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ABSTRACT: Given an integer λ /∈ {−2,−1,0, 2}, we investigate the Hyers-Ulam stability of an alternative Jensen’s
functional equation f (x y−1)− 2 f (x) + f (x y) = 0 or f (x y−1)− λ f (x) + f (x y) = 0 where f is a mapping from an
abelian group to a Banach space.
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INTRODUCTION

The problem of the alternative Cauchy functional
equation has been widely studied. For instance,
Kannappan et al1 studied the solutions of the alter-
native Cauchy functional equation of the form

�

f (x + y)− a f (x)− b f (y)
�

�

f (x + y)− f (x)− f (y)
�

= 0, (1)

where f is a function from an abelian group to a
commutative integral domain of characteristic zero.
Ger2 extended their results to the alternative func-
tional equation

�

f (x + y)− a f (x)− b f (y)
�

�

f (x + y)− c f (x)−d f (y)
�

= 0.

Forti3 found the general solution of the alternative
Cauchy functional equation of the form

�

c f (x + y)− a f (x)− b f (y)− d
�

�

f (x + y)− f (x)− f (y)
�

= 0.

Nakmahachalasint4 first solved an alternative
Jensen’s functional equation of the form

f (x)±2 f (x y)+ f (x y2) = 0 (2)

on a semigroup. His research extended the work
of Ng5 and Parnami et al6 on the classical Jensen’s
functional equation

f (x y−1)−2 f (x)+ f (x y) = 0 (3)

on a group. Nakmahachalasint7 then investigated
the Hyers-Ulam stability of the alternative Jensen’s
functional equation (2) in the class of mappings
from 2-divisible abelian groups to Banach spaces.

Given an integer λ 6= 2, Srisawat et al8 solved
the alternative Jensen’s functional equation of the
form

f (x y−1)−2 f (x)+ f (x y) = 0 or

f (x y−1)−λ f (x)+ f (x y) = 0
(4)

when f is a function from a group to a uniquely di-
visible abelian group, but a stability problem has not
yet been investigated. In this paper, we will prove
the Hyers-Ulam stability of the alternative Jensen’s
functional equation (4) when λ /∈ {−2,−1, 0,2} is
an integer and f is a mapping from an abelian group
(G, ·) to a Banach space (E,‖·‖). In other words, for
every ε¾ 0, we prove that there exist δ1,δ2 ¾ 0 such
that if, for an integer λ /∈ {−2,−1,0, 2}, a mapping
f : G→ E satisfies the inequalities

‖ f (x y−1)−2 f (x)+ f (x y)‖¶ δ1 or

‖ f (x y−1)−λ f (x)+ f (x y)‖¶ δ2

(5)

for every x , y ∈ G, then there exists a unique
Jensen’s mapping J : G→ E with ‖ f (x)− J(x)‖¶ ε
for all x ∈ G.

AUXILIARY LEMMAS

Throughout this study, we let (G, ·) be a group and
(E,‖·‖) be a Banach space. Given an integer λ, and
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a function f : G→ E. For x , y ∈ G, we define

F (λ)y (x) := ‖ f (x y−1)−λ f (x)+ f (x y)‖.

Furthermore, for δ1,δ2 ¾ 0 and λ /∈ {−2,−1, 0,2},
we let

S f (λ)y (x) :=
�

F (2)y (x)¶ δ1 or F (λ)y (x)¶ δ2

�

,

δ :=max{δ1,δ2}, and

M λ
δ :=

�

29+42|λ|+38λ2+20|λ3|+4λ4
�

δ.

The set of all solution of (5) is denoted by

A (λ)
(G,E) :=

¦

f : G→ E
�

�S f (λ)y (x), ∀x , y ∈ G
©

.

We first prove the bound of f (x) concerning
the relation between S f (λ)y (x y−1), S f (λ)y (x), and

S f (λ)y (x y).

Lemma 1 Let f ∈A (λ)
(G,E) and x , y ∈ G.

(i) If F (2)y (x y−1) ¶ δ1, F (λ)y (x) ¶ δ2, and

F (2)y (x y)¶ δ1, then ‖ f (x)‖¶ 5δ.

