BESEARCH ARTICLE doi: 10.2306/scienceasia1513-1874.2019.45.285

Weaving of *K*-g-frames in Hilbert spaces

Xiang-Chun Xiao^{a,*}, Guo-Rong Zhou^a, Yu-Can Zhu^b

^a Department of Mathematics, Xiamen University of Technology, Xiamen 361024 China

^b Department of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116 China

*Corresponding author, e-mail: xxc570@163.com

Received 10 Jan 2019 Accepted 12 May 2019

ABSTRACT: In this study, we mainly discuss the weaving of *K*-g-frames in Hilbert spaces. Note that the concept of weaving was recently proposed by Bemrose et al to solve a question in distributed signal processing. We give a sufficient condition such that the left sequence can still be *K*-woven in *R*(*K*) by deleting some elements from a *K*-woven pair of *K*-g-frames. We then give three different types of perturbation conditions such that, under them, the *K*-g-frames $\{\Lambda_j : j \in J\}$ and $\{\Gamma_j : j \in J\}$ or the types $\{\Lambda_j T_1^* : j \in J\}$ and $\{\Gamma_j T_2^* : j \in J\}$ can be *K*-woven in *R*(*K*), where *T*₁, *T*₂ are surjective operators on \mathcal{U} .

KEYWORDS: G-frame, K-g-frame, weaving, perturbation

MSC2010: 42C15

INTRODUCTION

Sun¹ proposed a more general type of frame called g-frame to deal with all existing frames at that time as a united object. Given *J* being a countable index set; \mathcal{U} , \mathcal{V}_j , $j \in J$, being Hilbert spaces; and Λ_j being a bounded linear operator from \mathcal{U} to \mathcal{V}_j , recall that $\{\Lambda_j : j \in J\}$ is called a g-frame for \mathcal{U} with respect to $\{\mathcal{V}_j : j \in J\}$ if there exist *A*, B > 0 such that

$$A\|f\|^2 \leq \sum_{j \in J} \|\Lambda_j f\|^2 \leq B\|f\|^2, \quad \forall f \in \mathcal{U}.$$

Here, *A* and *B* are the lower and upper frame bounds, respectively, for the g-frame { $\Lambda_j : j \in J$ }. Xiao et al² further generalized g-frames^{3–5} and *K*-frames^{6–8} and introduced another notion, namely, *K*-g-frames. For more information on g-frames and *K*-g-frames, see Refs. 9–11 and the references therein.

Note that the notion of weaving was recently proposed by Bemrose et al^{12–14} to simulate a question in distributed signal processing. Since then weaving as a research hotspot has been studied by many scholars. We refer the readers to check Refs. 15–18 for more information on the weaving of g-frames or fusion frames and Ref. 19 for information on the weaving of *K*-frames.

In this study, we will mainly discuss the erasures and perturbations of weaving for *K*-g-frames in Hilbert spaces. We give a sufficient condition such that the left sequence can still be *K*-woven in R(K) by deleting some elements from a *K*-woven pair of *K*-g-frames. We then give three different types of perturbation conditions such that, under them, the *K*-g-frames $\{\Lambda_j : j \in J\}$ and $\{\Gamma_j : j \in J\}$ or the types $\{\Lambda_j T_1^* : j \in J\}$ and $\{\Gamma_j T_2^* : j \in J\}$ can be *K*-woven in R(K), where T_1 and T_2 are surjective operators on \mathcal{U} .

Throughout this study, we will adopt the following notations: \mathscr{H} is a separable Hilbert space; $I_{\mathscr{H}}$ is the identity operator for \mathscr{H} ; L(X, Y) is the collection of all bounded linear operators from X to Y, where X, Y are Banach spaces, and if X = Y, then L(X, Y)is denoted by L(X); the range and the kernel of $K \in$ $L(\mathscr{H})$ are denoted by R(K) and N(K), respectively; finally, the pseudo-inverse of $K \in L(\mathscr{H})$ is denoted by K^{\dagger} .

PRELIMINARIES OF K-G-FRAMES

In this section, we recall the definitions and some basic properties of *K*-g-frames and weaving, and apply the woven principle to *K*-g-frames.

Definition 1 [Ref. 2] A sequence $\{\Lambda_j \in L(\mathcal{U}, \mathcal{V}_j) : j \in J\}$ is called a *K*-g-frame for \mathcal{U} with respect to $\{\mathcal{V}_j : j \in J\}$ if there exist *A*, B > 0 such that

$$A\|K^*f\|^2 \leq \sum_{j \in J} \|\Lambda_j f\|^2 \leq B\|f\|^2, \quad \forall f \in \mathscr{U}.$$
(1)

We call A and B the lower frame bound and the upper frame bound, respectively, for the K-g-frame

 $\{\Lambda_j : j \in J\}$. We call $\{\Lambda_j : j \in J\}$ the g-Bessel sequence if only the right-hand side of (1) holds.

If $A \| K^* f \|^2 = \sum_{j \in J} \| \Lambda_j f \|^2$, $\forall f \in \mathcal{U}$, we call $\{\Lambda_j : j \in J\}$ a tight *K*-g-frame; furthermore, if A = 1, $\{\Lambda_j : j \in J\}$ is called a Parseval *K*-g-frame.

Observe that, from (1), $\{\Lambda_j : j \in J\}$ is an $I_{\mathcal{U}}$ -gframe for \mathcal{U} if and only if $\{\Lambda_j : j \in J\}$ is a g-frame for \mathcal{U} .

The concept of weaving of frames was introduced by Bemrose et al^{12} to simulate a question in distributed signal processing. We now recall it as follows.

Definition 2 [Ref. 12] Let $\{f_i\}_{i \in I}$ and $\{g_i\}_{i \in I}$ be frames for \mathcal{H} . If for any partition $\{\sigma_j\}_{j=1}^2$ of I there exist A, B > 0 such that $\{f_i\}_{i \in \sigma_1} \cup \{g_i\}_{i \in \sigma_2}$ is a frame for \mathcal{H} with the frame bounds A and B, then we consider that $\{f_i\}_{i \in I}$ and $\{g_i\}_{i \in I}$ are woven in \mathcal{H} with the frame bounds A and B, and $\{f_i\}_{i \in \sigma_1} \cup \{g_i\}_{i \in \sigma_2}$ is called a weaving.

