Oscillation for a generalized neutral Emden-Fowler equation with damping and distributed delay

Fengsheng Leia, Jiandong Lia, Guirong Liub,*

a Department of Mathematics, Luliang University, Lishi, Shanxi 033000 China
b School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006 China

*Corresponding author, e-mail: lgr5791@sxu.edu.cn

ABSTRACT: In this study, we consider the generalized neutral Emden-Fowler equation with damping and distributed delay

\[r(t)|z(t)|^{\alpha-1}z(t)' + c(t)|z(t)|^{\alpha-1}z(t) + \int_0^b q(t, \xi)|x(g(t, \xi))|^{\beta-1}x(g(t, \xi))d\xi = 0, \]

where \(z(t) = x(t) + p(t)x(\tau(t)), \alpha, \beta > 0. \) By using averaging technique and some analytical skills, we obtain the sufficient conditions to ensure the oscillation for the above equation. Our results improve and generalize some existing results. Finally, two examples are given to show the feasibility of our results.

KEYWORDS: oscillation, damping, distributed delay, Emden-Fowler equation

MSC2010: 34K11 34K40

INTRODUCTION

Since Emden-Fowler equations with generalized forms1–4 have many applications in various fields of nuclear physics, astrophysics and economics, there is constant interest in obtaining new sufficient conditions for oscillation of solutions of these equations5–7. For more details of oscillation of delay differential equations8–10, neutral differential equations11–14 and dynamic equations15–18, see the mentioned references.

In Ref. 19, Baculíková and Džurina studied the oscillation of the second-order neutral differential equation of the form

\[[a(t)[z(t)]^\alpha]' + q(t)x^\beta(\sigma(t)) = 0, \quad (1) \]

where \(z(t) = x(t) + p(t)x(\tau(t)), \alpha, \beta > 0. \)

In Ref. 20, Liu et al considered the generalized Emden-Fowler equation

\[[r(t)|z(t)|^{\alpha-1}z(t)'] + q(t)|x(\sigma(t))|^{\beta-1}x(\sigma(t)) = 0, \quad (2) \]

where \(t \geqslant t_0, z(t) = x(t) + p(t)x(\tau(t)). \) By using averaging technique and Riccati transformation, they obtained some oscillation criteria for \(\alpha > \beta > 0. \)

Subsequently, by using the similar method, Zeng et al21 obtained the oscillation for (2) with \(\alpha > \beta > 0 \) or \(0 < \alpha < \beta. \)

Further, by using the generalized Riccati inequality, Wu et al22 studied the oscillation of (2) for \(\alpha, \beta > 0. \)

In recent years, the oscillation of differential equations with damping or distributed delay has been studied by many authors. For example, Bohner et al23 studied the oscillation of the second-order damped nonlinear delay differential equations of Emden-Fowler type

\[[a(t)x(t)'] + p(t)x'(t) + q(t)|x(g(t))|^{\beta} \text{sgn} x(g(t)) = 0, \quad t \in [t_0, \infty). \quad (3) \]

Zeng et al24 studied the oscillation of generalized neutral delay differential equations of Emden-Fowler type with damping

\[[r(t)|z(t)|^{\alpha-1}z(t)'] + c(t)|z(t)|^{\alpha-1}z(t) \]

\[+ q(t)|x(\sigma(t))|^{\beta-1}x(\sigma(t)) = 0, \quad t \geqslant t_0. \quad (4) \]

By using integral inequality technique and Riccati transformation, they obtained some oscillation criteria for the case \(\alpha > \beta > 0 \) or \(\beta > \alpha > 0. \)

Qin et al25 studied the second-order differential equation with distributed deviating arguments and
a damping term
\[r(x)\psi(y(x))[y(x) + c(x)y(d(x))]' + \int_a^b a(x, \theta)f(y(b(x, \theta)))d\theta = 0, \quad (5) \]
and established some oscillation criteria of this equation.

In this study, motivated by the above work, by using averaging technique and some analytical skills, we obtain the sufficient conditions to ensure the oscillation for the following generalized Emden-Fowler equation with damping and distributed delay
\[
\left[r(t)|z'(t)|^{\alpha-1}z'(t) \right] + c(t)|z'(t)|^{\alpha-1}z'(t) + \int_a^b q(t, \xi)|x(g(t, \xi))|^{\beta-1}x(g(t, \xi))d\xi = 0, \quad (6)
\]
where \(t \geq t_0 \), \(z(t) = x(t) + p(t)x(\tau(t)) \).

In the sequel, we always make the following assumptions for (6).

(H1) \(a, b, \alpha > 0, \beta > 0 \) are all constants. In addition, \(b > a, p \in C([t_0, \infty), [0, 1]), c \in C([t_0, \infty), [0, \infty)), r \in C([t_0, \infty), [0, \infty)), r'(t) \geq 0 \) for \(t \in [t_0, \infty) \);

(H2) \(\tau \in C([t_0, \infty), [0, \infty)), q, g \in C([t_0, \infty) \times [a, b], [0, \infty)), q(t, \xi) \neq 0, \lim_{t \to \infty} g(t, \xi) = 0 \) uniformly holds on \(\xi \in [a, b], 0 \leq \tau(t) \leq t, \lim_{t \to \infty} \tau(t) = \infty, g(t, \xi) \leq g(t, \xi), g(t, \xi) > 0, g(t, \xi) \geq 0 \) for \(\xi \in [a, b], t \in [t_0, \infty) \);

