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ABSTRACT: In this paper, we prove that for a transcendental entire function f (z) of finite order, η ∈C\{0} is a constant
such that∆η f (z) = f (z+η)− f (z) 6≡ 0, b(z) is an entire function such that σ(b)<σ( f ) and λ( f −b)<σ( f ), if∆η f (z)
and f ′(z) share a(z) CM, where a(z) is an entire function satisfying σ(a)< σ( f ), then

∆η f (z)− a(z)

f ′(z)− a(z)
= A, f (z) = b(z)+H(z)ecz ,

where a(z) and b(z) are entire functions with max{σ(a),σ(b)} < 1, H(z)(6≡ 0) is an entire function with λ(H) =
σ(H)< 1 and A, c,η ∈ C\{0} are constants satisfying ecη = 1+Ac. Our results are improvements and complements of
those in [Bull Korean Math Soc 51 (2014) 1453–1467] and [Commun Korean Math Soc 32 (2017) 361–373].
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INTRODUCTION

In this paper, we assume that the reader is familiar
with the standard symbols and the fundamental
results of Nevanlinna theory1–3. In addition, we use
the notations λ( f ) andσ( f ) to denote the exponent
of convergence of the zero sequence and the order of
growth of meromorphic function f (z), respectively.
We also denote by S(r, f ) any quantify satisfying
S(r, f ) = o(T (r, f )), as r→∞, outside of a possible
exceptional set of finite logarithmic measure. For
convenience, we need the following definition.

Let f (z) and g(z) be two non-constant mero-
morphic functions, and let a be a constant in the
complex plane. We say that f (z) and g(z) share a
CM (IM) provided that f (z)−a and g(z)−a have the
same zeros counting multiplicities (ignoring mul-
tiplicities), and f (z) and g(z) share ∞ CM (IM)
provided that f (z) and g(z) have the same poles
counting multiplicities (ignoring multiplicities). Us-
ing the same method, we can also define f (z) and
g(z) share function a(z) CM (IM), where a(z) ∈
S(r, f )∩ S(r, g).

Definition 1 (Ref. 4) Let f (z) be a meromorphic

function in the complex plane. We denote by σ2( f )
the order of log T (r, f ), i.e.,

σ2( f ) = limsup
r→∞

log log T (r, f )
log r

.

σ2( f ) is called the hyper-order of f (z).

Brück5 raised the following conjecture.

Conjecture (Ref. 5) Let f (z) be a non-constant
entire function with hyper-order σ2( f ) <∞, and
σ2( f ) /∈ Z+. If f (z) and f ′(z) share a finite value a
CM, then

f ′(z)− a
f (z)− a

= c,

where c is a non-zero constant.
The conjecture has been established in the spe-

cial case5 when a = 0 or when f (z) is an entire
function of finite order6.

Recently, many results on difference analogues
of Brück conjecture were considered in Refs. 7–12.
To start with, recall the following results.

Theorem 1 (Ref. 9) Let f (z) be a meromorphic
function of σ( f ) < 2, and η be a non-zero constant.
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If f (z) and f (z+η) share a finite value a and∞ CM,
then

f (z+η)− a
f (z)− a

= τ,

for some constant τ.

Heittokangas et al9 gave the example f (z) =
ez2
+1 which shows that σ( f )< 2 cannot be relaxed

to σ( f )¶ 2.
It is well known that ∆η f (z) = f (z +η)− f (z)

(where η ∈ C\{0} is a constant such that f (z+η)−
f (z) 6≡ 0) is regarded as the difference counterpart
of f ′(z). For a transcendental entire function f (z)
with finite order which has a finite Borel exceptional
value, Chen and Yi7 and Chen8 proceed to consider
the problem that ∆η f (z) and f (z) share one finite
value CM and have obtained the following results.

Theorem 2 (Ref. 7) Let f (z) be a finite-order tran-
scendental entire function which has a finite Borel
exceptional value a, and let η be a constant such that
f (z+η) 6≡ f (z). If∆η f (z) and f (z) share a CM, then

a = 0 and
f (z+η)− f (z)

f (z)
= c,

for some constant c.