In this study, we will apply the woven principle to *K*-g-frames.

Definition 3 Let $\{\Lambda_j : j \in J\}$ and $\{\Gamma_j : j \in J\}$ be *K*g-frames for \mathscr{U} with respect to $\{\mathscr{V}_j : j \in J\}$. If for any partition $\{\sigma_j\}_{j=1}^2$ of *J* there exist *A*, B > 0 such that $\{\Lambda_j\}_{i\in\sigma_1} \cup \{\Gamma_j\}_{i\in\sigma_2}$ is a *K*-g-frame for \mathscr{U} with the frame bounds *A* and *B*, then we consider that $\{\Lambda_j : j \in J\}$ and $\{\Gamma_j : j \in J\}$ are *K*-woven in \mathscr{U} with the frame bounds *A* and *B*, and each $\{\Lambda_j\}_{i\in\sigma_1} \cup \{\Gamma_j\}_{i\in\sigma_2}$ is called a weaving.

Note that, if $K = I_{\mathcal{H}}$, then *K*-frames are the classical frames for \mathcal{H} and, at the same time, the weaving of the *K*-frames is the weaving of the classical frames.

Assume that $\{\Lambda_j \in L(\mathcal{U}, \mathcal{V}_j) : j \in J\}$ is a g-Bessel sequence in \mathcal{U} ; then, the synthesis operator *T*, analysis operator *U*, and frame operator *S* of $\{\Lambda_j : j \in J\}$ are defined as follows:

$$T: l^2(\{\mathcal{V}_j\}_{j\in J}) \to \mathcal{U}, \quad T(\{g_j\}_{j\in J}) = \sum_{j\in J} \Lambda_j^* g_j, \quad (2)$$

$$U: \mathscr{U} \to l^2(\{\mathscr{V}_j\}_{j \in J}), \quad Uf = \{\Lambda_j f\}_{j \in J},$$
(3)

$$S: \mathscr{U} \to \mathscr{U}, \quad Sf = \sum_{j \in J} \Lambda_j^* \Lambda_j f,$$
 (4)

where $l^2(\{\mathcal{V}_j\}_{j\in J})$ is a Hilbert space defined as

$$l^{2}(\{\mathcal{V}_{j}\}_{j \in J}) = \left\{\{g_{j}\}_{j \in J} : g_{j} \in \mathcal{V}_{j}, j \in J, \sum_{j \in J} ||g_{j}||^{2} < \infty\right\}$$

with inner product $\langle \{f_j\}_{j \in J}, \{g_j\}_{j \in J} \rangle = \sum_{j \in J} \langle f_j, g_j \rangle$. It is easy to check that $U = T^*$ and S = TU. **Lemma 1 (Ref. 20)** Suppose that \mathcal{H}_1 and \mathcal{H}_2 are two Hilbert spaces and that $Q \in L(\mathcal{H}_1, \mathcal{H}_2)$ is an operator with a closed range. Then, there exists a unique bounded operator $Q^{\dagger} : \mathcal{H}_2 \to \mathcal{H}_1$, called the pseudo-inverse operator of Q, satisfying

$$N(Q^{\dagger}) = R(Q)^{\perp}, \quad R(Q^{\dagger}) = N(Q)^{\perp},$$

$$QQ^{\dagger} = P_{R(Q)}, \quad Q^{\dagger}Q = P_{R(Q^{\dagger})}.$$
(5)

If *Q* is bounded and invertible, then $Q^{\dagger} = Q^{-1}$.

In this study, we always assume that $K \in L(\mathcal{U})$ is an operator with a closed range. By Lemma 1, there exists a pseudo-inverse operator K^{\dagger} such that $KK^{\dagger} = P_{R(K)}$. It follows that $I_{R(K)} = I^*_{R(K)} = (K^{\dagger})^*K^*$. Hence, for any $f \in R(K)$,

$$||f|| = ||(K^{\dagger})^* K^* f|| \le ||(K^{\dagger})^*|| ||K^* f|| = ||K^{\dagger}|| ||K^* f||.$$
(6)

ERASURES OF THE WEAVING OF K-G-FRAMES

In this section, we provide a sufficient condition such that the left sequence can still be K-woven in R(K) by deleting some elements from a K-woven pair of K-g-frames.

Theorem 1 Let $K \in L(\mathcal{U})$ be an operator with a closed range. Suppose that $\{\Lambda_j : j \in J\}$ and $\{\Gamma_j : j \in J\}$ are K-g-frames for \mathcal{U} with respect to $\{\mathcal{V}_j : j \in J\}$ and are K-woven in \mathcal{U} with the universal bounds A and B. If there exist $\sigma \subset J$ and $\alpha, \beta, \gamma \ge 0$ satisfying $A > \beta + (\alpha B + \gamma) ||K^{\dagger}||^2$ such that

$$\sum_{j \in \sigma} \|\Lambda_j f\|^2 \le \alpha \sum_{j \in \sigma} \|\Gamma_j f\|^2 + \beta \|K^* f\|^2 + \gamma \|f\|^2$$
(7)

for all $f \in \mathcal{U}$, then $\{\Lambda_j : j \in J \setminus \sigma\}$ and $\{\Gamma_j : j \in J \setminus \sigma\}$ are *K*-woven in *R*(*K*) with the universal bounds $A - \beta - (\alpha B + \gamma) \|K^{\dagger}\|^2$ and *B*.

