Concavity and convexity of several maps involving Tracy-Singh products, Khatri-Rao products, and operator-monotone functions of positive operators

Arnon Ploymukda, Pattrawut Chansangiam*

Department of Mathematics, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520 Thailand

*Corresponding author, e-mail: pattrawut.ch@kmitl.ac.th

Received 12 Nov 2018 Accepted 27 Mar 2019

ABSTRACT: We establish concavity and convexity theorems for a number of operator-valued maps involving Tracy-Singh products and Khatri-Rao products of positive operators on a Hilbert space. Operator means serve as useful tools for some convexity results. We also investigate certain maps dealing with positive operator-monotone functions. In this case, the concavity and the convexity of such maps are examined through suitable integral representations of the operator-monotone functions on the unit interval with respect to finite Borel measures.

KEYWORDS: positive operator, Tracy-Singh product, Khatri-Rao product, operator-monotone function, Bochner integration

MSC2010: 46G10 47A05 47A63 47A64 47A80

INTRODUCTION

This paper focuses on concavity and convexity of certain maps dealing with Tracy-Singh products and Khatri-Rao products of operators. Such operator products are generalizations of famous matrix products in the literature, namely, the Kronecker product, the Hadamard product, the Tracy-Singh product, and the Khatri-Rao product.

Recall that the Kronecker product is defined for two matrices $A = [a_{ij}]$ and B of arbitrary sizes resulting in a block matrix

$$A * B = [a_{ij}B]_{ij}.$$

The Hadamard product is defined for two matrices A and B of the same size

$$A \circ B = [a_{ij}b_{ij}].$$

Concavity and convexity properties of several matrix-valued maps involving Kronecker products and Hadamard products were collected in Refs. 1–3. As a generalization of the Kronecker product, the Tracy-Singh product⁴ is defined for partitioned matrices $A = [A_{ij}]$ and $B = [B_{kl}]$ by

$$A \otimes B = [[A_{ij} * B_{kl}]_{kl}]_{ij}.$$

The work of Al-Zhour⁵ extends some results of Ando¹ to Tracy-Singh products of positive definite

matrices. The Khatri-Rao product ⁶, as a generalized Hadamard product, for $A = [A_{ij}]$ and $B = [B_{ij}]$ in the same block-matrix form, is defined by

$$A \odot B = [A_{ij} * B_{ij}]_{ij}.$$

In functional analysis aspect, the tensor product of Hilbert space operators can be viewed as an infinite-dimensional extension of the Kronecker product. Mond and Pečarić⁷ extended the matrix results of Ando¹ to Hilbert space operators and obtained concavity/convexity theorems associated with positive operator-monotone functions. Ref. 8 extended the notion of tensor product for operators and Tracy-Singh product for matrices to the Tracy-Singh product for Hilbert space operators, and supply its algebraic and order properties. Analytic properties of the Tracy-Singh product were discussed in Ref. 9. Ref. 10 introduced the Khatri-Rao product of Hilbert space operators and gave a relationship between the Khatri-Rao product and the Tracy-Singh product of two operators via isometric selection operators.

In this study, we investigate concavity and convexity of certain maps related to Tracy-Singh products and Khatri-Rao products of oprators. The main tools we use are operator means and suitable integral representations of certain operator-monotone functions. Our results in this paper generalize the results known so far for Tracy-Singh and Khatri-Rao products of matrices and tensor products of operators. Furthermore, we develop new concavity/convexity theorems.

PRELIMINARIES ON TRACY-SINGH AND KHATRI-RAO PRODUCTS

Throughout this paper, let \mathscr{H} , \mathscr{H}' , \mathscr{K} and \mathscr{K}' be complex Hilbert spaces. When \mathscr{X} and \mathscr{Y} are Hilbert spaces, the symbol $\mathbb{B}(\mathscr{X}, \mathscr{Y})$ stands for the algebra of bounded linear operators from \mathscr{X} into \mathscr{Y} , and when $\mathscr{X} = \mathscr{Y}$, we write $\mathbb{B}(\mathscr{X})$ instead of $\mathbb{B}(\mathscr{X}, \mathscr{X})$. The cone of positive operators on \mathscr{H} is denoted by $\mathbb{B}(\mathscr{H})^+$. For self-adjoint operators A and B on the same space, the situation $A \ge B$ means that A - Bis positive. Denote the set of all positive invertible operators on \mathscr{H} by $\mathbb{B}(\mathscr{H})^{++}$. If $A \in \mathbb{B}(\mathscr{H})^{++}$, we write A > 0. The identity operator and the zero operator are denoted by I and 0, respectively.