(H3) \(\lim_{t \to \infty} R(t) = \infty, \) where
\[
R(t) = \int_0^t \left(r(\eta)e^{\int_0^\eta \frac{\alpha d\varrho}{\varrho}} \right)^{-1/\alpha}d\eta;
\]

(H4) There exists \(\rho \in C([t_0, \infty), (0, \infty)) \) such that \(\rho'(t) \geq 0 \) and for any \(m \in (0, 1] \),
\[
\int_{t_0}^\infty \left(\rho(t)Q(t) - \frac{r(t)[\rho'(t)]^{k+1}}{(\lambda + 1)^{k+1}[m\rho(t)g(t, a)]^\lambda} \right)dt = \infty,
\]
where \(\lambda = \min\{a, \beta\} \),
\[Q(t) = e^{\int_0^t \frac{\alpha d\varrho}{\varrho}} \int_a^b q(t, \xi)[1 - p(g(t, \xi))]^\beta d\xi; \]

(H5) \(\Pi(t) < \infty \) for \(t \in [t_0, \infty) \), where
\[
\Pi(t) = \int_t^\infty \left(r(\eta)e^{\int_0^\eta \frac{\alpha d\varrho}{\varrho}} \right)^{-1/\alpha}d\eta.
\]

MAIN RESULTS

It is clear that (6) is equivalent to the following equation
\[
\left[e^{\int_{t_0}^t \frac{\alpha d\varrho}{\varrho}} r(t)\xi'(t) |z'(t)|^{\alpha-1}z'(t) \right] + e^{\int_{t_0}^t \frac{\alpha d\varrho}{\varrho}} \int_a^b q(t, \xi)|x(g(t, \xi))|^{\beta-1}x(g(t, \xi))d\xi = 0, \quad (7)
\]
where \(t \geq t_0 \). Therefore, the oscillation of (6) is equivalent to that of (7). In order to prove the main results, we need the following lemmas.

Lemma 1 Let \(\theta, A, B \) be constants, \(\theta > 0, A \geq 0, B > 0 \). Then, for any \(u > 0 \),
\[
Au - Bu^{(\theta+1)/\theta} \leq \frac{\theta^\theta}{(\theta + 1)^{\theta+1}} A^{\theta+1} B^\theta.
\]
The proof of Lemma 1 is easy. So we omit it here.

Lemma 2 Suppose that (H1), (H2), and (H3) hold. Let \(x(t) \) be an eventually positive solution for (7). In addition, \(z'(t) \) is eventually negative. Then there exist \(T > t_0 \) and \(L > 0 \) such that
\[
0 < w_1(t)\Pi(t) \leq L, \quad t \in [T, \infty),
\]
where \(\mu = \max\{a, \beta\} \),
\[
w_1(t) = e^{\int_{t_0}^t \frac{\alpha d\varrho}{\varrho}} r(t)(-z'(t))^\alpha/z^\beta(t).
\]
Proof: From (H1), \(z(t) \) is eventually positive. Further, by using (7) and (H2), there exists \(T > t_0 \) such that
\[
\left[e^{\int_{t_0}^t \frac{\alpha d\varrho}{\varrho}} r(t)(-z'(t))^\alpha \right] > 0, \quad t \in [T, \infty). \quad (8)
\]
Hence, for any \(v > t > T \), we have
\[
-z'(v)\left[e^{\int_s^v \frac{\alpha d\varrho}{\varrho}} r(v) \right]^{1/\alpha} \geq -z'(t)\left[e^{\int_{t_0}^t \frac{\alpha d\varrho}{\varrho}} r(t) \right]^{1/\alpha},
\]
which yields
\[
-z'(v) \geq -z'(t)\left[e^{\int_{t_0}^t \frac{\alpha d\varrho}{\varrho}} r(v) \right]^{1/\alpha} e^{\int_{t_0}^t \frac{\alpha d\varrho}{\varrho}} r(t)^{1/\alpha}.
\]
Further, for any \(u > t > T \), we have
\[
z(t) - z(u) \geq e^{\int_{t_0}^u \frac{\alpha d\varrho}{\varrho}} r(t)^{1/\alpha} \times (-z'(t)) \int_u^t e^{\int_s^u \frac{\alpha d\varrho}{\varrho}} r(v)^{-1/\alpha} dv. \quad (9)
\]
Letting $u \to \infty$ in (9) yields
\[z(t) \geq \left[e^{\int_{t_0}^{t} \frac{\alpha}{T} ds} r(t) \right]^{1/\alpha} (-z'(t)) \Pi(t), \quad t \in [T, \infty). \]

Further,
\[z^\alpha(t) \geq r(t) e^{\int_{t_0}^{t} \frac{\alpha}{T} ds} (-z'(t))^\alpha \Pi^\alpha(t), \]
\[z^\beta(t) \geq \left[e^{\int_{t_0}^{t} \frac{\beta}{s} ds} r(t) \right]^{\beta/\alpha} (-z'(t))^\beta \Pi^\beta(t). \]

If $\alpha \geq \beta$, then $\mu = \alpha$ and
\[w_1(t) \Pi^\mu(t) = w_1(t) \Pi^\alpha(t) \]
\[\leq \frac{e^{\int_{t_0}^{t} \frac{\alpha}{T} ds} r(t) (-z'(t))^\alpha}{z^\beta(t)} \cdot \frac{z^\alpha(t)}{e^{\int_{t_0}^{t} \frac{\beta}{s} ds} r(t) (-z'(t))^\alpha} \]
\[= z^{\alpha-\beta}(t). \]