Proof: For any partition $\{\sigma_j\}_{j=1}^2$ of $J \setminus \sigma$, and any $f \in R(K) \subset \mathcal{U}$, we have

$$\begin{split} &\sum_{j \in \sigma_{1}} \|\Lambda_{j}f\|^{2} + \sum_{j \in \sigma_{2}} \|\Gamma_{j}f\|^{2} \\ &= \left(\sum_{j \in J \setminus \sigma_{2}} \|\Lambda_{j}f\|^{2} + \sum_{j \in \sigma_{2}} \|\Gamma_{j}f\|^{2}\right) - \sum_{j \in \sigma} \|\Lambda_{j}f\|^{2} \\ &\ge A \|K^{*}f\|^{2} - \left(\alpha \sum_{j \in \sigma} \|\Gamma_{j}f\|^{2} + \beta \|K^{*}f\|^{2} + \gamma \|f\|^{2}\right) \\ &\ge (A - \beta) \|K^{*}f\|^{2} - (\alpha B + \gamma) \|f\|^{2} \\ &\ge (A - \beta) \|K^{*}f\|^{2} - (\alpha B + \gamma) \|K^{\dagger}\|^{2} \|K^{*}f\|^{2} \\ &= [A - \beta - (\alpha B + \gamma) \|K^{\dagger}\|^{2}] \|K^{*}f\|^{2}, \end{split}$$

where the first inequality is deduced by (7) and that $\{\Lambda_j : j \in J\}$ and $\{\Gamma_j : j \in J\}$ are *K*-woven with the

universal bounds *A* and *B*, and the third inequality is deduced by (6). On the other hand, we have

$$\begin{split} \sum_{j\in\sigma_1} & \|\Lambda_j f\|^2 + \sum_{j\in\sigma_2} \|\Gamma_j f\|^2 \\ &\leqslant \sum_{j\in\sigma_1\cup\sigma} \|\Lambda_j f\|^2 + \sum_{j\in\sigma_2} \|\Gamma_j f\|^2 \leqslant B \|f\|^2. \end{split}$$

We can also know that $\{\Lambda_j : j \in J \setminus \sigma\}$ and $\{\Gamma_j : j \in J \setminus \sigma\}$ are *K*-g-frames for *R*(*K*) if we take $\sigma_1 = J \setminus \sigma$ and \emptyset from (8). Hence $\{\Lambda_j : j \in J \setminus \sigma\}$ and $\{\Gamma_j : j \in J \setminus \sigma\}$ are *K*-woven in *R*(*K*).

We can easily obtain the following result if we take $K = I_{\mathcal{U}}$ in Theorem 1.

Corollary 1 Suppose that $\{\Lambda_j : j \in J\}$ and $\{\Gamma_j : j \in J\}$ are *g*-frames for \mathscr{U} with respect to $\{\mathscr{V}_j : j \in J\}$ and are woven in \mathscr{U} with the universal frame bounds *A* and *B*. If there exist $\sigma \subset J$ and $\alpha\beta \ge 0$ satisfying $A > \alpha B + \beta$ such that

$$\sum_{j\in\sigma} \|\Lambda_j f\|^2 \leq \alpha \sum_{j\in\sigma} \|\Gamma_j f\|^2 + \beta \|f\|^2, \quad \forall f \in \mathcal{U}, \ (9)$$

then $\{\Lambda_j : j \in J \setminus \sigma\}$ and $\{\Gamma_j : j \in J \setminus \sigma\}$ are woven in \mathscr{U} with the universal frame bounds $A - \alpha B - \beta$ and B.

PERTURBATIONS OF THE WEAVING OF *K*-G-FRAMES

In this section, we mainly discuss the perturbation stabilities of the weaving of $\{\Lambda_j : j \in J\}$ and $\{\Gamma_j : j \in J\}$ under different types of perturbation conditions.

Given that $\{\Lambda_j : j \in J\}$ and $\{\Gamma_j : j \in J\}$ are *K*-gframes for \mathcal{U} , we show that, under condition (10), $\{\Lambda_j T_1^* : j \in J\}$ and $\{\Gamma_j T_2^* : j \in J\}$ are *K*-woven in R(K) for some surjective operators T_1, T_2 on \mathcal{U} .

Theorem 2 Let $K \in L(\mathcal{U})$ be an operator with a closed range. Suppose that $\{\Lambda_j : j \in J\}$ and $\{\Gamma_j : j \in J\}$ are *K*-g-frames for \mathcal{U} with respect to $\{\mathcal{V}_j : j \in J\}$ with the frame bounds A_1 , B_1 and A_2 , B_2 , respectively. Suppose that $T_1, T_2 \in L(\mathcal{U})$ are surjective on \mathcal{U} and satisfy $T_iK = KT_i$, i = 1, 2. If there exist $\alpha, \beta, \gamma \ge 0$ satisfying $\frac{\sqrt{A_1}}{\|T_1^{\dagger}\|} - \frac{\gamma}{\|T_2^{\dagger}\|} > (\sqrt{B_1}\|T_2 - T_1\| + \alpha\sqrt{B_1}\|T_2\| + \beta\sqrt{B_2}\|T_2\|)\|K^{\dagger}\|$ such that, $\forall f \in \mathcal{U}$,

$$\left(\sum_{j\in J} \|(\Gamma_j - \Lambda_j)f\|^2\right)^{1/2} \leq \alpha \left(\sum_{j\in J} \|\Lambda_j f\|^2\right)^{1/2} + \beta \left(\sum_{j\in J} \|\Gamma_j f\|^2\right)^{1/2} + \gamma \|K^* f\|, \quad (10)$$

then $\{\Lambda_j T_1^* : j \in J\}$ and $\{\Gamma_j T_2^* : j \in J\}$ are K-woven in R(K) with the universal frame bounds $\left(\frac{\sqrt{A_1}}{\|T_1^{\uparrow}\|} - \frac{\gamma}{\|T_2^{\uparrow}\|} - \frac{\gamma}{\|T_2^{\uparrow}\|}\right)$

$$\left(\sqrt{B_1}\|T_2 - T_1\| + \alpha\sqrt{B_1}\|T_2\| + \beta\sqrt{B_2}\|T_2\|\right)\|K^{\dagger}\|\right)^2$$

and $B_1\|T_1\|^2 + B_2\|T_2\|^2$.