To define the Tracy-Singh product and the Khatri-Rao product for operators, we decompose

$$\begin{split} \mathcal{H} &= \bigoplus_{j=1}^{n} \mathcal{H}_{j}, \quad \mathcal{H}' = \bigoplus_{i=1}^{m} \mathcal{H}'_{i}, \\ \mathcal{K} &= \bigoplus_{l=1}^{q} \mathcal{K}_{l}, \quad \mathcal{H}' = \bigoplus_{k=1}^{p} \mathcal{H}'_{k}, \end{split}$$

where all $\mathcal{H}_j, \mathcal{H}'_i, \mathcal{H}_l$ and \mathcal{H}'_k are Hilbert spaces. For each j, let $U_j: \mathcal{H}_j \to \mathcal{H}$ be the canonical embedding

$$(0,\ldots,0,x_j,0,\ldots,0)\mapsto x_j$$

Similarly, for each l, let $V_l : \mathcal{K}_l \to \mathcal{K}$ be the canonical embedding. For each i and k, let $P_i : \mathcal{H}' \to \mathcal{H}'_i$ and $Q_k : \mathcal{H}' \to \mathcal{H}'_k$ be the orthogonal projections. Each $A \in \mathbb{B}(\mathcal{H}, \mathcal{H}')$ and $B \in \mathbb{B}(\mathcal{K}, \mathcal{H}')$ can be expressed uniquely as operator matrices

$$A = [A_{ij}]_{i,i=1}^{m,n}, \quad B = [B_{kl}]_{k,l=1}^{p,q}$$

where $A_{ij} = P_i A U_j \in \mathbb{B}(\mathcal{H}_j, \mathcal{H}'_i)$ and $B_{kl} = Q_k B V_l \in \mathbb{B}(\mathcal{H}_l, \mathcal{H}'_k)$ for each i, j, k, l.

Definition 1 Let $A = [A_{ij}]_{i,j=1}^{m,n} \in \mathbb{B}(\mathcal{H}, \mathcal{H}')$ and $B = [B_{kl}]_{k,l=1}^{p,q} \in \mathbb{B}(\mathcal{H}, \mathcal{H}')$. We define the *Tracy-Singh product* of *A* and *B* to be the bounded linear operator

$$A \boxtimes B = [[A_{ij} \otimes B_{kl}]_{kl}]_{ij},$$
$$A \boxtimes B : \bigoplus_{j=1}^{n} \bigoplus_{l=1}^{q} \mathscr{H}_{j} \otimes \mathscr{H}_{l} \to \bigoplus_{i=1}^{m} \bigoplus_{k=1}^{p} \mathscr{H}'_{i} \otimes \mathscr{H}'_{k}$$

When m = p and n = q, we define the *Khatri-Rao* product of *A* and *B* to be the bounded linear operator

$$A \boxdot B = [A_{ij} \otimes B_{ij}]_{ij} : \bigoplus_{i=1}^n \mathscr{H}_i \otimes \mathscr{H}_i \to \bigoplus_{j=1}^m \mathscr{H}_j' \otimes \mathscr{H}_j'.$$

Lemma 1 (Refs. 8,9) Let A, B, C, D be compatible operators. Then

- (i) The map $(A,B) \mapsto A \boxtimes B$ is bilinear and jointly continuous.
- (ii) $(A \boxtimes B)(C \boxtimes D) = (AC) \boxtimes (BD).$
- (iii) If A and B are invertible, then $(A \boxtimes B)^{-1} = A^{-1} \boxtimes B^{-1}$.
- (iv) If A and B are positive, then $(A \boxtimes B)^{\alpha} = A^{\alpha} \boxtimes B^{\alpha}$ for any $\alpha > 0$.
- (v) If $A \ge C \ge 0$ and $B \ge D \ge 0$, then $A \boxtimes B \ge C \boxtimes D \ge 0$.
- (vi) If A > 0 and B > 0, then $A \boxtimes B > 0$.