Theorem 3 (Ref. 8) Let f (z) be a transcendental
entire function of finite order that is of a finite Borel
exceptional value α, and η∈C be a constant such that
f (z+η) 6≡ f (z). If∆η f (z) = f (z+η)− f (z) and f (z)
share a(6= α) CM, then

∆η f (z)− a

f (z)− a
=

a
a−α

.

After that Liu and Dong13 considered the
differential-difference analogue of Brück conjecture
and have obtained the following result.

Theorem 4 (Ref. 13) Suppose that f (z) is an entire
solution of equation

f ′(z)− a(z) = eP(z)( f (z+ c)− a(z)),

where c ∈ C\{0} is a constant, P(z) is a polynomial
and a(z) is an entire function with σ(a) < σ( f ). If
λ( f − a)< σ( f ), then σ( f ) = 1+deg P(z).

Chen and Gao14 have recently proved the fol-
lowing result.

Theorem 5 (Ref. 14) Let f (z) be a transcendental
entire function of finite order, η∈C\{0} be a constant
such that ∆η f (z) = f (z +η)− f (z) 6≡ 0, a(z) be an
entire function such that σ(a) < 1 and λ( f − a) <
σ( f ). If ∆η f (z) and f ′(z) share a(z) CM, then one
of the following two cases holds:

(i) If a(z) 6≡ 0, then

∆η f (z)− a(z)

f ′(z)− a(z)
= 1, f (z) = a(z)+H(z)ecz ,

where H(z) 6≡ 0 is an entire function with
λ(H) = σ(H) < 1 and c ∈ C\{0} is a constant
satisfying ecη = 1+ c;

(ii) If a(z)≡ 0, then

∆η f (z)

f ′(z)
= A, f (z) = H(z)ecz ,

where H(z) 6≡ 0 is an entire function with
λ(H) = σ(H) < 1, A, c ∈ C\{0} are constants
satisfying ecη = 1+Ac.

RESULTS

Here, we will proceed to consider the differential-
difference analogue of Brück conjecture and obtain
the accurate expression of the transcendental entire
function f (z). The aim of this paper is to improve
the results obtained in Theorem 4 and Theorem 5.
In fact, we will prove the following result.

Theorem 6 Let f (z) be a transcendental entire func-
tion of finite order, η ∈ C\{0} be a constant such
that ∆η f (z) = f (z+η)− f (z) 6≡ 0, b(z) be an entire
function such thatσ(b)<σ( f ) and λ( f −b)<σ( f ).
If ∆η f (z) and f ′(z) share a(z) CM, where a(z) is an
entire function satisfying σ(a)< σ( f ), then

∆η f (z)− a(z)

f ′(z)− a(z)
= A, f (z) = b(z)+H(z)ecz ,

where a(z), b(z) are entire functions with
max{σ(a),σ(b)} < 1, H(z) 6≡ 0 is an entire
function with λ(H) = σ(H) < 1 and A, c,η ∈ C\{0}
are constants satisfying ecη = 1+Ac.

Remark 1 From the assumptions of Theorem 6, we
conclude that σ( f ) ¾ 1. Hence if σ(a) < 1 and
σ(b)< 1, we obtain the following corollary.

Corollary 1 Let f (z) be a transcendental entire func-
tion of finite order, η ∈ C\{0} be a constant such
that ∆η f (z) = f (z+η)− f (z) 6≡ 0, b(z) be an entire
function such that σ(b)< 1 and λ( f − b)<σ( f ). If
∆η f (z) and f ′(z) share a(z) CM, where a(z) is an
entire function satisfying σ(a)< 1, then

∆η f (z)− a(z)

f ′(z)− a(z)
= A, f (z) = b(z)+H(z)ecz ,

where H(z) 6≡ 0 is an entire function with λ(H) =
σ(H)< 1 and A, c,η ∈C\{0} are constants satisfying
ecη = 1+Ac.
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Remark 2 From the assumptions of Theorem 6, we
conclude that σ( f ) ¾ 1. Hence if a(z) ≡ b(z) 6≡ 0
and σ(a) < 1, we obtain the following corollary,
which is the conclusion (i) of Theorem 5.