Proof: Since $T_1 \in L(\mathcal{U})$ is surjective on \mathcal{U} , similar to (6), we obtain, for any $f \in \mathcal{U}$,

$$\|f\| = \|(T_1^{\dagger})^* T_1^* f\| \le \|T_1^{\dagger}\| \|T_1^* f\|.$$
(11)

Hence we obtain

$$\|T_1^*f\| \ge \frac{1}{\|T_1^\dagger\|} \|f\|, \quad \forall f \in \mathscr{U}.$$
(12)

We can now show that $\{\Lambda_j T_1^* : j \in J\}$ and $\{\Gamma_j T_2^* : j \in J\}$ are *K*-g-frames for \mathcal{U} . Since $\{\Lambda_j : j \in J\}$ is a *K*-g-frame for \mathcal{U} , therefore (1) holds. For any $f \in \mathcal{U}$, we obtain

$$\begin{aligned} \frac{A_1}{\|T_1^{\dagger}\|^2} \|K^*f\|^2 &\leq A_1 \|T_1^*K^*f\|^2 = A_1 \|K^*T_1^*f\|^2 \\ &\leq \sum_{j \in J} \|\Lambda_j T_1^*f\|^2 \\ &\leq B_1 \|T_1^*f\|^2 \leq B_1 \|T_1\|^2 \|f\|^2, \quad (13) \end{aligned}$$

where the first inequality is deduced by (12). Hence $\{\Lambda_j T_1^* : j \in J\}$ is a *K*-g-frame for \mathcal{U} . Similarly, we can show that $\{\Gamma_j T_2^* : j \in J\}$ is a *K*-g-frame for \mathcal{U} .

Next, we show that $\{\Lambda_j T_1^* : j \in J\}$ and $\{\Gamma_j T_2^* : j \in J\}$ are woven in R(K). For any partition $\{\sigma_j\}_{j=1}^2$ of *J*, and any $f \in \mathcal{U}$, we have

$$\begin{split} \sum_{j \in \sigma_1} \|\Lambda_j T_1^* f\|^2 + \sum_{j \in \sigma_2} \|\Gamma_j T_2^* f\|^2 \\ &\leq \left(B_1 \|T_1\|^2 + B_2 \|T_2\|^2\right) \|f\|^2. \end{split}$$

Let $x = \{\Lambda_j T_1^* f\}_{j \in \sigma_1} \cup \{\Lambda_j T_1^* f\}_{j \in \sigma_2}$ and $y = \{0\}_{j \in \sigma_1} \cup \{\Lambda_j (T_2 - T_1)^* f + (\Gamma_j - \Lambda_j) T_2^* f\}_{j \in \sigma_2}$. Then $x, y \in l^2(\{\mathscr{V}_j\}_{j \in J})$ since $\{\Lambda_j T_1^* : j \in J\}$ and $\{\Lambda_j (T_2 - T_1)^* : j \in J\} \bigcup \{(\Lambda_j - \Gamma_j) T_2^* : j \in J\}$ can be proved to be g-Bessel sequences in \mathscr{U} . Furthermore, there is

$$x+y = \{\Lambda_j T_1^* f\}_{j \in \sigma_1} \bigcup \{\Gamma_j T_2^* f\}_{j \in \sigma_2} \in l^2(\{\mathscr{V}_j\}_{j \in J}).$$

Hence for any $f \in R(K)$, we obtain

$$\begin{split} \sum_{j \in \sigma_{1}} \|\Lambda_{j} T_{1}^{*} f\|^{2} + \sum_{j \in \sigma_{2}} \|\Gamma_{j} T_{2}^{*} f\|^{2} \Big)^{1/2} \\ &= \|x + y\| \ge \|x\| - \|y\| \\ &= \left(\sum_{j \in J} \|\Lambda_{j} T_{1}^{*} f\|^{2} \right)^{1/2} \\ &- \left(\sum_{j \in \sigma_{2}} \|\Lambda_{j} (T_{2} - T_{1})^{*} f + (\Gamma_{j} - \Lambda_{j}) T_{2}^{*} f\|^{2} \right)^{1/2} \\ &\ge \sqrt{A_{1}} \|K^{*} T_{1}^{*} f\| - \left(\sum_{j \in \sigma_{2}} \|\Lambda_{j} (T_{2} - T_{1})^{*} f\|^{2} \right)^{1/2} \\ &- \left(\sum_{j \in \sigma_{2}} \|(\Gamma_{j} - \Lambda_{j}) T_{2}^{*} f\|^{2} \right)^{1/2} \\ &\ge \sqrt{A_{1}} \|K^{*} T_{1}^{*} f\| - \left(\sum_{j \in J} \|\Lambda_{j} (T_{2} - T_{1})^{*} f\|^{2} \right)^{1/2} \\ &= \left(\sum_{j \in J} \|(\Gamma_{j} - \Lambda_{j}) T_{2}^{*} f\|^{2} \right)^{1/2} \\ &\ge \sqrt{A_{1}} \|T_{1}^{*} K^{*} f\| - \sqrt{B_{1}} \|(T_{2} - T_{1})^{*} f\| - \gamma \|K^{*} T_{2}^{*} f\| \\ &- \alpha \left(\sum_{j \in J} \|\Lambda_{j} T_{2}^{*} f\|^{2} \right)^{1/2} - \beta \left(\sum_{j \in J} \|\Gamma_{j} T_{2}^{*} f\|^{2} \right)^{1/2} \\ &\ge \sqrt{A_{1}} \|T_{1}^{*} K^{*} f\| - \sqrt{B_{1}} \|T_{2} - T_{1} \|\| f\| - \gamma \|T_{2}^{*} K^{*} f\| \\ &- \alpha \sqrt{B_{1}} \|T_{2}^{*} f\| - \beta \sqrt{B_{2}} \|T_{2}^{*} f\| \\ &= \left(\frac{\sqrt{A_{1}}}{\|T_{1}^{*}\|} - \frac{\gamma}{\|T_{2}^{*}\|}\right) \|K^{*} f\| - \left(\sqrt{B_{1}} \|T_{2} - T_{1} \| \\ &+ \alpha \sqrt{B_{1}} \|T_{2} \| + \beta \sqrt{B_{2}} \|T_{2} \|\right) \|K^{*} \|\| K^{*} f\| \\ &= \left(\frac{\sqrt{A_{1}}}{\|T_{1}^{*}\|} - \frac{\gamma}{\|T_{2}^{*}\|} - \left(\sqrt{B_{1}} \|T_{2} - T_{1} \| \\ &+ \alpha \sqrt{B_{1}} \|T_{2} \| + \beta \sqrt{B_{2}} \|T_{2} \|\right) \|K^{*} \|\| \right) \|K^{*} f\|, \end{split}$$

where the second inequality is obtained by Minkowski's inequality, the sixth inequality by (12), and the seventh inequality by (6). Hence $\{\Lambda_j T_1^* : j \in J\}$ and $\{\Gamma_j T_2^* : j \in J\}$ are *K*-woven in R(K).