Lemma 2 (Ref. 9) Let $A \in \mathbb{B}(\mathcal{H})$.

- (i) If f is an analytic function on a region containing the spectra of A and I⊠A, then f (I⊠A) = I⊠f (A).
- (ii) If f is an analytic function on a region containing the spectra of A and $A \boxtimes I$, then $f(A \boxtimes I) = f(A) \boxtimes I$.

Lemma 3 (Ref. 10) Let $A \in \mathbb{B}(\mathcal{H})$ and $B \in \mathbb{B}(\mathcal{H})$. If $A \ge 0$ and $B \ge 0$, then $A \boxdot B \ge 0$.

Lemma 4 (Ref. 10) There are isometries Z_1 and Z_2 such that

$$A \boxdot B = Z_1^* (A \boxtimes B) Z_2 \tag{1}$$

for all $A \in \mathbb{B}(\mathcal{H}, \mathcal{H}')$ and $B \in \mathbb{B}(\mathcal{H}, \mathcal{H}')$. For the case $\mathcal{H} = \mathcal{H}'$ and $\mathcal{H} = \mathcal{H}'$, we have $Z_1 = Z_2 := Z$.

Lemma 5 The Khatri-Rao product of operators is jointly continuous.

Proof: It follows from (1) and the continuity of the Tracy-Singh product (Lemma 1). \Box

For each i = 1, ..., k, let \mathcal{H}_i and \mathcal{H}'_i be Hilbert spaces and decompose

$$\mathscr{H}_i = igoplus_{r=1}^{n_i} \mathscr{H}_{i,r}, \quad \mathscr{H}'_i = igoplus_{s=1}^{m_i} \mathscr{H}'_{i,s},$$

where all $\mathscr{H}_{i,r}$ and $\mathscr{H}'_{i,s}$ are Hilbert spaces. For a finite number of operator matrices $A_i \in \mathbb{B}(\mathscr{H}_i, \mathscr{H}'_i)$ for i = 1, ..., k, we use the following notations,

$$\bigotimes_{i=1}^{k} A_{i} = ((A_{1} \boxtimes A_{2}) \boxtimes \cdots \boxtimes A_{k-1}) \boxtimes A_{k},$$
$$\bigwedge_{i=1}^{k} A_{i} = ((A_{1} \boxtimes A_{2}) \boxtimes \cdots \boxtimes A_{k-1}) \boxtimes A_{k}.$$

Lemma 6 There are isometries Z_1 and Z_2

$$\underbrace{\bullet}_{i=1}^{k} A_i = Z_1^* \bigg(\bigotimes_{i=1}^{k} A_i \bigg) Z_2$$
(2)

for any $A_i \in \mathbb{B}(\mathcal{H}_i, \mathcal{H}'_i)$, i = 1, ..., k. If \mathcal{H}_i and \mathcal{H}'_i are the same space for all i, the $Z_1 = Z_2 := Z$.

Proof: We proceed by induction on k. If k = 2, the property (2) is true by Lemma 4. Suppose that there exist isometries R_1 and R_2 such that

$$\sum_{i=1}^{k-1} A_i = R_1^* \left(\sum_{i=1}^{k-1} A_i \right) R_2.$$

By Lemma 4, there are isometries S_1 , S_2 such that

$$\left(\bigcup_{i=1}^{k-1} A_i\right) \boxdot A_k = S_1^* [(\bigcup_{i=1}^{k-1} A_i) \boxtimes A_k] S_2.$$