Corollary 2 Let f (z) be a transcendental entire func-
tion of finite order, η ∈ C\{0} be a constant such
that ∆η f (z) = f (z+η)− f (z) 6≡ 0, a(z) be an entire
function such that σ(a)< 1 and λ( f − a)< σ( f ). If
∆η f (z) and f ′(z) share a(z) 6≡ 0 CM, then

∆η f (z)− a(z)

f ′(z)− a(z)
= A, f (z) = a(z)+H(z)ecz ,

where H(z) 6≡ 0 is an entire function with λ(H) =
σ(H)< 1 and A, c,η ∈C\{0} are constants satisfying
ecη = 1+Ac.

Remark 3 In Theorem 6, if b(z) ≡ b and a(z) ≡ a,
we obtain the following corollary.

Corollary 3 Let f (z) be a transcendental entire func-
tion of finite order which has a finite Borel exceptional
b, η ∈ C\{0} be a constant such that ∆η f (z) =
f (z+η)− f (z) 6≡ 0. If∆η f (z) and f ′(z) share a 6= 0
CM, then

∆η f (z)− a

f ′(z)− a
= A, f (z) = b+H(z)ecz ,

where H(z) 6≡ 0 is an entire function with λ(H) =
σ(H) < 1, A, c,η ∈ C\{0} are constants satisfying
ecη = 1+Ac.

Examples 1, 2, and 3 below show that Corollar-
ies 1, 2, and 3 are sharp, respectively.

Example 1 (Ref. 14) Suppose that f (z) = z2 + ecz ,
where c ∈ C\{0} is a constant. Then λ( f − z2) <
σ( f ). Let η= 1 and let c satisfy ec = 1+ 1

2 c, we see
that ∆η f (z) = 2z+1+ 1

2 c ecz and f ′(z) = 2z+ c ecz .
Then (∆η f (z)−2(z+1))/( f ′(z)−2(z+1)) = 1

2 , that
is, ∆η f (z) and f ′(z) share 2(z+1)(6≡ z2) CM.

Example 2 (Ref. 14) Suppose that f (z) = z + ecz ,
where c ∈ C\{0} is a constant. Then λ( f − z) <
σ( f ). Let η = 1 and let c satisfy ec = 1+ c, we see
that ∆η f (z) = 1 + c ecz = f ′(z). Then (∆η f (z) −
z)/( f ′(z)−z) = 1, that is, ∆η f (z) and f ′(z) share z
CM.

Example 3 Suppose that f (z) = 1+ ecz , where c ∈
C\{0} is a constant. Then λ( f − 1) < σ( f ). Let
η = log 2 and let c satisfy 2c = 1+ c, we see that
∆η f (z) = c ecz = f ′(z). Then (∆η f (z)−1)/( f ′(z)−
1) = 1; that is, ∆η f (z) and f ′(z) share 1 CM.

SOME LEMMAS

Lemma 1 (Ref. 15, Corollary 2) Let f (z) be a
transcendental meromorphic function of finite order
σ, let k, j (k > j ¾ 0) be integers. Then for any
given ε > 0, there exists a set E ⊂ (1,∞) of finite
logarithmic measure, such that for all z satisfying
|z|= r /∈ [0, 1]∪ E, we have

�

�

�

�

f (k)(z)
f ( j)(z)

�

�

�

�

¶ |z|(k− j)(σ−1+ε).

Lemma 2 (Ref. 16, Theorem 8.2) Let f (z) be a
meromorphic function of finite order σ, let η be a
non-zero complex number, and let ε > 0 be a given
real constant. Then there exists a subset E ⊂ (1,∞)
of finite logarithmic measure such that for all |z| =
r /∈ [0, 1]∪ E, we have

exp{−rσ−1+ε}¶
�

�

�

�

f (z+η)
f (z)

�

�

�

�

¶ exp{rσ−1+ε}.

Following Hayman (Ref. 17), we define an ε-set
to be a countable union of open discs not containing
the origin and subtending angles at the origin whose
sum is finite. If E is an ε-set, then the set of
r ¾ 1 for which the circle S(0, r) meets E has finite
logarithmic measure, and for almost all real θ the
intersection of E with the ray arg z = θ is bounded.