If $T_1 = T_2$ in Theorem 2, we can easily have the following corollary.

Corollary 2 Let $K \in L(\mathcal{U})$ be an operator with a closed range. Suppose that $\{\Lambda_j : j \in J\}$ and $\{\Gamma_j :$

 $j \in J$ are K-g-frames for \mathscr{U} with respect to $\{\mathscr{V}_j : j \in J\}$ with the frame bounds A_1 , B_1 and A_2 , B_2 , respectively. Suppose that $T \in L(\mathscr{U})$ is surjective on \mathscr{U} and satisfies TK = KT. If there exist $\alpha, \beta, \gamma \ge 0$ satisfying $\sqrt{A_1} - \gamma > (\alpha \sqrt{B_1} + \beta \sqrt{B_2}) ||T|| ||T^{\dagger}|| ||K^{\dagger}||$ such that, $\forall f \in \mathscr{U}$,

$$\begin{split} \left(\sum_{j\in J} \|(\Gamma_j - \Lambda_j)f\|^2\right)^{1/2} &\leq \alpha \left(\sum_{j\in J} \|\Lambda_j f\|^2\right)^{1/2} \\ &+ \beta \left(\sum_{j\in J} \|\Gamma_j f\|^2\right)^{1/2} + \gamma \|K^* f\|_2 \end{split}$$

then $\{\Lambda_j T^* : j \in J\}$ and $\{\Gamma_j T^* : j \in J\}$ are *K*-woven in R(K) with the universal frame bounds $((\sqrt{A_1} - \gamma)/||T^{\dagger}|| - (\alpha \sqrt{B_1} + \beta \sqrt{B_2})||T||||K^{\dagger}||)^2$ and $(B_1 + B_2)||T||^2$.

If $\alpha = \beta = \gamma = 0$ in Theorem 2, then from (10) we can deduce that $\Lambda_j = \Gamma_j$, $\forall j \in J$, and a result follows from Theorem 2.

Corollary 3 Let $K \in L(\mathcal{U})$ be an operator with a closed range. Suppose that $\{\Lambda_j : j \in J\}$ is a K-g-frame for \mathcal{U} with respect to $\{\mathcal{V}_j : j \in J\}$ with the frame bounds A and B. Suppose that $T_1, T_2 \in L(\mathcal{U})$ are surjective on \mathcal{U} and satisfy $T_iK = KT_i$, i = 1, 2. If $\sqrt{A}/||T_1^{\dagger}|| > \sqrt{B}||T_2 - T_1||||K^{\dagger}||$, then $\{\Lambda_j T_1^* : j \in J\}$ and $\{\Lambda_j T_2^* : j \in J\}$ are K-woven in R(K) with the frame bounds $(\sqrt{A}/||T_1^{\dagger}|| - \sqrt{B}||T_2 - T_1||||K^{\dagger}||)^2$ and $B(||T_1||^2 + ||T_2||^2)$.

In Ref. 12, the authors reported that, in general, applying two different operators to woven frames can give frames that are not woven (see Example 2 in Ref. 12). Corollary 3 also provides us with a sufficient condition for applying different operators (T_1, T_2) to $\{\Lambda_j : j \in J\}$ such that $\{\Lambda_j T_1^* : j \in J\}$ and $\{\Lambda_j T_2^* : j \in J\}$ are woven in \mathscr{U} (here, $K = I_{\mathscr{U}}$ and, clearly, $\{\Lambda_j : j \in J\}$ is woven with itself).

Note also that Corollary 3 is a generalization of Proposition 6.2 in Ref. 12. In fact, let $K = T_1 = I_{\mathcal{U}}$; then $\{\Lambda_j : j \in J\}$ is a g-frame for \mathcal{U} and $\sqrt{A}/||T_1^{\dagger}|| > \sqrt{B}||T_2 - T_1||||K^{\dagger}||$ in Corollary 3 can be rewritten as $||I_{\mathcal{U}} - T_2||^2 < A/B$. Then, from Corollary 3, we can obtain a g-frame version of Proposition 6.2 in Ref. 12.

Corollary 4 Suppose that $\{\Lambda_j : j \in J\}$ is a g-frame for \mathscr{U} with respect to $\{\mathscr{V}_j : j \in J\}$, with the frame bounds A and B. Suppose that T is surjective on \mathscr{U} . If $||I_{\mathscr{U}} - T||^2 < A/B$, then $\{\Lambda_j : j \in J\}$ and $\{\Lambda_j T^* : j \in J\}$ are woven in \mathscr{U} with the frame bounds $(\sqrt{A} - \sqrt{B}||T - I_{\mathscr{U}}||)^2$ and $B(1 + ||T||^2)$. ScienceAsia 45 (2019)

Furthermore, if we let $\Lambda_j f = \langle f, f_i \rangle$, $\mathcal{V}_j = \mathbb{C}$, $j \in J$. Then $\{\Lambda_j : j \in J\}$ is a g-frame for \mathscr{U} with respect to $\{\mathcal{V}_j : j \in J\}$ if and only if $\{f_j\}_{j \in J}$ is a frame for \mathscr{U} . Hence from Corollary 4, we can obtain Proposition 6.2 in Ref. 12.

The next theorem tells us that, under condition (14), $\{\Lambda_j : j \in J\}$ and $\{\Gamma_j : j \in J\}$ are *K*-woven in *R*(*K*), where $\{\Lambda_j : j \in J\}$ and $\{\Gamma_j : j \in J\}$ are assumed to be *K*-g-frames for \mathcal{U} .