Then

$$\begin{split} \stackrel{k}{\underbrace{\bullet}}_{i=1}^{k} A_{i} &= \left(\underbrace{\stackrel{k-1}{\bullet}}_{i=1}^{k} A_{i} \right) \boxdot A_{k} \\ &= S_{1}^{*} [(\underbrace{\stackrel{k-1}{\bullet}}_{i=1}^{k} A_{i}) \boxtimes A_{k}] S_{2} \\ &= S_{1}^{*} [R_{1}^{*} (\bigotimes _{i=1}^{k-1} A_{i}) R_{2} \boxtimes A_{k}] S_{2} \\ &= S_{1}^{*} (R_{1}^{*} \boxtimes I) \Big[\left(\bigotimes _{i=1}^{k-1} A_{i} \right) \boxtimes A_{k} \Big] (R_{2} \boxtimes I) S_{2} \\ &= [(R_{1} \boxtimes I) S_{1}]^{*} \left(\bigotimes _{i=1}^{k} A_{i} \right) (R_{2} \boxtimes I) S_{2}. \end{split}$$

Set $Z_1 = (R_1 \boxtimes I)S_1$ and $Z_2 = (R_2 \boxtimes I)S_2$. Then Z_1 and Z_2 are isometries. When $\mathcal{H}_i = \mathcal{H}'_i$ for all i = 1, ..., k, we have $Z_1 = Z_2$ from the construction. \Box

CONCAVITY AND CONVEXITY

In this section, we provide concavity and convexity theorems related to Tracy-Singh products of operators. First of all, recall the following terminologies.

Definition 2 A function $f : (0, \infty) \rightarrow (0, \infty)$ is said to be operator-monotone if $f[A] \ge f[B]$ whenever $A \ge B > 0$. Here, f[A] is the (continuous) functional calculus of f defined on the spectrum of A.

Definition 3 Let $\mathscr{H}_1, \ldots, \mathscr{H}_k, \mathscr{K}$ be Hilbert spaces. For each $i = 1, \ldots, k$, let E_i be a convex subset of $\mathbb{B}(\mathscr{H}_i)$. A function $\phi : E_1 \times \cdots \times E_k \to \mathbb{B}(\mathscr{K})$ is said to be concave if

$$\phi((1-t)A_1 + tB_1, \dots, (1-t)A_k + tB_k) \\ \leq (1-t)\phi(A_1, \dots, A_k) + t\phi(B_1, \dots, B_k)$$

for any $A_i, B_i \in E_i$ (i = 1, ..., k) and $t \in (0, 1)$. A function ϕ is convex if $-\phi$ is concave. A map between two convex sets is said to be affine if it preserves convex combinations.

Recall that, for each $t \in (0, 1)$, the *t*-weighted harmonic mean and the *t*-weighted geometric mean of $A, B \in \mathbb{B}(\mathcal{H})^{++}$ is defined respectively by

$$A !_t B = [(1-t)A^{-1} + tB^{-1}]^{-1},$$

$$A \#_t B = A^{1/2} (A^{-1/2} B A^{-1/2})^t A^{1/2}.$$

For arbitrary $A, B \in \mathbb{B}(\mathcal{H})^+$, we define the *t*-weighted geometric mean of *A* and *B* to be

$$A\#_t B = \lim_{\varepsilon \to 0^+} (A + \varepsilon I) \#_t (B + \varepsilon I),$$

where the limit is taken in the strong-operator topology.

Lemma 7 (Ref. 11) For each $t \in [0,1]$, the map $(A,B) \mapsto A!_t B$ is concave on $\mathbb{B}(\mathcal{H})^{++} \times \mathbb{B}(\mathcal{H})^{++}$.

The next lemma gives an integral representation of operator-monotone functions on $(0, \infty)$ in terms of Borel measures on [0, 1].