Note that $z(t) > 0$ and $z'(t) < 0$. There exists a constant $L_1 > 0$ such that
\[0 < w_1(t) \Pi^\mu(t) \leq z^{\alpha-\beta}(t) \leq L_1, \quad t \in [T, \infty). \]

If $\alpha < \beta$, then $\mu = \beta$. Therefore, for $t \in [T, \infty)$,
\[w_1(t) \Pi^\mu(t) = w_1(t) \Pi^\beta(t) \]
\[\leq \frac{e^{\int_{t_0}^{t} \frac{\alpha}{T} ds} r(t) (-z'(t))^\alpha}{z^\beta(t)} \cdot \frac{z^\alpha(t)}{\left[e^{\int_{t_0}^{t} \frac{\beta}{s} ds} r(t) \right]^{\beta/\alpha} (-z'(t))^\beta} \]
\[= \left[e^{\int_{t_0}^{t} \frac{\alpha}{T} ds} r(t) (-z'(t))^\alpha \right] \frac{z^\alpha(t)}{\left[e^{\int_{t_0}^{t} \frac{\beta}{s} ds} r(t) \right]^{\beta/\alpha} (-z'(t))^\beta} \]
\[\leq \left[e^{\int_{t_0}^{t} \frac{\alpha}{T} ds} r(t) (-z'(t))^\alpha \right] \frac{z^\alpha(t)}{\left[e^{\int_{t_0}^{t} \frac{\beta}{s} ds} r(t) \right]^{\beta/\alpha} (-z'(t))^\beta} \]
\[= \frac{z^\alpha(t)}{\left[e^{\int_{t_0}^{t} \frac{\beta}{s} ds} r(t) \right]^{\beta/\alpha} (-z'(t))^\beta}. \]

From (8), there exists a constant $L_2 > 0$ such that
\[0 < w_1(t) \Pi^\mu(t) \leq L_2, \quad t \in [T, \infty). \]

Denote $L = \max\{L_1, L_2\}$. Hence, for any $t \in [T, \infty)$,
\[0 < w_1(t) \Pi^\mu(t) \leq L. \]

This completes the proof of Lemma 2. \quad \Box

Theorem 1 Assume that (H_1)-(H_4) hold. Then (6) is oscillatory.

Proof: Suppose that (7) has a nonoscillatory solution $x(t)$. Without loss of generality, we assume that $x(t)$ is an eventually positive solution for (7). Hence, there exists $T_0 > t_0$ such that $x(t) > 0$ for $t > T_0$. If $x(t)$ is eventually negative, the proof is similar.

From (H_2) and (7), there exists $T_1 > T_0$ such that $\tau(t) > T_0$ and $g(t, \xi) > T_0$ for any $t > T_1$ and $\xi \in [a, b]$. This, together with (H_1) and (7), implies that for $t > T_1$,
\[x(g(t, \xi)) > 0, \quad x(\tau(t)) > 0, \quad z(t) \geq x(t) > 0, \]
\[\left[e^{\int_{t_0}^{t} \frac{\alpha}{T} ds} r(t) (-z'(t))^\alpha \right] \leq 0. \]

Further, from (10), it is easy to see that $z'(t)$ is eventually nonnegative or eventually negative. Suppose that $z'(t)$ is eventually negative. That is, there exists $T_2 > T_1$ such that $z'(t) < 0$ for any $t > T_2$. It follows from (10) that
\[\left[-e^{\int_{t_0}^{t} \frac{\alpha}{T} ds} r(t) (-z'(t))^\alpha \right] \leq 0, \quad t > T_2. \]

Denote $K = r(T_2)(-z'(T_2))^\alpha e^{\int_{t_0}^{T_2} \frac{\alpha}{s} ds} > 0$. Hence,
\[-e^{\int_{t_0}^{t} \frac{\alpha}{T} ds} r(t) (-z'(t))^\alpha < -K, \quad t > T_2. \]

This yields
\[-z'(t) > K^{1/\alpha} \left[r(t) e^{\int_{t_0}^{t} \frac{\alpha}{s} ds} \right]^{1-1/\alpha}, \quad t > T_2. \]

Integrating this inequality from T_2 to t, we obtain
\[z(t) > z(T_2) - K^{1/\alpha} \left[r(t) e^{\int_{t_0}^{t} \frac{\alpha}{s} ds} \right]^{1-1/\alpha}, \quad t > T_2. \]

It follows from (H_3) that $\lim z(t) = -\infty$. This contradicts (10). Therefore $z'(t)$ is eventually nonnegative. That is, there exists $T_3 > T_2$ such that $z'(t) \geq 0$ and $z'(g(t, \xi)) \geq 0$ for any $t > T_3$. Further, (7) yields
\[e^{\int_{t_0}^{t} \frac{\alpha}{T} ds} r(t) (-z'(t))^\alpha \]
\[\times \int_{a}^{b} q(t, \xi) x^\beta(g(t, \xi)) d\xi = 0, \quad t > T_3. \]

From (10), for $t > T_3$, we have
\[e^{\int_{t_0}^{t} \frac{\alpha}{T} ds} r(t) (-z'(t))^\alpha \]
\[= e^{\int_{t_0}^{t} \frac{\alpha}{T} ds} \left[c(t)(z'(t))^\alpha + r(t)(z'(t))^\beta \right] + r(t)a(z'(t))^{\beta-1}z''(t) \leq 0, \]

which, together with (H_1) and (10), yields
\[z''(t) \leq 0, \quad t > T_3. \]