Theorem 3 Let $K \in L(\mathcal{U})$ be an operator with a closed range. Suppose that $\{\Lambda_j : j \in J\}$ and $\{\Gamma_j : j \in J\}$ are *K*-g-frames for \mathcal{U} with respect to $\{\mathcal{V}_j : j \in J\}$ with the frame bounds A_1 , B_1 and A_2 , B_2 , respectively. If there exist $\alpha, \beta, \gamma \in [0, \infty)$ satisfying $A_1 > (\sqrt{B_1} + \sqrt{B_2})(\alpha\sqrt{B_1} + \beta\sqrt{B_2} + \gamma) ||K^{\dagger}||^2$ such that, for any $\{g_j\}_{j \in J} \in l^2(\{\mathcal{V}_j\}_{j \in J}),$

$$\left\|\sum_{j\in J} (\Lambda_j^* - \Gamma_j^*) g_j\right\| \leq \alpha \left\|\sum_{j\in J} \Lambda_j^* g_j\right\| + \beta \left\|\sum_{j\in J} \Gamma_j^* g_j\right\| + \gamma \left\|\{g_j\}_{j\in J}\right\|, \quad (14)$$

then $\{\Lambda_j : j \in J\}$ and $\{\Gamma_j : j \in J\}$ are K-woven in R(K) with the universal frame bounds $A_1 - (\sqrt{B_1} + \sqrt{B_2})(\alpha\sqrt{B_1} + \beta\sqrt{B_2} + \gamma) \|K^{\dagger}\|^2$ and $B_1 + B_2$.

To prove Theorem 3, we need to give a lemma as follows.

Lemma 2 Let $\{\Lambda_j : j \in J\}$ and $\{\Gamma_j : j \in J\}$ be K-gframes for \mathscr{U} with respect to $\{\mathscr{V}_j : j \in J\}$, with the Bessel bounds B_1 and B_2 and the synthesis operators T_1 and T_2 , respectively. If there exist α , β , $\gamma > 0$ such that (14) holds, then, for any subset $\sigma \subset J$, we have

$$\left\|\sum_{j\in\sigma}\Lambda_{j}^{*}\Lambda_{j}f - \sum_{j\in\sigma}\Gamma_{j}^{*}\Gamma_{j}f\right\| \leq \left(\sqrt{B_{1}} + \sqrt{B_{2}}\right)\left(\alpha\sqrt{B_{1}} + \beta\sqrt{B_{2}} + \gamma\right)\|f\|.$$
(15)

Proof: For any $\{g_j\}_{j\in J} \in l^2(\{\mathcal{V}_j\}_{j\in J})$, from (14), we obtain

$$\begin{split} \|(T_1 - T_2)(\{g_j\}_{j \in J})\| &= \left\| \sum_{j \in J} (\Lambda_j^* - \Gamma_j^*) g_j \right\| \\ &\leq \alpha \left\| \sum_{j \in J} \Lambda_j^* g_j \right\| + \beta \left\| \sum_{j \in J} \Gamma_j^* g_j \right\| + \gamma \|\{g_j\}_{j \in J}\| \\ &= \alpha \|T_1(\{g_j\}_{j \in J})\| + \beta \|T_2(\{g_j\}_{j \in J})\| + \gamma \|\{g_j\}_{j \in J}\| \\ &\leq \alpha \|T_1\| \|\{g_j\}_{j \in J}\| + \beta \|T_2\| \|\{g_j\}_{j \in J}\| + \gamma \|\{g_j\}_{j \in J}\| \\ &\leq \left(\alpha \sqrt{B_1} + \beta \sqrt{B_2} + \gamma\right) \|\{g_j\}_{j \in J}\|. \end{split}$$

It follows that

$$\|T_1 - T_2\| \leq \alpha \sqrt{B_1} + \beta \sqrt{B_2} + \gamma \tag{16}$$

since $\{g_j\}_{j\in J} \in l^2(\{\mathscr{V}_j\}_{j\in J})$ is arbitrary.

Denote $\Phi_j = \Lambda_j - \Gamma_j$, $j \in J$, and the synthesis operator of $\{\Phi_j\}_{j\in J}$ by T_3 . It is trivial to show that $\{\Phi_j\}_{j\in J}$ is a g-Bessel sequence and $T_3 = T_1 - T_2$. For any $\sigma \subset I$, $f \in \mathcal{H}$, we have

$$\begin{split} \left\| \sum_{j \in \sigma} \Lambda_j^* \Lambda_j f - \sum_{j \in \sigma} \Gamma_j^* \Gamma_j f \right\| \\ &= \left\| \sum_{j \in \sigma} \Lambda_j^* \Lambda_j f - \sum_{j \in \sigma} \Gamma_j^* \Lambda_j f + \sum_{j \in \sigma} \Gamma_j^* \Lambda_j f - \sum_{j \in \sigma} \Gamma_j^* \Gamma_j f \right| \\ &= \left\| \sum_{j \in \sigma} (\Lambda_j - \Gamma_j)^* \Lambda_j f + \sum_{j \in \sigma} \Gamma_j^* (\Lambda_j - \Gamma_j) f \right\| \\ &\leq \left\| \sum_{j \in \sigma} \Phi_j^* \Lambda_j f \right\| + \left\| \sum_{j \in \sigma} \Gamma_j^* \Phi_j f \right\| \\ &\leq \|T_3\| \|T_1\| \|f\| + \|T_2\| \|T_3\| \|f\| \\ &= (\|T_1\| + \|T_2\|) \|T_1 - T_2\| \|f\| \\ &\leq (\sqrt{B_1} + \sqrt{B_2}) \left(\alpha \sqrt{B_1} + \beta \sqrt{B_2} + \gamma \right) \|f\|, \end{split}$$

where the last inequality is obtained by (16). Hence (15) holds. \Box *Proof Theorem 3*: For any $f \in R(K)$ and any partition $\{\sigma_j\}_{j=1}^2$ of *J*, we have

$$\begin{split} &\sum_{j \in \sigma_1} \|\Lambda_j f \|^2 + \sum_{j \in \sigma_2} \|\Gamma_j f \|^2 \\ &= \sum_{j \in J} \|\Lambda_j f \|^2 + \sum_{j \in \sigma_2} \|\Gamma_j f \|^2 - \sum_{j \in \sigma_2} \|\Lambda_j f \|^2 \\ &\ge A_1 \|K^* f \|^2 - \Big\langle \sum_{j \in \sigma_2} \Lambda_j^* \Lambda_j f - \sum_{j \in \sigma_2} \Gamma_j^* \Gamma_j f, f \Big\rangle \\ &\ge A_1 \|K^* f \|^2 - \Big\| \sum_{j \in \sigma_2} \Lambda_j^* \Lambda_j f - \sum_{j \in \sigma_2} \Gamma_j^* \Gamma_j f \Big\| \|f\| \\ &\ge A_1 \|K^* f \|^2 - (\sqrt{B_1} + \sqrt{B_2}) (\alpha \sqrt{B_1} + \beta \sqrt{B_2} + \gamma) \|f\|^2 \\ &\ge \Big[A_1 - (\sqrt{B_1} + \sqrt{B_2}) (\alpha \sqrt{B_1} + \beta \sqrt{B_2} + \gamma) \|K^\dagger\|^2 \Big] \|K^* f \|^2, \end{split}$$

where the third and fourth inequalities are, respectively, deduced by (15) and (6). The upper bound for every weaving is trivial. Hence $\{\Lambda_j : j \in J\}$ and $\{\Gamma_i : j \in J\}$ are *K*-woven in *R*(*K*).