Lemma 3 (Ref. 18, Lemma 3.3) Let f (z) be
a transcendental meromorphic function of order
σ( f )< 1, and let h> 0. There exists an ε-set E such
that

f ′(z+ c)
f (z+ c)

→ 0,
f (z+ c)

f (z)
→ 1

as z→∞ in C\E,

uniformly in c for |c| ¶ h. Further, E may be chosen
so that for large z /∈ E, the function f (z) has no zeros
or poles on |ζ− z|¶ h.

Lemma 4 (Ref. 4) Suppose that f j(z) ( j =
1,2, . . . , n + 1) and g j(z) ( j = 1, 2, . . . , n) (n ¾ 1)
are entire functions satisfying (i)

∑n
j=1 f j(z)eg j(z) ≡

fn+1(z); (ii) The order of f j(z) is less than the order of
egk(z) for 1 ¶ j ¶ n+ 1, 1 ¶ k ¶ n; and furthermore,
the order of f j(z) is less than the order of egh(z)−gk(z)

for n ¾ 2 and 1 ¶ j ¶ n+ 1, 1 ¶ h < k ¶ n. Then
f j(z)≡ 0, ( j = 1,2, . . . , n+1).

Lemma 5 Let f (z) be a transcendental entire func-
tion of finite order, η ∈ C\{0} be a constant such
that ∆η f (z) = f (z+η)− f (z) 6≡ 0, b(z) be an entire
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function such thatσ(b)<σ( f ) and λ( f −b)<σ( f ).
If

∆η f (z)− a(z)

f ′(z)− a(z)
= A,

where A ∈ C\{0} is a constant and a(z) is an entire
function such that σ(a)< σ( f ), then

f (z) = b(z)+H(z)ecz ,

where b(z) is an entire function with σ(b) < 1,
H(z) 6≡ 0 is an entire function with λ(H) =σ(H)< 1
and A, c,η ∈ C\{0} are constants satisfying ecη =
1+Ac.

Proof : By Hadamard’s factorization theorem
(Ref. 4, Theorem 2.5), we obtain

f (z) = b(z)+h(z)eQ(z), (1)

where h(z) 6≡ 0 is an entire function, Q(z) is a
polynomial with degQ(z) = q ¾ 1, and h(z), Q(z)
satisfy

σ(h) = λ(h) = λ( f − b)< σ( f ) = degQ(z). (2)

Note that
∆η f (z)− a(z)

f ′(z)− a(z)
= A. (3)

Substituting (1) into (3) yields

h(z+η)eQ(z+η)−Q(z)−h(z)−A(h′(z)

+h(z)Q′(z)) = (Ad(z)− c(z))e−Q(z), (4)

where c(z) = b(z + η) − b(z) − a(z) and d(z) =
b′(z) − a(z). Since σ(a) < q and σ(b) < q, we
see that max{σ(c),σ(d)} < q. If Ad(z) − c(z) 6≡
0, since σ(h) < q, deg(Q(z + η) − Q(z)) = q − 1
and max{σ(c),σ(d)} < q, we see that the order of
growth of the left side of (4) is less than q, and
the order of growth of the right side of (4) is q, a
contradiction. Then Ad(z) − c(z) ≡ 0, (4) can be
rewritten as

eQ(z+η)−Q(z) =
�

1+A
�

h′(z)
h(z)

+Q′(z)
��

h(z)
h(z+η)

. (5)

We claim that q= 1. In fact, if it is not true, then q¾
2. Ifσ(h)< 1, since deg(Q(z+η)−Q(z)) = q−1¾ 1,
we see that the order of growth of the left side of (5)
is q−1¾ 1, and the order of growth of the right side
of (5) is less than 1, a contradiction. Then we have
σ(h)¾ 1.