Hence, there exists $T_4 > T_3$ such that $z'(t) > 0$, $t > T_4$; or $z'(t) \equiv 0$, $t > T_4$. \quad \Box
In fact, if \(z'(t) \equiv 0 \) for \(t \geq T_4 \), then it follows from (7) that \(q(t, \xi) \equiv 0 \) for \(t \geq T_4 \) and \(\xi \in [a, b] \). This contradicts (H2). Hence
\[
z'(t) > 0, \quad t \geq T_4.
\]
It follows from \(z(t) \geq x(t) \) that
\[
x(t) = z(t) - p(t)\alpha(t) \geq z(t) - p(t)\alpha(t) \\
\geq [1 - p(t)]z(t), \quad t \geq T_4.
\]
Therefore
\[
x^\beta(t) \geq [1 - p(t)]z^\beta(t), \quad t \geq T_4.
\]
From (H1) and (H2), there exists \(T_5 \gg T_4 \) such that
\[
x^\beta(g(t, \xi)) \geq [1 - p(g(t, \xi))]z^\beta(g(t, \xi)), \\
t \geq T_5, \quad \xi \in [a, b].
\]
From (H2), for \(t \geq T_5 \),
\[
\int_a^b q(t, \xi)x^\beta(g(t, \xi))d\xi \\
\geq \int_a^b q(t, \xi)[1 - p(g(t, \xi))]z^\beta(g(t, \xi))d\xi \\
\geq z^\beta(g(t, a))\int_a^b q(t, \xi)[1 - p(g(t, \xi))]d\xi \leq 0.
\]
It follows from (11) and (13) that for \(t \geq T_5 \),
\[
\left[e^{l_1 \int_a^b \frac{dt}{t\alpha(t)}}r(t)z'(t) \right]^a + e^{l_1 \int_a^b \frac{dt}{t\alpha(t)}}z^\beta(g(t, a)) \\
\times z^\beta(g(t, a))\int_a^b q(t, \xi)[1 - p(g(t, \xi))]d\xi \leq 0.
\]
Hence,
\[
\frac{e^{l_1 \int_a^b \frac{dt}{t\alpha(t)}}r(t)z'(t)}{z^\beta(g(t, a))} \leq -Q(t), \quad t \geq T_5.
\]
Denote
\[
w(t) = \rho(t)e^{l_1 \int_a^b \frac{dt}{t\alpha(t)}}z^\beta(g(t, a)) \\
\geq 0, \quad t \geq T_5.
\]
Further,
\[
w^{\alpha_1}(t) \\
e^{l_1 \int_a^b \frac{dt}{t\alpha(t)}}r(t)^a \left[e^{l_1 \int_a^b \frac{dt}{t\alpha(t)}}z^\beta(g(t, a)) \right]^{\alpha_1} \\
= \frac{e^{l_1 \int_a^b \frac{dt}{t\alpha(t)}}\rho(t)r(t)^a \left[e^{l_1 \int_a^b \frac{dt}{t\alpha(t)}}\rho(t)r(t) \right]^\frac{\alpha_1}{2} \left(z'(t) \right)^{\alpha_1}}{z^\beta(g(t, a))}, \quad t \geq T_5,
\]
and
\[
w^{\beta+1}(t) \\
= \frac{e^{l_1 \int_a^b \frac{dt}{t\alpha(t)}}\rho(t)r(t)^a \left[e^{l_1 \int_a^b \frac{dt}{t\alpha(t)}}\rho(t)r(t) \right]^\frac{\beta+1}{2} \left(z'(t) \right)^{\beta+1}}{z^\beta(g(t, a))}, \quad t \geq T_5.
\]
In addition, for \(t \geq T_5 \),
\[
w'(t) = \frac{\rho'(t)}{\rho(t)}w(t) + \rho(t) \left[e^{l_1 \int_a^b \frac{dt}{t\alpha(t)}}r(t)z'(t) \right]^{\alpha_1} \\
- \rho(t) \left[e^{l_1 \int_a^b \frac{dt}{t\alpha(t)}}r(t)z'(t) \right]^{\alpha_1}z'(g(t, a))g(t, a) \\
\leq \frac{\rho'(t)}{\rho(t)}w(t) - \rho(t)Q(t) \\
- \frac{\alpha_1}{2} \frac{\left[e^{l_1 \int_a^b \frac{dt}{t\alpha(t)}}\rho(t)r(t) \right]^\frac{\alpha_1}{2}z'(t)}{w^{\alpha_1}(t)} \\
\leq \frac{\rho'(t)}{\rho(t)}w(t) - \rho(t)Q(t) \\
- \frac{\alpha_1}{2} \frac{\left[e^{l_1 \int_a^b \frac{dt}{t\alpha(t)}}\rho(t)r(t) \right]^\frac{\alpha_1}{2}z'(t)}{w^{\alpha_1}(t)}.
\]
If \(a = \beta \), then it follows from (H2), (12), (14), (16), and (18) that for \(t \geq T_5 \),
\[
w'(t) = \frac{\rho'(t)}{\rho(t)}w(t) + \rho(t) \left[e^{l_1 \int_a^b \frac{dt}{t\alpha(t)}}r(t)z'(t) \right]^{\alpha_1} \\
- \rho(t) \left[\alpha_1 \frac{\left[e^{l_1 \int_a^b \frac{dt}{t\alpha(t)}}\rho(t)r(t) \right]^\frac{\alpha_1}{2}z'(t)}{w^{\alpha_1}(t)} \right] \\
\leq \frac{\rho'(t)}{\rho(t)}w(t) - \rho(t)Q(t) \\
- \frac{\alpha_1}{2} \frac{\left[e^{l_1 \int_a^b \frac{dt}{t\alpha(t)}}\rho(t)r(t) \right]^\frac{\alpha_1}{2}z'(t)}{w^{\alpha_1}(t)}.
\]
If \(a < \beta \), then it follows from (16) and (18) that for \(t \geq T_5 \),
\[
w'(t) = \frac{\rho'(t)}{\rho(t)}w(t) + \rho(t) \left[e^{l_1 \int_a^b \frac{dt}{t\alpha(t)}}r(t)z'(t) \right]^{\alpha_1} \\
- \rho(t) \left[\beta_1 \frac{\left[e^{l_1 \int_a^b \frac{dt}{t\alpha(t)}}\rho(t)r(t) \right]^\frac{\alpha_1}{2}z'(t)}{w^{\alpha_1}(t)} \right] \\
\leq \frac{\rho'(t)}{\rho(t)}w(t) - \rho(t)Q(t) \\
- \frac{\alpha_1}{2} \frac{\left[e^{l_1 \int_a^b \frac{dt}{t\alpha(t)}}\rho(t)r(t) \right]^\frac{\alpha_1}{2}z'(t)}{w^{\alpha_1}(t)}.
\]
Note that \(z'(t) > 0 \) for \(t \geq T_4 \). From (H2), we have
\[
z(g(t, a)) \leq \left[z(g(T_5, a)) \right]^{\frac{\alpha_1}{2}} = m_1, \quad t \geq T_5.
\]
Obviously, $m_1 > 0$. From (12), (14), (20), and (21), it follows that for $t \geq T_5$,

