Hyers-Ulam stability of an alternative functional equation of Jensen type

Choodech Srisawat

Department of Mathematics, Faculty of Science, Udon Thani Rajabhat University, Udon Thani 41000 Thailand

e-mail: ch.srisawat@gmail.com

Received 6 Jul 2018 Accepted 30 Jun 2019

ABSTRACT: Given an integer $\lambda \notin \{-2, -1, 0, 2\}$, we investigate the Hyers-Ulam stability of an alternative Jensen's functional equation $f(xy^{-1}) - 2f(x) + f(xy) = 0$ or $f(xy^{-1}) - \lambda f(x) + f(xy) = 0$ where *f* is a mapping from an abelian group to a Banach space.

KEYWORDS: stability, alternative equation, Jensen's functional equation

MSC2010: 39B82 39B72

INTRODUCTION

The problem of the alternative Cauchy functional equation has been widely studied. For instance, Kannappan et al^1 studied the solutions of the alternative Cauchy functional equation of the form

$$\begin{pmatrix} f(x+y) - af(x) - bf(y) \\ (f(x+y) - f(x) - f(y)) = 0, & (1) \end{cases}$$

where f is a function from an abelian group to a commutative integral domain of characteristic zero. Ger² extended their results to the alternative functional equation

$$\begin{pmatrix} f(x+y) - af(x) - bf(y) \\ (f(x+y) - cf(x) - df(y)) = 0. \end{cases}$$

Forti³ found the general solution of the alternative Cauchy functional equation of the form

$$\begin{pmatrix} cf(x+y)-af(x)-bf(y)-d \\ (f(x+y)-f(x)-f(y)) = 0. \end{cases}$$

Nakmahachalasint⁴ first solved an alternative Jensen's functional equation of the form

$$f(x) \pm 2f(xy) + f(xy^2) = 0$$
 (2)

on a semigroup. His research extended the work of ${\rm Ng}^5$ and Parnami et al⁶ on the classical Jensen's functional equation

$$f(xy^{-1}) - 2f(x) + f(xy) = 0$$
(3)

on a group. Nakmahachalasint⁷ then investigated the Hyers-Ulam stability of the alternative Jensen's functional equation (2) in the class of mappings from 2-divisible abelian groups to Banach spaces.

Given an integer $\lambda \neq 2$, Srisawat et al⁸ solved the alternative Jensen's functional equation of the form

$$f(xy^{-1}) - 2f(x) + f(xy) = 0 \quad \text{or} f(xy^{-1}) - \lambda f(x) + f(xy) = 0$$
(4)

when *f* is a function from a group to a uniquely divisible abelian group, but a stability problem has not yet been investigated. In this paper, we will prove the Hyers-Ulam stability of the alternative Jensen's functional equation (4) when $\lambda \notin \{-2, -1, 0, 2\}$ is an integer and *f* is a mapping from an abelian group (G, \cdot) to a Banach space $(E, \|\cdot\|)$. In other words, for every $\varepsilon \ge 0$, we prove that there exist $\delta_1, \delta_2 \ge 0$ such that if, for an integer $\lambda \notin \{-2, -1, 0, 2\}$, a mapping $f : G \rightarrow E$ satisfies the inequalities

$$\|f(xy^{-1}) - 2f(x) + f(xy)\| \leq \delta_1 \quad \text{or}$$

$$\|f(xy^{-1}) - \lambda f(x) + f(xy)\| \leq \delta_2$$
(5)

for every $x, y \in G$, then there exists a unique Jensen's mapping $J : G \to E$ with $||f(x)-J(x)|| \le \varepsilon$ for all $x \in G$.

AUXILIARY LEMMAS

Throughout this study, we let (G, \cdot) be a group and $(E, \|\cdot\|)$ be a Banach space. Given an integer λ , and

a function $f : G \rightarrow E$. For $x, y \in G$, we define

$$\mathscr{F}_{y}^{(\lambda)}(x) := \|f(xy^{-1}) - \lambda f(x) + f(xy)\|.$$

Furthermore, for $\delta_1, \delta_2 \ge 0$ and $\lambda \notin \{-2, -1, 0, 2\}$, we let

$$\begin{aligned} \mathscr{S}f_{y}^{(\lambda)}(x) &:= \big(\mathscr{F}_{y}^{(2)}(x) \leq \delta_{1} \quad \text{or} \quad \mathscr{F}_{y}^{(\lambda)}(x) \leq \delta_{2}\big), \\ \delta &:= \max\{\delta_{1}, \delta_{2}\}, \quad \text{and} \end{aligned}$$

$$\mathscr{M}^{\lambda}_{\delta} := \left(29 + 42|\lambda| + 38\lambda^2 + 20|\lambda^3| + 4\lambda^4\right)\delta.$$