(ii) If F (λ)y (x y−1) ¶ δ2, F (λ)y (x) ¶ δ2, and

F (λ)y (x y)¶ δ2, then ‖ f (x)‖¶ (3+ |λ|)δ.

Proof :
(i) We observe that

‖ f (x y−2)+2(1−λ) f (x)+ f (x y2)‖

¶F (2)y (x y−1)+2F (λ)y (x)+F
(2)
y (x y)

¶ 4δ. (6)

Consider the alternatives in S f (λ)y2 (x). The

inequality F (2)y2 (x) ¶ δ1 and (6) give ‖(4 −

2λ) f (x)‖¶ 5δ, while the inequality F (λ)y2 (x)¶
δ2 and (6) give ‖(2 − λ) f (x)‖ ¶ 5δ. Hence
‖ f (x)‖¶ 5δ.

(ii) We observe that

‖ f (x y−2)+ (2−λ2) f (x)+ f (x y2)‖

¶F (λ)y (x y−1)+λF (λ)y (x)+F
(λ)
y (x y)

¶ (2+ |λ|)δ. (7)

Consider the alternatives in S f (λ)y2 (x). The

inequality F (2)y2 (x) ¶ δ1 and (7) give ‖(4 −
λ2) f (x)‖ ¶ (3 + |λ|)δ, while the inequality
F (λ)y2 (x)¶ δ2 and (7) give ‖(2+λ−λ2) f (x)‖¶
(3+ |λ|)δ. Hence ‖ f (x)‖¶ (3+ |λ|)δ.

2

Lemma 2 Let f ∈ A (λ)
(G,E) and x , y ∈ G. If

F (2)y (x y−1) ¶ δ1, F (λ)y (x) ¶ δ2, and F (λ)y (x y) ¶
δ2, then ‖ f (x)‖¶

�

14+14|λ|+12λ2+4|λ|3
�

δ.

Proof : By F (2)y (x y−1) ¶ δ1 and F (λ)y (x) ¶ δ2, we
obtain

‖ f (x y−2)+ (1−2λ) f (x)+2 f (x y)‖¶ 3δ. (8)

Next, we consider two possible cases in S f (λ)y2 (x):

Case (i): Assume that F (2)y2 (x) ¶ δ1. Using

F (λ)y (x y)¶ δ2, F (2)y2 (x)¶ δ1, and (8) we obtain

‖2 f (x)+ f (x y)‖¶ 5δ (9)

and

‖(2λ+1) f (x)+ f (x y2)‖¶ (2+4|λ|)δ. (10)

Eliminating f (x y) from (9) and the alternatives in
S f (λ)y (x y2), we have

‖2 f (x)+2 f (x y2)− f (x y3)‖¶ 6δ or

‖2 f (x)+λ f (x y2)− f (x y3)‖¶ 6δ.
(11)

By (10) and (11), we obtain

‖4λ f (x)+ f (x y3)‖¶ (10+8|λ|)δ or

‖(2λ2 +λ−2) f (x)+ f (x y3)‖¶ (6+2|λ|+4λ2)δ.
(12)

Consider the alternatives in S f (λ)y2 (x y).

(i) If F (2)y2 (x y) ¶ δ1, then we use F (2)y2 (x y) ¶ δ1

and F (λ)y (x)¶ δ2 to obtain

‖λ f (x)−3 f (x y)+ f (x y3)‖¶ 2δ. (13)

By (12) and (13), we obtain

‖3λ f (x)+3 f (x y)‖¶ (12+8|λ|)δ or

‖(2λ2 −2) f (x)+3 f (x y)‖¶ (8+2|λ|+4λ2)δ.
(14)

Eliminating f (x y) from (9) and (14), we have
‖ f (x)‖¶ (12+ |λ|+2λ2)δ.
(ii) If F (λ)y2 (x y) ¶ δ2, then we use F (λ)y2 (x y) ¶ δ2

and F (λ)y (x)¶ δ2 to obtain

‖λ f (x)− (λ+1) f (x y)+ f (x y3)‖¶ 2δ. (15)

By (12) and (15), we obtain

‖3λ f (x)+ (λ+1) f (x y)‖¶ (12+8|λ|)δ or

‖(2λ2 −2) f (x)+ (λ+1) f (x y)‖¶ (8+2|λ|+4λ2)δ.
(16)
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Eliminating f (x y) from (9) and (16), we obtain
‖ f (x)‖¶ (17+11|λ|+2λ2)δ.