By Lemma 1, for any given ε1 > 0, there exists a
set E1 ⊂ (1,∞) of finite logarithmic measure, such
that for all z satisfying |z|= r /∈ [0, 1]∪ E1, we have

�

�

�

�

h′(z)
h(z)

�

�

�

�

¶ |z|σ(h)−1+ε1 . (6)

By Lemma 2, for any given ε2 > 0, there exists a
set E2 ⊂ (1,∞) of finite logarithmic measure, such
that for all z satisfying |z|= r /∈ [0,1]∪ E2, we have

exp{−rσ(h)−1+ε2}¶
�

�

�

�

h(z+η)
h(z)

�

�

�

�

¶ exp{rσ(h)−1+ε2}.

(7)
Set ε3 =max{ε1,ε2}, 0< ε3 <

1
3 (q−σ(h)), there

exists r0 > 0 such that for all z satisfying |z|= r > r0,
we have

rq−1−ε3 ¶ |Q′(z)|¶ rq−1+ε3 . (8)

From (5), we see that
�

1 + A
�

h′(z)/h(z) +
Q′(z)

��

h(z)/h(z+η) is an entire function. Then for
all z satisfying |z|= r > r0 and |z|= r /∈ [0, 1]∪E1∪
E2, for the above given ε3, from (6)–(8), we have
�

�

�

�

�

1+A
�

h′(z)
h(z)

+Q′(z)
��

h(z)
h(z+η)

�

�

�

�

¶
�

1+ |A|
��

�

�

�

h′(z)
h(z)

�

�

�

�

+ |Q′(z)|
���

�

�

�

h(z)
h(z+η)

�

�

�

�

¶ (1+ |A|(rσ(h)−1+ε3 + rq−1+ε3))exp{rσ(h)−1+ε3}

¶ |A|rσ(h)+q−2+2ε3 exp{rσ(h)−1+ε3}< exp{rq−1},

that is,

T
�

r,
�

1+A
�

h′(z)
h(z)

+Q′(z)
��

h(z)
h(z+η)

�

= m
�

r,
�

1+A
�

h′(z)
h(z)

+Q′(z)
��

h(z)
h(z+η)

�

< rq−1.

The above inequality yields

σ

��

1+A
�

h′(z)
h(z)

+Q′(z)
��

h(z)
h(z+η)

�

< q−1.

It follows from deg(Q(z+η)−Q(z)) = q−1 that (5)
is a contradiction. Then we must have q = 1,

f (z) = b(z)+H(z)ecz ,

where c ∈ C\{0} is a constant and H(z) 6≡ 0 is an
entire function with λ(H) = σ(H) < 1. It follows
from (5) that

h(z+η)
h(z)

ecη = 1+A
�

h′(z)
h(z)

+ c
�

. (9)
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If h(z) 6≡ 0 is a polynomial, then

h′(z)
h(z)

→ 0,
h(z+η)

h(z)
→ 1, z→∞. (10)

It follows from (9) and (10) that ecη = 1+ Ac. If
h(z) 6≡ 0 is a transcendental entire function with
σ(h) < 1, from Lemma 3, we also have ecη = 1+
Ac. 2

PROOF OF Theorem 6

Proof : From the assumptions of Theorem 6, we see
that (1) and (2) are still valid. Since ∆η f (z) and
f ′(z) share a(z) CM, we have

∆η f (z)− a(z)

f ′(z)− a(z)
= eP(z), (11)

where P(z) is a polynomial. It follows from (2) and
(11) that

deg P(z)¶ degQ(z). (12)

Substituting (1) into (11) yields

h(z+η)eQ(z+η)−Q(z)−h(z)+ c(z)e−Q(z)

= (h′(z)+h(z)Q′(z)+ d(z)e−Q(z))eP(z), (13)

where c(z) = b(z+η)−b(z)−a(z) and d(z) = b′(z)−
a(z). Since σ(a) < σ( f ) and σ(b) < σ( f ), we see
that max{σ(c),σ(d)} < σ( f ). In what follows, we
consider two cases: 1 ¶ deg P(z) < degQ(z) and
deg P(z) = degQ(z). Set

P(z) = apzp + ap−1zp−1+ · · ·+ a0,

Q(z) = bqzq + bq−1zq−1+ · · ·+ b0,
(14)

where ap(6= 0), . . . , a0, bq(6= 0), . . . , b0 are constants,
p, q are positive integers.