The set of all solution of (5) is denoted by

$$\mathscr{A}_{(G,E)}^{(\lambda)} := \left\{ f: G \to E \mid \mathscr{S}f_{y}^{(\lambda)}(x), \; \forall x, y \in G \right\}.$$

We first prove the bound of f(x) concerning the relation between $\mathscr{S}f_{v}^{(\lambda)}(xy^{-1}), \, \mathscr{S}f_{v}^{(\lambda)}(x)$, and $\mathscr{S}f_{v}^{(\lambda)}(xy).$

Lemma 1 Let $f \in \mathscr{A}_{(G,E)}^{(\lambda)}$ and $x, y \in G$. (i) If $\mathscr{F}_{y}^{(2)}(xy^{-1}) \leq \delta_{1}$, $\mathscr{F}_{y}^{(\lambda)}(x) \leq \delta_{2}$, and $\mathscr{F}_{y}^{(2)}(xy) \leq \delta_{1}$, then $||f(x)|| \leq 5\delta$. (ii) If $\mathscr{F}_{y}^{(\lambda)}(xy^{-1}) \leq \delta_{2}$, $\mathscr{F}_{y}^{(\lambda)}(x) \leq \delta_{2}$, and $\mathscr{F}_{y}^{(\lambda)}(xy) \leq \delta_{2}$, then $||f(x)|| \leq (3+|\lambda|)\delta$.

Proof:

(i) We observe that

$$\|f(xy^{-2}) + 2(1-\lambda)f(x) + f(xy^{2})\|$$

$$\leq \mathscr{F}_{y}^{(2)}(xy^{-1}) + 2\mathscr{F}_{y}^{(\lambda)}(x) + \mathscr{F}_{y}^{(2)}(xy)$$

$$\leq 4\delta.$$
(6)

Consider the alternatives in $\mathscr{S}f_{y^2}^{(\lambda)}(x)$. The inequality $\mathscr{F}_{v^2}^{(2)}(x) \leq \delta_1$ and (6) give ||(4 - 1)||($2\lambda f(x) \| \leq 5\delta$, while the inequality $\mathscr{F}_{y^2}^{(\lambda)}(x) \leq \delta_2$ and (6) give $\|(2-\lambda)f(x)\| \leq 5\delta$. Hence $\|f(x)\| \leq 5\delta.$

(ii) We observe that

$$\begin{aligned} \|f(xy^{-2}) + (2-\lambda^2)f(x) + f(xy^2)\| \\ &\leq \mathscr{F}_{y}^{(\lambda)}(xy^{-1}) + \lambda \mathscr{F}_{y}^{(\lambda)}(x) + \mathscr{F}_{y}^{(\lambda)}(xy) \\ &\leq (2+|\lambda|)\delta. \end{aligned}$$
(7)

Consider the alternatives in $\mathscr{S}f_{y^2}^{(\lambda)}(x)$. The inequality $\mathscr{F}_{v^2}^{(2)}(x) \leq \delta_1$ and (7) give $||(4 - 1)|| \leq \delta_1$ $\lambda^{2} f(x) \| \leq (3 + |\lambda|)\delta$, while the inequality $\mathscr{F}_{y^2}^{(\lambda)}(x) \leq \delta_2$ and (7) give $\|(2+\lambda-\lambda^2)f(x)\| \leq \delta_2$ $(3 + |\lambda|)\delta$. Hence $||f(x)|| \le (3 + |\lambda|)\delta$.

Lemma 2 Let $f \in \mathscr{A}_{(G,E)}^{(\lambda)}$ and $x, y \in G$. If $\mathscr{F}_{y}^{(2)}(xy^{-1}) \leq \delta_{1}, \ \mathscr{F}_{y}^{(\lambda)}(x) \leq \delta_{2}, \ and \ \mathscr{F}_{y}^{(\lambda)}(xy) \leq \delta_{2}$ δ_2 , then $||f(x)|| \le (14 + 14|\lambda| + 12\lambda^2 + 4|\lambda|^3) \delta$.