$$w'(t) \leq \frac{\rho'(t)}{\rho(t)} w(t) - \rho(t)Q(t)$$

$$- w_{\alpha}^{\beta} (t) \int_{\alpha}^{T_0} \frac{\beta}{m} \beta g_1(t,a)[z(t,a)]^\alpha dt - \frac{\beta}{m} \beta g_2(t,a)[z(t,a)]^\beta$$

$$\frac{\alpha}{\alpha + \alpha} \left[e^{\int_{\alpha}^{T_0} \frac{\alpha}{m} \beta g_1(t,a)[z(t,a)]^\alpha} \right]^{\alpha + \alpha}$$

$$\leq \frac{\rho'(t)}{\rho(t)} w(t) - \rho(t)Q(t)$$

$$- w_{\alpha}^{\beta} (t) m_2 \frac{\beta}{m} \beta g_2(t,a)[z(t,a)]^\beta$$

$$\frac{\alpha}{\alpha + \alpha} \left[e^{\int_{\alpha}^{T_0} \frac{\alpha}{m} \beta g_1(t,a)[z(t,a)]^\alpha} \right]^{\alpha + \alpha}$$

From (12), we have

$$[z'(t)]^\alpha \geq [z'(T_5)]^\alpha = m_2, \quad t \geq T_5. \hspace{1cm} (24)$$

Further, $m_2 > 0$. From (12), (14), (23), and (24), for $t \geq T_5$, we have

$$w'(t) \leq \frac{\rho'(t)}{\rho(t)} w(t) - \rho(t)Q(t)$$

$$- w_{\alpha}^{\beta} (t) \beta g_1(t,a)[z'(t)]^\alpha$$

$$\frac{\alpha}{\alpha + \alpha} \left[e^{\int_{\alpha}^{T_0} \frac{\alpha}{m} \beta g_1(t,a)[z(t,a)]^\alpha} \right]^{\alpha + \alpha}$$

$$\leq \frac{\rho'(t)}{\rho(t)} w(t) - \rho(t)Q(t)$$

$$- w_{\alpha}^{\beta} (t) m_2 \frac{\beta}{m} \beta g_2(t,a)[z(t,a)]^\beta$$

$$\frac{\alpha}{\alpha + \alpha} \left[e^{\int_{\alpha}^{T_0} \frac{\alpha}{m} \beta g_1(t,a)[z(t,a)]^\alpha} \right]^{\alpha + \alpha}$$

From (19), (22), (25), and Lemma 1, there exists $m \in (0, 1]$ such that

$$w'(t) \leq -\rho(t)Q(t) + \frac{\rho'(t)}{\rho(t)} w(t)$$

$$- \frac{\lambda}{m} \beta g_1(t,a)$$

$$\frac{\alpha}{\alpha + \alpha} \left[e^{\int_{\alpha}^{T_0} \frac{\alpha}{m} \beta g_1(t,a)[z(t,a)]^\alpha} \right]^{\alpha + \alpha}$$

$$\leq -\rho(t)Q(t) + \frac{(\lambda + 1) \beta g_1(t,a)[z(t,a)]^\alpha}{\lambda + 1}$$

Integrating (26) from T_5 to t, we get

$$w(t) \leq w(T_5) - \int_{T_5}^{t} \rho(s)[\rho'(s)]^2 e^{\int_{s}^{T_0} \frac{\alpha}{m} \beta g_2(t,a)[z(t,a)]^\beta} dt$$

(27)

Letting $t \to \infty$ in (27), it follows from (H4) that

$$\lim_{t \to \infty} w(t) = -\infty. \hspace{1cm} (28)$$

Therefore, (7) is oscillatory. This completes the proof. \(\Box\)

Choosing $\rho(t) = 1$ in Theorem 1, we get the results.

Corollary 1 Assume that (H1)-(H3) hold.

$$\int_{t_0}^{\infty} \left[\frac{\beta}{m} \beta g_1(t,a)[z(t,a)]^\alpha \left[e^{\int_{\alpha}^{T_0} \frac{\alpha}{m} \beta g_1(t,a)[z(t,a)]^\alpha} \right]^{\alpha + \alpha} \right] dt = \infty,$$

then (6) is oscillatory.