Lemma 8 (Ref. 12) Let $f : (0, \infty) \rightarrow (0, \infty)$ be an operator-monotone function. Then there is a finite Borel measure μ on [0, 1] such that

$$f(x) = \int_0^1 1!_t x \, \mathrm{d}\mu(t), \quad x > 0. \tag{3}$$

Theorem 1 Let $f : (0, \infty) \to (0, \infty)$ be an operatormonotone function. If $\phi_1 : \mathbb{B}(\mathscr{H})^{++} \to \mathbb{B}(\mathscr{H}')^{++}$ and $\phi_2 : \mathbb{B}(\mathscr{H})^{++} \to \mathbb{B}(\mathscr{H}')^{++}$ are concave maps, then the maps

$$(A,B) \mapsto f[\phi_1(A) \boxtimes \phi_2(B)^{-1}] \cdot (I \boxtimes \phi_2(B)), \quad (4)$$

$$(A,B) \mapsto f[\phi_1(A)^{-1} \boxtimes \phi_2(B)] \cdot (\phi_1(A) \boxtimes I)$$
(5)

are concave on $\mathbb{B}(\mathscr{H})^{++} \times \mathbb{B}(\mathscr{H})^{++}$.

Proof: Let $A \in \mathbb{B}(\mathscr{H})^{++}$ and $B \in \mathbb{B}(\mathscr{H})^{++}$. Then $\phi_1(A) > 0$ and $\phi_2(B) > 0$. Lemma 1 implies that $f[\phi_1(A) \boxtimes \phi_2(B)^{-1}]$ and $f[\phi_1(A)^{-1} \boxtimes \phi_2(B)]$ are well-defined operators. By Lemma 8, there is a finite Borel measure μ on [0, 1] such that (3) holds. Using Bochner integration, we have

$$f[\phi_1(A) \boxtimes \phi_2(B)^{-1}] \cdot (I \boxtimes \phi_2(B))$$

=
$$\int_0^1 \{ (I \boxtimes I) !_t(\phi_1(A) \boxtimes \phi_2(B)^{-1}) \} (I \boxtimes \phi_2(B)) d\mu(t) \}$$

196

For each $t \in [0, 1]$, by Lemma 1 we obtain

$$\begin{aligned} \{(I \boxtimes I) !_t(\phi_1(A) \boxtimes \phi_2(B)^{-1})\} \cdot (I \boxtimes \phi_2(B)) \\ &= \left[(1-t)(I \boxtimes I) + t(\phi_1(A) \boxtimes \phi_2(B)^{-1})^{-1} \right]^{-1} \\ \cdot (I \boxtimes \phi_2(B)) \\ &= \left[(I \boxtimes \phi_2(B)^{-1}) \\ \cdot \left\{ (1-t)I \boxtimes I + t\phi_1(A)^{-1} \boxtimes \phi_2(B) \right\} \right]^{-1} \\ &= \left[(1-t)(I \boxtimes \phi_2(B))^{-1} + t(\phi_1(A) \boxtimes I)^{-1} \right]^{-1} \\ &= (I \boxtimes \phi_2(B)) !_t(\phi_1(A) \boxtimes I). \end{aligned}$$

Since the weighted harmonic mean is concave (Lemma 7), so is the map

$$(A,B) \mapsto \{(I \boxtimes I) !_t (\phi_1(A) \boxtimes \phi_2(B)^{-1})\} \cdot (I \boxtimes \phi_2(B))\}$$

Thus the map (4) is concave. Similarly, the map (5) is concave. $\hfill \Box$

Remark 1 Since $\phi_1(A) \boxtimes \phi_2(B)^{-1}$ commutes with $I \boxtimes \phi_2(B)$, we have

$$f[\phi_1(A) \boxtimes \phi_2(B)^{-1}] \cdot (I \boxtimes \phi_2(B))$$

= $(I \boxtimes \phi_2(B)) \cdot f[\phi_1(A) \boxtimes \phi_2(B)^{-1}].$

Similarly,

$$f[\phi_1(A)^{-1} \boxtimes \phi_2(A)] \cdot (\phi_1(A) \boxtimes I)$$

= $(\phi_1(A) \boxtimes I) \cdot f[\phi_1(A)^{-1} \boxtimes \phi_2(B)].$

Example 1 Recall that the function $t \mapsto t^p$ is operator-monotone for any $0 \le p \le 1$. Given two concave maps $\phi_1 : \mathbb{B}(\mathscr{H})^{++} \to \mathbb{B}(\mathscr{H}')^{++}$ and $\phi_2 : \mathbb{B}(\mathscr{H})^{++} \to \mathbb{B}(\mathscr{H}')^{++}$, by Theorem 1 the maps

$$(A,B) \mapsto [\phi_1(A) \boxtimes \phi_2(B)^{-1}]^p \cdot (I \boxtimes \phi_2(B)), (A,B) \mapsto [\phi_1(A)^{-1} \boxtimes \phi_2(B)]^p \cdot (\phi_1(A) \boxtimes I)$$

are concave on $\mathbb{B}(\mathscr{H})^{++} \times \mathbb{B}(\mathscr{H})^{++}$.