Case (ii). Assume that F (λ)y2 (x) ¶ δ2. Using

F (λ)y (x y)¶ δ2, F (λ)y2 (x)¶ δ2, and (8) we obtain

‖ f (x)+ f (x y)‖¶ 5δ (17)

and

‖(λ+1) f (x)+ f (x y2)‖¶ (2+4|λ|)δ. (18)

Eliminating f (x y2) from (18) and the alternatives
in S f (λ)y2 (x y2), we obtain

‖(2λ+3) f (x)+ f (x y4)‖¶ (5+8|λ|)δ or

‖(λ2 +λ+1) f (x)+ f (x y4)‖¶ (1+2|λ|+4λ2)δ.
(19)

By (17) and the alternatives inS f (λ)y (x y2), we have

‖ f (x)+2 f (x y2)− f (x y3)‖¶ 6δ or

‖ f (x)+λ f (x y2)− f (x y3)‖¶ 6δ.
(20)

Consider the alternatives in S f (λ)y (x y3) as follows.

(i) If F (2)y (x y3) ¶ δ1, then we eliminate f (x y3)
from (20) and F (2)y (x y3)¶ δ1 to obtain

‖2 f (x)+3 f (x y2)− f (x y4)‖¶ 13δ or

‖2 f (x)+ (2λ−1) f (x y2)− f (x y4)‖¶ 13δ.
(21)

Using (18) and (21), we obtain

‖(3λ+1) f (x)+ f (x y4)‖¶ (19+12|λ|)δ or

‖(2λ2 +λ−3) f (x)+ f (x y4)‖¶ (15+8|λ|+8λ2)δ.
(22)

By (19) and (22), we conclude that

‖ f (x)‖¶ (24+12|λ|+12λ2)δ.

(ii) If F (λ)y (x y3) ¶ δ2, then we eliminate f (x y3)
from (20) and F (λ)y (x y3)¶ δ2 to obtain

‖λ f (x)+ (2λ−1) f (x y2)− f (x y4)‖¶ (1+6|λ|)δ or

‖λ f (x)+ (λ2 −1) f (x y2)− f (x y4)‖¶ (1+6|λ|)δ.
(23)

Using (18) and (23), we obtain

‖(2λ2 −1) f (x)+ f (x y4)‖¶ (3+14|λ|+8λ2)δ or

‖(λ3 +λ2 −2λ−1) f (x)+ f (x y4)‖
¶ (3+10|λ|+2λ2 +4|λ3|)δ.

(24)

By (19) and (24), we conclude that

‖ f (x)‖¶ (8+14|λ|+12λ2+4|λ3|)δ4.

The desired bound of f (x) follows from the consid-
eration of all cases. 2

The following lemma is crucial for the main
theorem in the next section.

Lemma 3 If f ∈ A (λ)
(G,E), then F (2)y (x) ¶M

λ
δ

for all
x , y ∈ G.

Proof : Let f ∈ A (λ)
(G,E) and x , y ∈ G. Suppose

F (2)y (x) > δ1. From the alternatives in S f (λ)y (x),
we obtain F (λ)y (x) ¶ δ2. The alternatives in

S f (λ)y (x y−1) will be considered as follows.

Case (i). Assume that F (2)y (x y−1) ¶ δ1. By
Lemma 1 and Lemma 2, we conclude that

‖ f (x)‖¶ (14+14|λ|+12λ2+4|λ3|)δ. (25)

Using F (λ)y (x)¶ δ2 and (3), we obtain

‖ f (x y−1)+ f (x y)‖

¶ (1+14|λ|+14λ2+12|λ3|+4λ4)δ. (26)

Hence, by (25) and (26), we haveF (2)y (x)¶M
λ
δ

as
desired.

