N )¶ χ(ΓG)¶ p2γ. 2

It is easy to see that if G1 ' G2 is isomorphic
metacyclic p-groups then ΓG1

' ΓG1
, but the converse

is not true. Two metacyclic 2-groups D8 and Q8 are
not isomorphic, but their non-commuting graphs
are isomorphic, that is ΓD8

' ΓQ8
. In Theorem 9, we

show that if G1 ∼ G2 is isoclinic metacyclic p-groups,
then ΓG1

' ΓG2
. We need the following definition of

isoclinism between two groups.

Definition 1 Let G and H be two groups. A pair
(α,β) is called an isoclinism from G to H if α is

an isomorphism from G/Z(G) to H/Z(H), β is also
an isomorphism from G′ to H ′ and β([g1, g2]) =
[h1, h2] whenever hi ∈ α(gi Z(G)) for all gi ∈ G and
hi ∈ H, 1¶ i ¶ 2. If there is an isoclinism from G to
H, we say that G and H are isoclinic, written briefly
as G ∼ H.

Theorem 9 Let G1 ∼ G2 be isoclinic metacyclic p-
groups. Then ΓG1

' ΓG1
.

Proof : Let G1 and G2 be two groups of Case I.
Then using Proposition 1, |Z(G1)| = |Z(G2)|, and
clearly |V (ΓG1

)| = |V (ΓG2
)|. Also, |G1/Z(G1)| =

|G2/Z(G2)| = p2γ. Assume that {g1, g2, . . . , gp2γ}
is the set of left transversal for G1/Z(G1). Simi-
larly, suppose that {g ′1, g ′2, . . . , g ′p2γ} is the set of left
transversal for G2/Z(G2). Suppose that θ : Z(G1)→
Z(G2) is a bijection which maps elements of G1 to
G2. By isomorphism α: G1/Z(G1)→ G2/Z(G2) we
have gi Z(G1) 7→ g ′i Z(G2) for 1 ¶ i ¶ p2γ. In addi-
tion, the isomorphism β : [G1, G1] → [G2, G2] can
be defined by β([giz1, g jz2]) = [g ′iz

′
1, g ′jz

′
2], where

1¶ i, j ¶ p2γ, z1, z2 ∈ Z(G1) and z′1, z′2 ∈ Z(G2). Now
we introduce ϕ : G1\Z(G1)→ G2\Z(G2) that maps
giz1 7→ g ′iθ (z1) where z1 ∈ Z(G1). The map ϕ is
the favorite bijection between the set of vertices
of ΓG1

and ΓG2
, which clearly preserves the graphs

edges. 2
For the groups of Cases II and III, a similar method
can be applied to obtain the results of Theorem 9.

In the following theorems we obtain the exact
number of clique number and chromatic number of
non-commuting graphs for each case of metacyclic
p-groups, and we show that they are identical.

Theorem 10 Let G be a metacyclic 2-group of Case II
or III. Then ω(ΓG) = χ(ΓG).

Proof : We only give the proof of Case III groups
since the proof for the groups of Case II is similar.
By Proposition 2, we have Z(G) = 〈a2α−1

, b2γ〉 and
|Z(G)| = 2β−γ+1, when γ > 1. Thus we have [G :
Z(G)] = 2α+γ−1. Let T = {ai b j : 0¶ i ¶ 2α−1−1,0¶
j ¶ 2γ − 1} be a set of left transversal of Z(G) in
G, which includes 2α−1−1 elements of the form ai ,
(i 6= 0) and 2γ elements of the form b j . Also, this set
contains (2α−1−1)(2γ−1) elements of the form ai b j ,
in which i and j are not equal to zero at the same
time. Furthermore, the vertices of ai b j and ar bs in
the partition G/Z(G), where 1¶ i, r ¶ 2α−1−1 and
1 ¶ j, s ¶ 2γ − 1, are adjacent. Also, the vertices
of ai and b j are adjacent with ai b j . But, clearly two
vertices ai and ar , also the vertices b j and bs, are not
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adjacent. Hence, according to the above discussion,
the set:

Cm,n = {am, bn, ai b j : 1¶ i¶ 2α−1−1,1¶ j¶ 2γ−1},

in which 1 ¶ m < 2α−1 and 1 ¶ n < 2γ, is a clique
in the graph ΓG with maximum size. Hence |Cm,n|=
(2α−1 − 1)(2γ − 1) + 2 =ω(ΓG). Next we obtain the
chromatic number of ΓG . It is clear that the vertices
in the set A= {ai : 1¶ i ¶ 2α−1−1} are not adjacent,
and these vertices have the same colour. Also, the
vertices B = {b j | 1 ¶ j ¶ 2γ − 1} are not adjacent
and these vertices also have the same colour. Since
ai and bi are adjacent, they have different colours.
On the other hand, the vertices of the set C = {ai b j :
1¶ i ¶ 2α−1−1, 1¶ j ¶ 2γ−1} are adjacent. Thus
we have (2α−1−1)(2γ−1)-colouring vertices. Using
the above considerations, we have the following set:

Xp,q = {ap, bq, ai b j : 1¶ i ¶ 2α−1−1,1¶ j ¶ 2γ−1},

where 1 ¶ p < 2α−1 and 1 ¶ q < 2γ. Hence the
induced subgraph onXp,q is a complete graph which
has (2α−1 − 1)(2γ − 1) + 2 = |Xp,q| = χ(ΓG) vertices
colouring with minimum size. In the case γ= 1, we
have ω(ΓG) = χ(ΓG) = 2α−1 + 1, which is the clique
number and chromatic number in the graph ΓG of
the groups of Case II. 2

These results can be extended to the metacyclic
p-groups of Case I in the following theorem.

Theorem 11 Let G be a metacyclic p-group of Case I.
Then ω(ΓG) = χ(ΓG) = (pγ−1)2+2.

Proof : Recall from Proposition 1 that |G|= pα+β and
Z(G) = 〈apγ , bpγ〉, also we have |Z(G)| = pα+β−2γ.
We consider T = {ai b j : 0¶ i, j < pγ} as a set of left
transversal of Z(G) in G. By using a similar method
as in the proof of Theorem 10, we have ω(ΓG) =
(pγ−1)(pγ−1)+2= χ(ΓG) as claimed. 2
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