Theorem 2 Assume that (H1), (H2), (H4), and (H5) hold.

(i) $\rho'(t) \geq 0$, $\tau'(t) \geq 0$, $g(t, \xi) \leq \tau(t)$, for $t \in [t_0, \infty)$, $\xi \in [a, b]$;

(ii) for any $M \in (0, 1]$,

$$\int_{t_0}^{\infty} \left[\frac{\beta}{m} \beta g_1(t,a)[z(t,a)]^\alpha \left[e^{\int_{\alpha}^{T_0} \frac{\alpha}{m} \beta g_1(t,a)[z(t,a)]^\alpha} \right]^{\alpha + \alpha} \right] dt = \infty,$$

where $\mu = \max\{\alpha, \beta\}$ and

$$Q_1(t) = [1 - \rho(t)]^\beta e^{\int_{\alpha}^{T_0} \frac{\alpha}{m} \beta g_1(t,a)[z(t,a)]^\alpha} \int_{a}^{b} q(t, \xi) d\xi,$$

then (6) is oscillatory.

Proof: Suppose that (7) has a nonoscillatory solution $x(t)$. Without loss of generality, we assume that $x(t)$ is an eventually positive solution for (7). Hence, there exists $T_0 > t_0$ such that $x(t) > 0$ for $t \geq T_0$. If $x(t)$ is eventually negative, the proof is similar.

From (H2) and (7), there exists $T_1 \geq T_0$ such that $\tau(t) \geq T_0$ and $g(t, \xi) \geq T_0$ for any $t \geq T_1$ and $\xi \in [a, b]$. This, together with (H1) and (7), implies that for $t \geq T_1$

$$x(g(t, \xi)) > 0, \quad x(\tau(t)) > 0, \quad x(t) \geq 0, \quad x(t) \geq 0,$$

$$\left[e^{\int_{\alpha}^{T_0} \frac{\alpha}{m} \beta g_1(t,a)[z(t,a)]^\alpha} \right]^{\alpha + \alpha} \leq 0. \hspace{1cm} (28)$$
From (28), it is easy to see that \(z'(t) \) is eventually nonnegative or eventually negative.

Case 1. Assume that \(z'(t) \) is eventually nonnegative. By using the same method as in the proof of Theorem 1, we can get a contradiction.

Case 2. Assume that \(z'(t) \) is eventually negative. Hence there exists \(T_2 \) satisfying \(z'(t) < 0 \) for any \(t > T_2 \). It follows from (7) and (28) that for \(t > T_2 \),

\[
\left[e^{\int_0^t \frac{dx}{m(t)}} r(t)(-z'(t))^a \right]' = e^{\int_0^t \frac{dx}{m(t)}} \int_a^b q(t, \xi) x^\beta(g(t, \xi)) d\xi = 0. \tag{29}
\]

In addition,

\[z'(t) = x'(t) + p'(t)x(\tau(t)) + p(t)x'(\tau(t))z'(t), \tag{30} \]

which together with \((H_1)\) and condition \((i)\), yields

\[x'(t) \leq 0, \quad t > T_2. \tag{31} \]

From (31) and \((H_2)\), we deduce

\[
z(t) = x(t) + p(t)x(\tau(t)) < x(\tau(t)) + p(t)x(\tau(t)) = [1 + p(t)]x(\tau(t)), \quad t > T_2. \tag{32} \]

It follows from (31), (32) and \((i)\) that for any \(\xi \in [a, b] \),

\[
x(g(t, \xi)) > x(\tau(t)) > \frac{z(t)}{1 + p(t)} = \frac{z(t)(1 - p(t))}{1 - p^2(t)} \geq (1 - p(t))z(t), \quad t > T_2. \tag{33} \]

From \((H_2)\), for \(t > T_2 \), we have

\[
\int_a^b q(t, \xi) x^\beta(g(t, \xi)) d\xi \geq \int_a^b q(t, \xi) [1 - p(t)]\beta z^\beta(t) d\xi \geq [1 - p(t)]\beta z^\beta(t) \int_a^b q(t, \xi) d\xi. \tag{33} \]

From (29) and (33), we get for \(t > T_2 \),

\[
\left[e^{\int_0^t \frac{dx}{m(t)}} r(t)(-z'(t))^a \right]' - Q_1(t)z^\beta(t) \geq 0. \tag{34} \]

Clearly, for \(t > T_2 \),

\[
w'_1(t) := e^{\int_0^t \frac{dx}{m(t)}} r(t)(-z'(t))^a \geq 0. \tag{35} \]

Further, for \(t > T_2 \),

\[
w''_1(t) = \frac{e^{\int_0^t \frac{dx}{m(t)}} r(t)(-z'(t))^a}{z^\beta(t)} - \frac{\beta e^{\int_0^t \frac{dx}{m(t)}} z^{\beta-1}(t)z'(t)r(t)(-z'(t))^a}{z^{2\beta(t)}} \geq Q_1(t) + \frac{\beta r(t)(-z'(t))^a + e^{\int_0^t \frac{dx}{m(t)}}}{z^{\beta+1}(t)}. \tag{36} \]