Proof: By $\mathscr{F}_{\gamma}^{(2)}(xy^{-1}) \leq \delta_1$ and $\mathscr{F}_{\gamma}^{(\lambda)}(x) \leq \delta_2$, we obtain

$$\|f(xy^{-2}) + (1-2\lambda)f(x) + 2f(xy)\| \le 3\delta.$$
 (8)

Next, we consider two possible cases in $\mathscr{S}f_{v^2}^{(\lambda)}(x)$: Case (i): Assume that $\mathscr{F}_{y^2}^{(2)}(x) \leq \delta_1$. Using $\mathscr{F}_{v}^{(\lambda)}(xy) \leq \delta_{2}, \mathscr{F}_{v^{2}}^{(2)}(x) \leq \delta_{1}, \text{ and } (8) \text{ we obtain}$

$$\|2f(x) + f(xy)\| \le 5\delta \tag{9}$$

and

$$\|(2\lambda+1)f(x) + f(xy^2)\| \le (2+4|\lambda|)\delta.$$
 (10)

Eliminating f(xy) from (9) and the alternatives in $\mathscr{S}f_{y}^{(\lambda)}(xy^{2})$, we have

$$||2f(x) + 2f(xy^{2}) - f(xy^{3})|| \le 6\delta \quad \text{or} ||2f(x) + \lambda f(xy^{2}) - f(xy^{3})|| \le 6\delta.$$
(11)

By (10) and (11), we obtain

$$\|4\lambda f(x) + f(xy^3)\| \leq (10+8|\lambda|)\delta \quad \text{or}$$

$$\|(2\lambda^2 + \lambda - 2)f(x) + f(xy^3)\| \leq (6+2|\lambda| + 4\lambda^2)\delta.$$
 (12)

Consider the alternatives in $\mathscr{S}f_{y^2}^{(\lambda)}(xy)$. (i) If $\mathscr{F}_{y^2}^{(2)}(xy) \leq \delta_1$, then we use $\mathscr{F}_{y^2}^{(2)}(xy) \leq \delta_1$ and $\mathscr{F}_{y}^{(\lambda)}(x) \leq \delta_{2}$ to obtain

$$\|\lambda f(x) - 3f(xy) + f(xy^3)\| \le 2\delta.$$
(13)

By (12) and (13), we obtain

$$\|3\lambda f(x) + 3f(xy)\| \leq (12+8|\lambda|)\delta \quad \text{or}$$

$$\|(2\lambda^2 - 2)f(x) + 3f(xy)\| \leq (8+2|\lambda| + 4\lambda^2)\delta.$$
(14)

Eliminating f(xy) from (9) and (14), we have $||f(x)|| \leq (12+|\lambda|+2\lambda^2)\delta.$ (ii) If $\mathscr{F}_{y^2}^{(\lambda)}(xy) \leq \delta_2$, then we use $\mathscr{F}_{y^2}^{(\lambda)}(xy) \leq \delta_2$ and $\mathscr{F}_{y}^{(\lambda)}(x) \leq \delta_2$ to obtain

$$\|\lambda f(x) - (\lambda + 1)f(xy) + f(xy^3)\| \le 2\delta.$$
 (15)

By (12) and (15), we obtain

$$\|3\lambda f(x) + (\lambda+1)f(xy)\| \leq (12+8|\lambda|)\delta \quad \text{or} \\ \|(2\lambda^2 - 2)f(x) + (\lambda+1)f(xy)\| \leq (8+2|\lambda| + 4\lambda^2)\delta.$$
(16)

ScienceAsia 45 (2019)

Eliminating f(xy) from (9) and (16), we obtain $||f(x)|| \leq (17+11|\lambda|+2\lambda^2)\delta$.

Case (ii). Assume that $\mathscr{F}_{y^2}^{(\lambda)}(x) \leq \delta_2$. Using $\mathscr{F}_{y}^{(\lambda)}(xy) \leq \delta_2$, $\mathscr{F}_{y^2}^{(\lambda)}(x) \leq \delta_2$, and (8) we obtain

$$\|f(x) + f(xy)\| \le 5\delta \tag{17}$$

and

$$\|(\lambda+1)f(x) + f(xy^2)\| \le (2+4|\lambda|)\delta.$$
(18)

Eliminating $f(xy^2)$ from (18) and the alternatives in $\mathscr{S}f_{y^2}^{(\lambda)}(xy^2)$, we obtain

$$\|(2\lambda+3)f(x)+f(xy^4)\| \leq (5+8|\lambda|)\delta \quad \text{or} \\ \|(\lambda^2+\lambda+1)f(x)+f(xy^4)\| \leq (1+2|\lambda|+4\lambda^2)\delta.$$
(19)