Case 1. Suppose that 1¶ p < q. Then (13) can
be rewritten as

h(z+η)eQ(z+η)−Q(z)−h(z)− (h′(z)+h(z)Q′(z))eP(z)

= (d(z)eP(z)− c(z))e−Q(z). (15)

If d(z)eP(z)−c(z) 6≡ 0, sinceσ(h)< q, deg(Q(z+η)−
Q(z)) = q − 1 and σ(eP(z)) = deg P(z) = p < q, we
see that the order of growth of the left side of (5) is
less than q, and the order of growth of the right side
of (5) is q, a contradiction. If d(z)eP(z) − c(z) ≡ 0,
then (5) can be rewritten as

h(z+η)eQ(z+η)−Q(z)−h(z) = (h′(z)+h(z)Q′(z))eP(z).
(16)

Next, we discuss two subcases: 1 ¶ deg P(z) <
degQ(z)−1 and 1¶ deg P(z) = degQ(z)−1.

Subcase 1.1. Suppose that 1¶ p < q−1. Then
(6) can be rewritten as

eQ(z+η)−Q(z) =
�

1+
�

h′(z)
h(z)

+Q′(z)
�

eP(z)
�

h(z)
h(z+η)

.

(17)
Ifσ(h)< 1, since deg(Q(z+η)−Q(z)) = q−1¾ 1 and
deg P(z)< q−1, we know that the order of growth
of the left-hand side of (17) is q− 1, and the order
of growth of the right-hand side of (17) is less than
q−1, a contradiction. Then we have σ(h)¾ 1.

For any given ε4, 0 < ε3 ¶ ε4 < min
�

1
3 (q −

σ(h)), 1
3 (q − 1 − p)

	

, there exists r1 > 0 such that
for all z satisfying |z|= r > r1, we have

�

�eP(z)
�

�¶ exp{r p+ε4}. (18)

From (17), we see that [1 + (h′(z)/h(z) +
Q′(z))eP(z)]h(z)/h(z + η) is an entire function.
Then for all z satisfying |z| = r > r1 and
|z| = r /∈ [0, 1] ∪ E1 ∪ E2, by (6)–(8) and (18),
we have
�

�

�

�

�

1+
�

h′(z)
h(z)

+Q′(z)
�

eP(z)
�

h(z)
h(z+η)

�

�

�

�

¶
�

1+

��

�

�

�

h′(z)
h(z)

�

�

�

�

+ |Q′(z)|
�

|eP(z)|
� �

�

�

�

h(z)
h(z+η)

�

�

�

�

¶
�

1+(rσ(h)−1+ε4 + rq−1+ε4)exp{r p+ε4}
�

× exp{rσ(h)−1+ε4}

¶ rσ(h)+q−2+2ε4 exp{r p+ε4 + rσ(h)−1+ε4}

< exp{rq−1},

that is,

T
�

r,
�

1+
�

h′(z)
h(z)

+Q′(z)
�

eP(z)
�

h(z)
h(z+η)

�

= m
�

r,
�

1+
�

h′(z)
h(z)

+Q′(z)
�

eP(z)
�

h(z)
h(z+η)

�

< rq−1.

The above inequality yields

σ

��

1+
�

h′(z)
h(z)

+Q′(z)
�

eP(z)
�

h(z)
h(z+η)

�

< q−1.

It follows from deg(Q(z+η)−Q(z)) = q−1 that (17)
is a contradiction.

Subcase 1.2. Suppose that 1 ¶ p = q − 1. It
follows from (14) that

P(z) = aq−1zq−1+ Pq−2(z),

Q(z+η)−Q(z) = qηbqzq−1+Qq−2(z),

�

(19)
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where aq−1(6= 0), bq(6= 0) are constants, Pq−2(z),
Qq−2(z) are polynomials, deg Pq−2(z) ¶ q − 2,
degQq−2(z) ¶ q − 2. In what follows, we consider
two subcases: aq−1 = qηbq and aq−1 6= qηbq.