It follows from (34), (35) that for any \(t > T_2 \),

\[
w'_1(t) = \frac{e^{\int_0^t \frac{dx}{m(t)}} r(t)(-z'(t))^a}{z^\beta(t)} - \frac{\beta e^{\int_0^t \frac{dx}{m(t)}} z^{\beta-1}(t)z'(t)r(t)(-z'(t))^a}{z^{2\beta(t)}} \geq Q_1(t) + \frac{\beta r(t)(-z'(t))^a + e^{\int_0^t \frac{dx}{m(t)}}}{z^{\beta+1}(t)}. \tag{37} \]

Note that \(z'(t) < 0 \) for \(t > T_2 \). Therefore

\[
[z(t)]^{\frac{\beta+1}{2}} - [z(T_2)]^{\frac{\beta+1}{2}} = m_3, \quad t > T_2. \tag{40} \]

Further, \(m_3 > 0 \). From (39) and (40) for \(t > T_2 \),

\[
w'_1(t) = Q_1(t) + w''_1(t) - Q_1(t) + \frac{\beta m_3}{e^{\int_0^t \frac{dx}{m(t)}} r(t)} \geq Q_1(t) + \frac{\beta m_3}{e^{\int_0^t \frac{dx}{m(t)}} r(t)} \tag{41} \]

If \(\alpha < \beta \), then, from (37) and (38), for \(t > T_2 \),

\[
w'_1(t) = Q_1(t) + w''_1(t) - Q_1(t) + \frac{\beta m_3}{e^{\int_0^t \frac{dx}{m(t)}} r(t)} \geq Q_1(t) + \frac{\beta m_3}{e^{\int_0^t \frac{dx}{m(t)}} r(t)} \tag{42} \]

From (34) for \(t > T_2 \),

\[
[e^{\int_0^t \frac{dx}{m(t)}} r(t)(-z'(t))^a]^{\frac{\beta+1}{2}} > 0, \text{ therefore} \]

\[
[e^{\int_0^t \frac{dx}{m(t)}} r(t)(-z'(t))^a]^{\frac{\beta+1}{2}} = [e^{\int_0^t \frac{dx}{m(t)}} r(T_2)(-z'(T_2))^a]^{\frac{\beta+1}{2}} = m_4. \tag{43} \]
Clearly, $m_4 > 0$. From (42) and (43), for $t \geq T_2$,

$$w_1'(t) \geq Q_1(t) + w_1^{\mu+1}(t) \frac{\beta m_4}{\left[e^{\int_0^t \frac{\mu}{\Pi} ds} r(t) \right]^2}.$$ \hspace{1cm} (44)

It follows from (41) and (44) that there is $M \in (0,1]$ such that for $t \geq T_2$,

$$w_1'(t) \geq Q_1(t) + w_1^{\mu+1}(t) \frac{\beta M}{\left[e^{\int_0^t \frac{\mu}{\Pi} ds} r(t) \right]^2}.$$ \hspace{1cm} (45)

Further, it follows from (H1) that for $t \geq T_2$,

$$\Pi^\mu(t)w_1'(t) \geq \Pi^\mu(t)Q_1(t) + \Pi^\mu(t)w_1^{\mu+1}(t) \frac{\beta M}{\left[e^{\int_0^t \frac{\mu}{\Pi} ds} r(t) \right]^2}.$$ \hspace{1cm} (46)

Integrating (46) from T_2 to t, we get

$$\int_{T_2}^t \Pi^\mu(s)w_1'(s) ds \geq \int_{T_2}^t \Pi^\mu(s)Q_1(s) ds + \int_{T_2}^t \Pi^\mu(s)w_1^{\mu+1}(s) \frac{\beta M}{\left[e^{\int_0^t \frac{\mu}{\Pi} ds} r(s) \right]^2} ds.$$ \hspace{1cm} (47)

From Lemmas 1 and 2, for $t \geq \max\{T, T_2\}$, we have

$$L - \Pi^\mu(T_2)w_1(T_2) \geq \int_{T_2}^t \Pi^\mu(s)Q_1(s) ds - \int_{T_2}^t \frac{\Pi^\mu(s)Q_1(s)}{\left[e^{\int_0^t \frac{\mu}{\Pi} ds} r(s) \right]^2} ds$$

$$- \int_{T_2}^t \frac{\Pi^\mu(s)\beta M}{\left[e^{\int_0^t \frac{\mu}{\Pi} ds} r(s) \right]^2} ds$$

$$= \int_{T_2}^t \Pi^\mu(s)Q_1(s) ds - \int_{T_2}^t \Pi^\mu(s)w_1^{\mu+1}(s) ds$$

$$\geq \int_{T_2}^t \Pi^\mu(s)Q_1(s) ds - \int_{T_2}^t \frac{\Pi^\mu(s)(\mu + 1)w_1^{\mu+1}}{\left[e^{\int_0^t \frac{\mu}{\Pi} ds} r(s) \right]^2} ds.$$ \hspace{1cm} (48)

Letting $t \to \infty$ in (48), it follows from condition (ii) that $L \geq \infty$. This is a contradiction. Hence, (7) is oscillatory. This completes the proof. \qed

Remark 1 If $q(t, \xi) = \frac{1}{\xi^a}q(t)$, $g(t, \xi) = \sigma(t)$, $c(t) \equiv 0$, then (6) reduces to (2). Further, **Theorem 1** reduces to Theorem 1 in Ref. 22. In addition, Theorem 2.1 in Refs. 20, 21 requires the condition $\alpha > \beta$; Theorem 3.1 in Ref. 21 requires the condition $\beta \geq \alpha$. Hence, **Theorem 1** improves and generalizes these results.

Remark 2 If $q(t, \xi) = \frac{1}{\xi^a}q(t)$, $g(t, \xi) = \sigma(t)$, then (6) reduces to (4). Theorems 1 and 4 in Ref. 24 require the condition $\alpha > \beta$ and $\beta > \alpha$, respectively. Hence, **Theorem 1** improves these theorems.