In case $K = I_{\mathcal{U}}$ in Theorem 3, we can easily obtain a result as follows.

Corollary 5 Suppose that $\{\Lambda_j : j \in J\}$ and $\{\Gamma_j : j \in J\}$ are *g*-frames for \mathscr{U} with respect to $\{\mathscr{V}_j : j \in J\}$, with the frame bounds A_1 , B_1 and A_2 , B_2 , respectively. If there exist $\alpha, \beta, \gamma \in [0, \infty)$ satisfying $A_1 > (\sqrt{B_1} + \sqrt{B_2})(\alpha\sqrt{B_1} + \beta\sqrt{B_2} + \gamma)$ such that, for any $\{g_i\}_{i \in J} \in$

$$\begin{split} l^{2}(\{\mathscr{V}_{j}\}_{j\in J}), \\ & \left\|\sum_{j\in J}(\Lambda_{j}^{*}-\Gamma_{j}^{*})g_{j}\right\| \leq \alpha \left\|\sum_{j\in J}\Lambda_{j}^{*}g_{j}\right\| \\ & +\beta \left\|\sum_{j\in J}\Gamma_{j}^{*}g_{j}\right\| +\gamma \|\{g_{j}\}_{j\in J}\|, \end{split}$$

then $\{\Lambda_j : j \in J\}$ and $\{\Gamma_j : j \in J\}$ are woven in \mathscr{U} with the universal frame bounds $A_1 - (\sqrt{B_1} + \sqrt{B_2})(\alpha\sqrt{B_1} + \beta\sqrt{B_2} + \gamma)$ and $B_1 + B_2$.

Furthermore, if $\alpha = \beta = 0$ in Corollary 5, we can obtain a g-frame version of Theorem 6.1 in Ref. 12.

Next we provide the third type of perturbation condition (17) such that, under it, $\{\Lambda_j : j \in J\}$ and $\{\Gamma_i : j \in J\}$ can be *K*-woven in *R*(*K*).

Theorem 4 Let $K \in L(\mathcal{U})$ be an operator with a closed range. Suppose that $\{\Lambda_j : j \in J\}$ and $\{\Gamma_j : j \in J\}$ are K-g-frames for \mathcal{U} with respect to $\{\mathcal{V}_j : j \in J\}$ with the frame bounds A_1 , B_1 and A_2 , B_2 , respectively. If there exist $\alpha, \beta, \gamma \in [0, \infty)$ satisfying $A_1 > (\alpha B_1 + \beta B_2 + \gamma) ||K^{\dagger}||^2$ such that, for any $\{g_j\}_{j \in J} \in l^2(\{\mathcal{V}_j\}_{j \in J})$,

$$\begin{split} \left\| \sum_{j \in \sigma} \Lambda_{j}^{*} \Lambda_{j} f - \sum_{j \in \sigma} \Gamma_{j}^{*} \Gamma_{j} f \right\| &\leq \alpha \left\| \sum_{j \in \sigma} \Lambda_{j}^{*} \Lambda_{j} f \right\| \\ &+ \beta \left\| \sum_{j \in \sigma} \Gamma_{j}^{*} \Gamma_{j} f \right\| + \gamma \|f\|, \quad (17) \end{split}$$

then $\{\Lambda_j : j \in J\}$ and $\{\Gamma_j : j \in J\}$ are K-woven in R(K) with the universal frame bounds $A_1 - (\alpha B_1 + \beta B_2 + \gamma) \|K^{\dagger}\|^2$ and $B_1 + B_2$.

Proof: Since $\{\Lambda_j : j \in J\}$ is a *K*-g-frame for \mathcal{U} with the frame bounds A_1 and B_1 , for any $\sigma \subset J$, we have

$$\begin{split} \left\| \sum_{j \in \sigma} \Lambda_{j}^{*} \Lambda_{j} f \right\| &= \sup_{g \in \mathscr{U}, \|g\|=1} \left| \left\langle \sum_{j \in \sigma} \Lambda_{j}^{*} \Lambda_{j} f, g \right\rangle \right| \\ &= \sup_{g \in \mathscr{U}, \|g\|=1} \left| \sum_{j \in \sigma} \left\langle \Lambda_{j} f, \Lambda_{j} g \right\rangle \right| \\ &\leq \sup_{g \in \mathscr{U}, \|g\|=1} \sum_{j \in \sigma} \left| \left\langle \Lambda_{j} f, \Lambda_{j} g \right\rangle \right| \\ &\leq \sup_{g \in \mathscr{U}, \|g\|=1} \left(\sum_{j \in J} \|\Lambda_{j} f\|^{2} \right)^{1/2} \left(\sum_{j \in J} \|\Lambda_{j} g\|^{2} \right)^{1/2} \\ &\leq \sup_{g \in \mathscr{U}, \|g\|=1} \sqrt{B_{1}} \|f\| \sqrt{B_{1}} \|g\| = B_{1} \|f\|. \quad (18) \end{split}$$

Similarly, we can obtain $\|\sum_{j\in\sigma}\Gamma_j^*\Gamma_j f\| \leq B_2 \|f\|$.