Subcase 1.2.1. If aq−1 = qηbq, then (16) can
be rewritten as

e−P(z) =
h(z+η)

h(z)
eQ(z+η)−Q(z)−P(z)−

�

h′(z)
h(z)

+Q′(z)
�

.

(20)
It follows from aq−1 = qηbq that deg(Q(z + η) −
Q(z)−P(z)) = deg(Qq−2(z)−Pq−2(z))¶ q−2. Using
similar reasoning as in the proof of Subcase 1.1, we
obtain

σ

�

h(z+η)
h(z)

eQ(z+η)−Q(z)−P(z)−
�h′(z)

h(z)
+Q′(z)

�

�

< q−1.

It follows from deg(−P(z)) = q− 1 ¾ 1 that (20) is
a contradiction.

Subcase 1.2.2. If aq−1 6= qηbq, it follows from
(16) and (19) that

�

h′(z)
h(z)

+Q′(z)
�

eaq−1zq−1

=
h(z+η)

h(z)
eqηbqzq−1+Qq−2(z)−Pq−2(z)−e−Pq−2(z). (21)

Without loss of generality, we assume that q|ηbq|¶
|aq−1|. Set arg aq−1 = θ1 and arg(ηbq) = θ2. For the
above given ε3 and for all z satisfying |z| = r > r2
and |z| = r /∈ [0,1]∪ E1 ∪ E2, z = r eiθ0 , where θ0 is
a real constant such that cos((q−1)θ0+θ1) = 1, by
(6)–(8), we have
�

�

�

�

�

h′(z)
h(z)

+Q′(z)
�

eaq−1zq−1

�

�

�

�

¾
�

|Q′(z)| −
�

�

�

�

h′(z)
h(z)

�

�

�

�

�

|eaq−1zq−1
|

¾ (rq−1−ε3 − rσ(h)−1+ε3)exp{|aq−1|rq−1}

¾ rq−1−2ε3(1+ o(1))exp{|aq−1|rq−1}

¾ exp{|aq−1|rq−1},

and
�

�

�

�

h(z+η)
h(z)

eqηbqzq−1+Qq−2(z)−Pq−2(z)− e−Pq−2(z)

�

�

�

�

¶
�

�

�

�

h(z+η)
h(z)

�

�

�

�

|eqηbqzq−1+Qq−2(z)−Pq−2(z)|+ |e−Pq−2(z)|

¶ exp{rσ(h)−1+ε3}

× exp{q|ηbq| cos((q−1)θ0+θ2)r
q−1+O(rq−2)}

¶ exp{q|ηbq| cos((q−1)θ0+θ2)r
q−1+ o(rq−1)},

that is,

exp{|aq−1|rq−1}

¶ exp{q|ηbq| cos((q−1)θ0+θ2)r
q−1+o(rq−1)}.

(22)

We claim that q|ηbq| cos((q−1)θ0+θ2)< |aq−1|. In
fact, if q|ηbq| = |aq−1|, it follows from aq−1 6= qηbq
that cos((q−1)θ0+θ2) 6= 1, then cos((q−1)θ0+θ2)<
1. Thus q|ηbq| cos((q−1)θ0+θ2)< q|ηbq|= |aq−1|.
If q|ηbq| < |aq−1|, then q|ηbq| cos((q− 1)θ0 + θ2) ¶
q|ηbq|< |aq−1|. For any given ε5, 0< ε5 <

1
3

�

|aq−1|−
q|ηbq| cos((q−1)θ0+θ2)

�

, it follows from (22) that

exp
�

|aq−1|rq−1
	

¶ exp
�

q|ηbq| cos((q−1)θ0+θ2)r
q−1+ o(rq−1)

	

< exp{(|aq−1| − ε5)r
q−1}.

This is a contradiction.
Case 2. Suppose that p = q. For aq and bq, we

consider three subcases: (2.1) aq = bq; (2.2) aq =
−bq; (2.3) aq 6= bq and aq 6= −bq.