By (17) and the alternatives in $\mathscr{S}f_{y}^{(\lambda)}(xy^{2})$, we have

$$\|f(x) + 2f(xy^{2}) - f(xy^{3})\| \le 6\delta \quad \text{or} \\ \|f(x) + \lambda f(xy^{2}) - f(xy^{3})\| \le 6\delta.$$
(20)

Consider the alternatives in $\mathscr{S}f_y^{(\lambda)}(xy^3)$ as follows. (i) If $\mathscr{F}_y^{(2)}(xy^3) \leq \delta_1$, then we eliminate $f(xy^3)$ from (20) and $\mathscr{F}_y^{(2)}(xy^3) \leq \delta_1$ to obtain

$$||2f(x) + 3f(xy^2) - f(xy^4)|| \le 13\delta \quad \text{or} ||2f(x) + (2\lambda - 1)f(xy^2) - f(xy^4)|| \le 13\delta.$$
(21)

Using (18) and (21), we obtain

 $\|(3\lambda+1)f(x) + f(xy^4)\| \le (19+12|\lambda|)\delta \quad \text{or} \\ \|(2\lambda^2+\lambda-3)f(x) + f(xy^4)\| \le (15+8|\lambda|+8\lambda^2)\delta.$ (22)

By (19) and (22), we conclude that

 $||f(x)|| \leq (24+12|\lambda|+12\lambda^2)\delta.$

(ii) If $\mathscr{F}_{y}^{(\lambda)}(xy^{3}) \leq \delta_{2}$, then we eliminate $f(xy^{3})$ from (20) and $\mathscr{F}_{y}^{(\lambda)}(xy^{3}) \leq \delta_{2}$ to obtain

$$\|\lambda f(x) + (2\lambda - 1)f(xy^2) - f(xy^4)\| \le (1 + 6|\lambda|)\delta \text{ or} \\ \|\lambda f(x) + (\lambda^2 - 1)f(xy^2) - f(xy^4)\| \le (1 + 6|\lambda|)\delta.$$
(23)

Using (18) and (23), we obtain

$$\begin{aligned} \|(2\lambda^{2}-1)f(x)+f(xy^{4})\| &\leq (3+14|\lambda|+8\lambda^{2})\delta \quad \text{or} \\ \|(\lambda^{3}+\lambda^{2}-2\lambda-1)f(x)+f(xy^{4})\| & (24) \\ &\leq (3+10|\lambda|+2\lambda^{2}+4|\lambda^{3}|)\delta. \end{aligned}$$

By (19) and (24), we conclude that

$$||f(x)|| \le (8+14|\lambda|+12\lambda^2+4|\lambda^3|)\delta 4$$

The desired bound of f(x) follows from the consideration of all cases. \Box

The following lemma is crucial for the main theorem in the next section.

Lemma 3 If $f \in \mathscr{A}_{(G,E)}^{(\lambda)}$, then $\mathscr{F}_{y}^{(2)}(x) \leq \mathscr{M}_{\delta}^{\lambda}$ for all $x, y \in G$.

Proof: Let $f \in \mathscr{A}_{(G,E)}^{(\lambda)}$ and $x, y \in G$. Suppose $\mathscr{F}_{y}^{(2)}(x) > \delta_{1}$. From the alternatives in $\mathscr{S}f_{y}^{(\lambda)}(x)$, we obtain $\mathscr{F}_{y}^{(\lambda)}(x) \leq \delta_{2}$. The alternatives in $\mathscr{S}f_{y}^{(\lambda)}(xy^{-1})$ will be considered as follows.

Case (i). Assume that $\mathscr{F}_{y}^{(2)}(xy^{-1}) \leq \delta_{1}$. By Lemma 1 and Lemma 2, we conclude that

$$||f(x)|| \le (14 + 14|\lambda| + 12\lambda^2 + 4|\lambda^3|)\delta.$$
 (25)

Using $\mathscr{F}_{v}^{(\lambda)}(x) \leq \delta_{2}$ and (3), we obtain

$$\|f(xy^{-1}) + f(xy)\| \le (1+14|\lambda| + 14\lambda^2 + 12|\lambda^3| + 4\lambda^4)\delta. \quad (26)$$

Hence, by (25) and (26), we have $\mathscr{F}_{y}^{(2)}(x) \leq \mathscr{M}_{\delta}^{\lambda}$ as desired.