$$\begin{split} \left\| \sum_{j \in \sigma} \Lambda_{j}^{*} \Lambda_{j} f - \sum_{j \in \sigma} \Gamma_{j}^{*} \Gamma_{j} f \right\| \\ &\leq \alpha \left\| \sum_{j \in \sigma} \Lambda_{j}^{*} \Lambda_{j} f \right\| + \beta \left\| \sum_{j \in \sigma} \Gamma_{j}^{*} \Gamma_{j} f \right\| + \gamma \|f\| \\ &\leq (\alpha B_{1} + \beta B_{2} + \gamma) \|f\|. \end{split}$$
(19)

For any $f \in R(K)$, and any partition $\{\sigma_j\}_{j=1}^2$ of *J*, by the same method of Theorem 3, we obtain

$$\begin{split} \sum_{j \in \sigma_1} \|\Lambda_j f\|^2 + \sum_{j \in \sigma_2} \|\Gamma_j f\|^2 \\ & \ge A_1 \|K^* f\|^2 - \Big\| \sum_{j \in \sigma_2} \Lambda_j^* \Lambda_j f - \sum_{j \in \sigma_2} \Gamma_j^* \Gamma_j f \Big\| \|f\| \\ & \ge A_1 \|K^* f\|^2 - (\alpha B_1 + \beta B_2 + \gamma) \|f\|^2 \\ & \ge A_1 \|K^* f\|^2 - (\alpha B_1 + \beta B_2 + \gamma) \|K^\dagger\|^2 \|K^* f\|^2 \\ & = \Big(A_1 - (\alpha B_1 + \beta B_2 + \gamma) \|K^\dagger\|^2 \Big) \|K^* f\|^2, \end{split}$$

where the second inequality is deduced by (19). Hence $\{\Lambda_j : j \in J\}$ and $\{\Gamma_j : j \in J\}$ are *K*-woven in *R*(*K*).

If $K = I_{\mathcal{U}}$, a result follows immediately from Theorem 4.

Corollary 6 Suppose that $\{\Lambda_j : j \in J\}$ and $\{\Gamma_j : j \in J\}$ are g-frames for \mathcal{U} with respect to $\{\mathcal{V}_j : j \in J\}$ with the frame bounds A_1 , B_1 and A_2 , B_2 , respectively. If there exist $\alpha, \beta, \gamma \in [0, \infty)$ satisfying $A_1 > \alpha B_1 + \beta B_2 + \gamma$ such that, for any $\{g_j\}_{j \in J} \in l^2(\{\mathcal{V}_j\}_{j \in J})$,

$$\begin{split} \left\| \sum_{j \in \sigma} \Lambda_j^* \Lambda_j f - \sum_{j \in \sigma} \Gamma_j^* \Gamma_j f \right\| \\ &\leq \alpha \left\| \sum_{j \in \sigma} \Lambda_j^* \Lambda_j f \right\| + \beta \left\| \sum_{j \in \sigma} \Gamma_j^* \Gamma_j f \right\| + \gamma \|f\|_2 \end{split}$$

then $\{\Lambda_j : j \in J\}$ and $\{\Gamma_j : j \in J\}$ are woven in \mathcal{U} with the universal frame bounds $A_1 - (\alpha B_1 + \beta B_2 + \gamma)$ and $B_1 + B_2$.

Acknowledgements: This work is partly supported by the Natural Science Foundation of Fujian Province, China (grant No. 2016J01014), and by the projects of Xiamen University of Technology (grant No. G2017005).

REFERENCES

- 1. Sun W (2006) G-frames and g-Riesz bases. J Math Anal Appl **322**, 437–452.
- Xiao XC, Zhu YC, Shu ZB, Ding ML (2015) G-frames with bounded linear operators. *Rocky Mountain J Math* 45, 675–693.

- Guo XX (2015) New characterizations of g-Bessel sequences and g-Riesz bases in Hilbert spaces. *Results Math* 68, 361–374.
- Khosravi A, Azandaryani MM (2012) Fusion frames and g-frames in tensor product and direct sum of Hilbert spaces. *Appl Anal Discrete Math* 6, 287–303.
- Khosravi A, Azandaryani MM (2013) G-frames and direct sums. Bull Malays Math Sci Soc 36, 313–323.
- 6. Găvruța L (2012) Frames for operators. *Appl Comp Harm Anal* **32**, 139–144.
- 7. Xiang ZQ, Li YM (2016) Frame sequences and dual frames for operators. *ScienceAsia* **42**, 222–230.
- Xiao XC, Zhu YC, Găvruța L (2013) Some properties of *K*-frames in Hilbert spaces. *Results Math* 63, 1243–1255.
- 9. Guo XX (2016) Canonical dual *K*-Bessel sequences and dual *K*-Bessel generators for unitary systems of Hilbert spaces. *J Math Anal Appl* **444**, 598–609.
- Khosravi A, Azandaryani MM (2014) Approximate duality of g-frames in Hilbert spaces. *Acta Math Sci* 34, 639–652.
- 11. Xiao XC, Zhu YC (2017) Exact *K*-g-frames in Hilbert spaces. *Results Math* **72**, 1329–1339.
- 12. Bemrose T, Casazza PG, Grochenig K, Lammers MC,

Lynch RG (2016) Weaving frames. *Oper Matrices* **10**, 1093–1116.

- 13. Casazza PG, Freeman D, Lynch RG (2016) Weaving Schauder frames. *J Approx Theory* **211**, 42–60.
- 14. Casazza PG, Lynch RG (2015) Weaving properties of Hilbert space frames. In: *International Conference on Sampling Theory and Applications*, pp 110–114.
- Deepshikha, Agarwal S, Vashisht LK, Verma G (2017) On weaving fusion frames for Hilbert spaces. In: *International Conference on Sampling Theory and Applications*, pp 381–385.
- Khosravi A, Banyarani JS (2018) Weaving g-frames and weaving fusion frames. *Bull Malays Math Sci Soc*, 1–19.
- Vashisht LK, Agarwal S, Deepshikha (2018) On generalized weaving frames in Hilbert spaces. *Rocky Mountain J Math* 48, 661–685.
- Vashisht LK, Deepshikha (2016) Weaving properties of generalized continuous frames generated by an iterated function system. *J Geom Phys* **110**, 282–295.
- 19. Deepshikha, Vashisht LK (2018) Weaving K-frames in Hilbert spaces. *Results Math* **73**, 81.
- 20. Christensen O (2003) An Introduction to Frames and Riesz Bases, Birkhäuser, Boston.