Subcase 2.1. Suppose that aq = bq. Then (13)
can be rewritten as

(h′(z)+h(z)Q′(z))eP(z)− c(z)e−Q(z)

= h(z+η)eQ(z+η)−Q(z)−h(z)−d(z)eP(z)−Q(z). (23)

Since σ(h) < q, deg(Q(z + η) − Q(z)) = q − 1,
max{σ(c),σ(d)} < q and deg(P(z) − Q(z)) ¶ q −
1, we have σ(h′(z) + h(z)Q′(z)) < q and σ(h(z +
η)eQ(z+η)−Q(z)−h(z)− d(z)eP(z)−Q(z))< q.

Noting that eP(z), e−Q(z) and eP(z)+Q(z) are
of regular growth, and σ(eP(z)) = σ(e−Q(z)) =
σ(eP(z)+Q(z)) = q, it follows from Lemma 4 and (23)
that

h′(z)+h(z)Q′(z)≡ 0.

If h′(z) + h(z)Q′(z) ≡ 0, suppose that h(z) is a
polynomial. Then h(z) ≡ 0, it contradicts h(z) 6≡
0. If h′(z) + h(z)Q′(z) ≡ 0, suppose that h(z) is a
transcendental entire function. Then h(z) = c e−Q(z),
c ∈C\{0}, that is, σ(h) = q, it contradicts σ(h)< q.
Then we see that h′(z)+h(z)Q′(z)≡ 0 is absurd.

Subcase 2.2. Suppose that aq =−bq. Then (13)
can be rewritten as

�

(h′(z)+h(z)Q′(z))eP(z)+Q(z)− c(z)
�

e−Q(z)

+ d(z)eP(z)−Q(z) = h(z+η)eQ(z+η)−Q(z)−h(z).
(24)
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Since σ(h) < q, deg(Q(z + η) − Q(z)) = q − 1,
max{σ(c),σ(d)} < q and deg(P(z)+Q(z))¶ q−1,
we have σ((h′(z) + h(z)Q′(z))eP(z)+Q(z) − c(z)) < q
and σ(h(z+η)eQ(z+η)−Q(z)−h(z))< q.

Noting that e−Q(z), eP(z)−Q(z) and e−P(z) are
of regular growth, and σ(e−Q(z)) = σ(e−P(z)) =
σ(eP(z)−Q(z)) = q, it follows from Lemma 4 and (24)
that

h(z+η)eQ(z+η)−Q(z)−h(z)≡ 0.

Making use of the above identity, we obtain

eQ(z)−Q(z+η) ≡
h(z+η)

h(z)
. (25)

Combining with (7) and (2), we conclude that the
order of growth of the left-hand side of (25) is q−1,
and the order of growth of the right-hand side of
(25) is less than q−1, a contradiction.

Subcase 2.3. Suppose that aq 6= bq and aq 6=
−bq. Then (13) can be rewritten as

(h′(z)+h(z)Q′(z))eP(z)− c(z)e−Q(z)+ d(z)eP(z)−Q(z)

= h(z+η)eQ(z+η)−Q(z)−h(z). (26)

Since σ(h) < q, deg(Q(z + η) − Q(z)) = q − 1
and max{σ(c),σ(d)} < q, we have σ(h′(z) +
h(z)Q′(z))< q andσ(h(z+η)eQ(z+η)−Q(z)−h(z))< q.

Noting that e±P(z), e±Q(z) and eP(z)±Q(z) are
of regular growth, and σ(e±P(z)) = σ(e±Q(z)) =
σ(eP(z)±Q(z)) = q, it follows from Lemma 4 and (26)
that

h′(z)+h(z)Q′(z)≡ 0,

h(z+η)eQ(z+η)−Q(z)−h(z)≡ 0.

Using similar reasoning as above, we also obtain a
contradiction.

Thus P(z) can only be a constant, so is eP(z). Set
eP(z) ≡ A, where A is a non-zero constant. It follows
from (11) that

∆η f (z)− a(z)

f ′(z)− a(z)
= A.

By Lemma 5, we have

f (z) = b(z)+H(z)ecz ,

where b(z) is an entire function with σ(b) < 1,
H(z) 6≡ 0 is an entire function with λ(H) =σ(H)< 1
and A, c,η ∈ C\{0} are constants satisfying ecη =
1+Ac. This completes the proof of Theorem 6. 2
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