Case (ii). Assume that $\mathscr{F}_{y}^{(\lambda)}(xy^{-1}) \leq \delta_{2}$. Consider the alternatives in $\mathscr{F}_{y}^{(\lambda)}(xy)$. If $\mathscr{F}_{y}^{(\lambda)}(xy) \leq \delta_{2}$, then Lemma 1 gives $||f(x)|| \leq (3 + |\lambda|)\delta$. Thus the desired proof is similar to the above case. If $\mathscr{F}_{y}^{(2)}(xy) \leq \delta_{1}$, then the proof is as in case (i) after replacing *y* by y^{-1} and *x* by xy^{-1} .

HYERS-ULAM STABILITY

It should be remarked that Srisawat et al⁸ proved that when $\lambda \notin \{-2, -1, 0\}$, the alternative Jensen's functional equation (4) is equivalent to Jensen's functional equation (3). On the other hand, when $\lambda \in \{-2, -1, 0\}$, (4) is not necessarily equivalent to (3). In this section, we will prove the Hyers-Ulam stability of the alternative Jensen's functional equation (4) when $\lambda \notin \{-2, -1, 0, 2\}$ is an integer by the so-called *direct* method. The stability results of Jensen's functional equation can be found in, for instance, Kominek⁹ or Jung¹⁰.

Theorem 1 Let \tilde{G} be an abelian group. If $f \in \mathscr{A}_{(\tilde{G},E)}^{(\lambda)}$ then there exists a unique Jensen's mapping $J : \tilde{G} \to E$ satisfying (3) with J(0) = f(0) such that $||f(x) - J(x)|| \leq 2\mathcal{M}_{\delta}^{\lambda}$ for all $x \in \tilde{G}$. Furthermore, the mapping J is given by

$$J(x) = f(0) + \lim_{n \to \infty} \frac{1}{2^n} (f(x^{2^n}) - f(0))$$

for all $x \in \tilde{G}$.

Proof: Assume that $f \in \mathscr{A}_{(\tilde{G},E)}^{(\lambda)}$. By Lemma 3, we obtain $\mathscr{F}_{v}^{(1)}(x) \leq \mathscr{M}_{\delta}^{\lambda}$ for all $x, y \in \tilde{G}$, i.e.,

$$\|f(xy^{-1}) - 2f(x) + f(xy)\| \leq \mathcal{M}_{\delta}^{\lambda}.$$

We define a function $\tilde{f} : \tilde{G} \to E$ by $\tilde{f}(x) = f(x) - f(0)$. It can be observed that $\tilde{f}(0) = 0$. Then for each $x, y \in \tilde{G}$, we have

$$\left\| \frac{1}{2} \left(\tilde{f}(xy) + \tilde{f}(xy^{-1}) \right) - \tilde{f}(x) \right\| \leq \frac{1}{2} \mathcal{M}_{\delta}^{\lambda}.$$
 (27)

Putting y = x, we obtain

$$\left\| \frac{1}{2}\tilde{f}(x^2) - \tilde{f}(x) \right\| \leq \frac{1}{2}\mathcal{M}_{\delta}^{\lambda}.$$
 (28)

For each positive integer *n* and each $x \in \tilde{G}$, we apply (28) to obtain

$$\begin{aligned} \left\| \frac{1}{2^{n}} \tilde{f}(x^{2^{n}}) - \tilde{f}(x) \right\| &= \left\| \sum_{i=1}^{n} \left(\frac{\tilde{f}(x^{2^{i}})}{2^{i}} - \frac{\tilde{f}(x^{2^{i-1}})}{2^{i-1}} \right) \right\| \\ &\leq \left(1 - \frac{1}{2^{n}} \right) \mathcal{M}_{\delta}^{\lambda}. \end{aligned}$$
(29)

Consider the sequence $\{2^{-n}f(x^{2^n})\}$. For all positive integers m, n and every $x \in \tilde{G}$, we use (29) to obtain

$$\left\|\frac{\tilde{f}(x^{2^{n+m}})}{2^{n+m}} - \frac{\tilde{f}(x^{2^{n}})}{2^{n}}\right\| = \frac{1}{2^{n}} \left\|\frac{\tilde{f}(x^{2^{n} \cdot 2^{m}})}{2^{m}} - \tilde{f}(x^{2^{n}})\right\|$$
$$\leq \frac{1}{2^{n}} \left(1 - \frac{1}{2^{m}}\right) \mathcal{M}_{\delta}^{\lambda}.$$