EXAMPLES

Example 1 Consider the following equation

$$\left[t^{\frac{1}{2}}z(t)\right]^{\alpha+1}z'(t) + t^{\frac{1}{2}}t^{-\frac{1}{2}}z(t) = 0.$$ \hspace{1cm} (49)

Then

$$\Pi^\mu(t)w_1(t) \geq \Pi^\mu(T_2)w_1(T_2)$$

$$\geq \int_{T_2}^t \Pi^\mu(s)w_1(s) ds + \int_{T_2}^t \Pi^\mu(s)Q_1(s) ds$$

$$+ \int_{T_2}^t \Pi^\mu(s)w_1^{\mu+1}(s) \left[e^{\int_0^t \frac{\mu}{\Pi} ds} r(s) \right]^2] ds.$$
Further,

$$
\lim_{t \to \infty} R(t) = \lim_{t \to \infty} \int_1^t \left[r(s) e^{-\int_0^s \frac{\alpha}{m} \, ds} \right]^{\frac{1}{\alpha}} \, ds = \lim_{t \to \infty} \int_1^t \frac{1}{s} \, ds = \infty.
$$

So (H_3) holds. Choose \(\rho(t) = t \). For any \(m \in (0, 1] \), we have

$$
\int_1^\infty \left[\rho(t)Q(t) - \frac{r(t)\rho'(t)^{\lambda+1}}{(\lambda+1)^{\lambda+1}(mg(t,a)^2)} \right] \, dt
= \int_1^\infty \left[3\left(\frac{1}{2}\right)^{\beta+1} t^{\alpha+1} - \frac{2^\beta}{m^\lambda(\alpha+1)^{\lambda+1}} \right] \, dt
= \left[\frac{1}{2} \right]^{\beta+1} \frac{2^{\alpha+2}}{2\alpha+2} - \frac{2^\beta}{2(\alpha-\lambda+1)m^\lambda(\alpha+1)^{\lambda+1}} \right]_1^\infty = \infty.
$$

So (H_4) holds. In addition, for any \(M \in (0, 1] \),

$$
\int_1^M \frac{\mu^{2\alpha+1}}{(\mu+1)^{\alpha+1}(\beta M)^{\alpha+1}} \, dt
= \int_1^\infty \left[3\left(\frac{1}{2}\right)^{\beta+1} t^{\alpha+1} - \frac{2^\beta}{m^\lambda(\alpha+1)^{\lambda+1}} \right] \, dt
= 3\left(\frac{1}{2}\right)^{\beta+1} \frac{1}{\alpha+1} t^{\alpha+1} - \frac{2^\beta}{2(\alpha-\lambda+1)m^\lambda(\alpha+1)^{\lambda+1}} \right]_1^\infty = \infty.
$$

Therefore the conditions of Theorem 2 hold. Hence, (49) is oscillatory.

Example 2 Consider the following equation

$$
\left[t^\alpha z'(t) \right]^\alpha - t^\alpha z'(t) + \int_1^t t^\mu |x(t,\xi)|^{\rho^{-1}} x(t,\xi) \, d\xi = 0,
$$

where \(t \in [1, \infty) \), \(z(t) = x(t) + x(t-1)/2 \), \(a, \beta > 0 \), \(\mu = \max(\alpha, \beta) \), \(r(t) = t^\alpha \), \(p(t) = 1/2 \), \(c(t) = t^\alpha \), \(q(t, \xi) = t^\mu \xi \), \(g(t, \xi) = t \xi \), and \(\tau(t) = t - 1 \).

It is easy to see that

$$
\lim_{t \to \infty} g(t, \xi) = \infty, \quad 0 \leq g(t, \xi) \leq t, \quad g(t, \xi) = \xi > 0,
$$

$$
g(t, \xi) = t > 0, \quad Q(t) = 3\left(\frac{1}{2}\right)^{\beta+1} t^{\alpha+\mu}.
$$

Further,

$$
\Pi(t) = \int_t^\infty \left[r(s) e^{-\int_0^s \frac{\alpha}{m} \, ds} \right]^{\frac{1}{\alpha}} \, ds
= \int_t^\infty \left[s^{\alpha} s^{\alpha - 1} \right]^{\frac{1}{\alpha}} \, ds = \int_t^\infty s^{-2} \, ds = \frac{1}{t} < \infty.
$$

So (H_3) holds. Choose \(\rho(t) = t \). For any \(m \in (0, 1] \), we have

$$
\int_1^\infty \left[\rho(t)Q(t) - \frac{r(t)\rho'(t)^{\lambda+1}}{(\lambda+1)^{\lambda+1}(mg(t,g(t,a))^2)} \right] \, dt
= \int_1^\infty \left[3\left(\frac{1}{2}\right)^{\beta+1} t^{\alpha+1} - \frac{2^\beta}{m^\lambda(\alpha+1)^{\lambda+1}} t^{2\alpha-\lambda} \right] \, dt
= \left[\frac{1}{2} \right]^{\beta+1} \frac{2^{\alpha+2}}{2\alpha+2} - \frac{2^\beta}{2(\alpha-\lambda+1)m^\lambda(\alpha+1)^{\lambda+1}} \right]_1^\infty = \infty.
$$

Therefore the conditions of Theorem 2 hold. Hence, (50) is oscillatory.

Acknowledgements: This work was supported by the National Natural Science Foundation of China (No. 11471197).

REFERENCES