Case (ii). Assume that F (λ)y (x y−1) ¶ δ2. Con-

sider the alternatives in S f (λ)y (x y). If F (λ)y (x y) ¶
δ2, then Lemma 1 gives ‖ f (x)‖ ¶ (3+ |λ|)δ. Thus
the desired proof is similar to the above case. If
F (2)y (x y) ¶ δ1, then the proof is as in case (i) after
replacing y by y−1 and x by x y−1. 2

HYERS-ULAM STABILITY

It should be remarked that Srisawat et al8 proved
that when λ /∈ {−2,−1,0}, the alternative Jensen’s
functional equation (4) is equivalent to Jensen’s
functional equation (3). On the other hand, when
λ ∈ {−2,−1, 0}, (4) is not necessarily equivalent
to (3). In this section, we will prove the Hyers-
Ulam stability of the alternative Jensen’s functional
equation (4) when λ /∈ {−2,−1,0, 2} is an integer
by the so-called direct method. The stability results
of Jensen’s functional equation can be found in, for
instance, Kominek9 or Jung10.

Theorem 1 Let G̃ be an abelian group. If f ∈A (λ)
(G̃,E)

,

then there exists a unique Jensen’s mapping J : G̃→ E
satisfying (3) with J(0) = f (0) such that ‖ f (x) −
J(x)‖ ¶ 2M λ

δ
for all x ∈ G̃. Furthermore, the

mapping J is given by

J(x) = f (0)+ lim
n→∞

1
2n ( f (x2n

)− f (0))

for all x ∈ G̃.

Proof : Assume that f ∈ A (λ)
(G̃,E)

. By Lemma 3, we

obtain F (1)y (x)¶M
λ
δ

for all x , y ∈ G̃, i.e.,

‖ f (x y−1)−2 f (x)+ f (x y)‖¶M λ
δ .
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We define a function f̃ : G̃ → E by f̃ (x) = f (x)−
f (0). It can be observed that f̃ (0) = 0. Then for
each x , y ∈ G̃, we have





1
2

�

f̃ (x y)+ f̃ (x y−1)
�

− f̃ (x)


¶ 1
2M

λ
δ . (27)

Putting y = x , we obtain




1
2 f̃ (x2)− f̃ (x)



¶ 1
2M

λ
δ . (28)

For each positive integer n and each x ∈ G̃, we apply
(28) to obtain





1
2n f̃ (x2n

)− f̃ (x)


=









n
∑

i=1

�

f̃ (x2i
)

2i
−

f̃ (x2i−1
)

2i−1

�







¶
�

1− 1
2n

�

M λ
δ . (29)

Consider the sequence {2−n f (x2n
)}. For all positive

integers m, n and every x ∈ G̃, we use (29) to obtain








f̃ (x2n+m
)

2n+m
−

f̃ (x2n
)

2n









= 1
2n









f̃ (x2n·2m
)

2m
− f̃ (x2n

)









¶ 1
2n

�

1− 1
2m

�

M λ
δ .

Hence {2−n f (x2n
)} is a Cauchy sequence. We can

define a function J̃ : G̃→ E by

J̃(x) = lim
n→∞

f̃ (x2n
)

2n
.

Replacing x by x2n
and y by y2n

in (27), we obtain




1
2

�

f̃ (x2n
y2n
)+ f̃ (x2n

y−2n
)
�

− f̃ (x2n
)


¶ 1
2M

λ
δ

. (30)

Next, multiplying (30) by 2−n and taking n→∞,
we obtain

J̃(x y)+ J̃(x y−1)−2J̃(x) = 0.

From (29), as n→∞, we have

‖ f̃ (x)− J̃(x)‖¶M λ
δ

for all x ∈ G. To show the uniqueness of J̃ , let
J : G̃→ E satisfy J (0) = 0 and ‖ f̃ (x)−J (x)‖ ¶

M λ
δ

for all x ∈ G̃. For every positive integer n, we
obtain

J̃(x2n
) = 2n J̃(x), J (x2n

) = 2nJ (x).

Hence

‖J (x)− J̃(x)‖

=




1
2n

�

J̃(x2n
)− f̃ (x2n

)
�

− 1
2n

�

f̃ (x2n
)−J (x2n

)
�



¶ 1
2n



 f̃ (x2n
)− J̃(x2n

)


+ 1
2n



 f̃ (x2n
)−J (x2n

)




¶ 2
2nM λ

δ . (31)

As n →∞ in (31), we have J (x) = J̃(x) for all
x ∈ G̃. By defining a function J : G̃ → E by J(x) =
J̃(x)+ f (0) for all x ∈ G̃, the proof is complete. 2
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