Hence $\{2^{-n}f(x^{2^n})\}$ is a Cauchy sequence. We can define a function $\tilde{J}: \tilde{G} \to E$ by

$$\tilde{J}(x) = \lim_{n \to \infty} \frac{\tilde{f}(x^{2^n})}{2^n}.$$

Replacing x by x^{2^n} and y by y^{2^n} in (27), we obtain

$$\left\| \frac{1}{2} \left(\tilde{f}(x^{2^n} y^{2^n}) + \tilde{f}(x^{2^n} y^{-2^n}) \right) - \tilde{f}(x^{2^n}) \right\| \leq \frac{1}{2} \mathcal{M}_{\delta}^{\lambda}.$$
(30)

Next, multiplying (30) by 2^{-n} and taking $n \to \infty$, we obtain

$$\tilde{J}(xy) + \tilde{J}(xy^{-1}) - 2\tilde{J}(x) = 0.$$

From (29), as $n \to \infty$, we have

$$\|\tilde{f}(x) - \tilde{J}(x)\| \leq \mathcal{M}_{\delta}^{\lambda}$$

for all $x \in G$. To show the uniqueness of \tilde{J} , let $\mathscr{J}: \tilde{G} \to E$ satisfy $\mathscr{J}(0) = 0$ and $\|\tilde{f}(x) - \mathscr{J}(x)\| \leq \varepsilon$

 $\mathscr{M}^{\lambda}_{\delta}$ for all $x \in \tilde{G}$. For every positive integer *n*, we obtain

$$\tilde{J}(x^{2^n}) = 2^n \tilde{J}(x), \quad \mathscr{J}(x^{2^n}) = 2^n \mathscr{J}(x).$$

Hence

$$\begin{split} \|\mathscr{J}(\mathbf{x}) - J(\mathbf{x})\| \\ &= \left\| \frac{1}{2^{n}} \left(\tilde{J}(\mathbf{x}^{2^{n}}) - \tilde{f}(\mathbf{x}^{2^{n}}) \right) - \frac{1}{2^{n}} \left(\tilde{f}(\mathbf{x}^{2^{n}}) - \mathscr{J}(\mathbf{x}^{2^{n}}) \right) \right\| \\ &\leq \frac{1}{2^{n}} \left\| \tilde{f}(\mathbf{x}^{2^{n}}) - \tilde{J}(\mathbf{x}^{2^{n}}) \right\| + \frac{1}{2^{n}} \left\| \tilde{f}(\mathbf{x}^{2^{n}}) - \mathscr{J}(\mathbf{x}^{2^{n}}) \right\| \\ &\leq \frac{2}{2^{n}} \mathscr{M}_{\delta}^{\lambda}. \end{split}$$
(31)

As $n \to \infty$ in (31), we have $\mathscr{J}(x) = \tilde{J}(x)$ for all $x \in \tilde{G}$. By defining a function $J : \tilde{G} \to E$ by $J(x) = \tilde{J}(x) + f(0)$ for all $x \in \tilde{G}$, the proof is complete. \Box

REFERENCES

- 1. Kannappan PL, Kuczma M (1974) On a functional equation related to the Cauchy equation. *Ann Polon Math* **30**, 49–55.
- 2. Ger R (1977) On an alternative functional equation. *Aequationes Mathematicae* **15**, 145–162.
- 3. Forti GL (1979) La soluzione generale dell'equazione funzionale $\{cf(x + y) af(x) bf(y) d\}\{f(x + y) f(x) f(y)\} = 0$. *Matematiche (Catania)* 34, 219–242.
- Nakmahachalasint P (2012) An alternative Jensen's functional equation on semigroups. *ScienceAsia* 38, 408–413.
- 5. Ng CT (1990) Jensen's functional equation on groups. *Aequationes Mathematicae* **39**, 85–99.
- Parnami JC, Vasudeva HL (1992) On Jensen's functional equation. *Aequationes Mathematicae* 43, 211–218.
- Nakmahachalasint P (2013) Stability of an alternative Jensen's functional equation. *ScienceAsia* 39, 643–648.
- Srisawat C, Kitisin N, Nakmahachalasint P (2015) On an alternative functional equation of Jensen type on groups. *ScienceAsia* 41, 280–288.
- Kominek Z (1989) On a local stability of the Jensen functional equation. *Demonstratio Math* 22, 499–507.
- Jung SM (1998) Hyers-Ulam-Rassias stability of Jensen's equation and its application. *Proc Am Math Soc* 126, 3137–3143.