Corollary 1 Let $f : (0, \infty) \to (0, \infty)$ be operatormonotone. If $\phi_1 : \mathbb{B}(\mathscr{H})^{++} \to \mathbb{B}(\mathscr{H}')^{++}$ and $\phi_2 : \mathbb{B}(\mathscr{K})^{++} \to \mathbb{B}(\mathscr{H}')^{++}$ are concave maps, then the maps

$$(A,B) \mapsto f[\phi_1(A)^{-1} \boxtimes \phi_2(B)] \cdot (I \boxtimes \phi_2(B)^{-1}), \quad (6)$$

$$(A,B) \mapsto f[\phi_1(A) \boxtimes \phi_2(B)^{-1}] \cdot (\phi_1(A)^{-1} \boxtimes I)$$
(7)

are convex on $\mathbb{B}(\mathscr{H})^{++} \times \mathbb{B}(\mathscr{H})^{++}$.

Proof: Note that the function $g(x) := f(x^{-1})^{-1}$ is operator-monotone. By Lemma 1, we have

$$f[\phi_1(A)^{-1} \boxtimes \phi_2(B)](I \boxtimes \phi_2(B)^{-1})$$

= g[\phi_1(A)^{-1} \Boxtimes \phi_2(B)]^{-1}(I \Boxtimes \phi_2(B)^{-1}).

Theorem 1 implies the concavity of the map

$$\begin{aligned} (A,B) &\mapsto g[\phi_1(A) \boxtimes \phi_2(B)^{-1}] \cdot (I \boxtimes \phi_2(B)) \\ &= \{ (I \boxtimes \phi_2(B)^{-1}) \cdot f[\phi_1(A)^{-1} \boxtimes \phi_2(B)] \}^{-1} \\ &= \{ f[\phi_1(A)^{-1} \boxtimes \phi_2(B)] \cdot (I \boxtimes \phi_2(B)^{-1}) \}^{-1}. \end{aligned}$$

Thus the map (6) is convex. Similarly, the map (7) is convex. $\hfill \Box$

Theorem 2 Let $f : (0, \infty) \to (0, \infty)$ be an operatormonotone function. If $\phi_1 : \mathbb{B}(\mathscr{H})^{++} \to \mathbb{B}(\mathscr{H}')^{++}$ is a concave map and $\phi_2 : \mathbb{B}(\mathscr{K})^{++} \to \mathbb{B}(\mathscr{H}')^{++}$ is an affine map, then the maps

$$(A,B) \mapsto f[\phi_1(A)^{-1} \boxtimes \phi_2(B)] \cdot (I \boxtimes \phi_2(B)), \quad (8)$$

$$(A,B) \mapsto f[\phi_2(B) \boxtimes \phi_1(A)^{-1}] \cdot (\phi_2(B) \boxtimes I)$$
(9)

are convex on $\mathbb{B}(\mathscr{H})^{++} \times \mathbb{B}(\mathscr{H})^{++}$.

Proof: By Lemma 8, there is a finite Borel measure μ on [0, 1] such that (3) holds. Then

$$f[\phi_1(A)^{-1} \boxtimes \phi_2(B)] \cdot (I \boxtimes \phi_2(B))$$

=
$$\int_0^1 \{ (I \boxtimes I) !_t(\phi_1(A)^{-1} \boxtimes \phi_2(B)) \} (I \boxtimes \phi_2(B)) d\mu(t).$$

For each $t \in [0, 1]$, it follows from Lemma 1 that

$$\{ (I \boxtimes I) !_t (\phi_1(A)^{-1} \boxtimes \phi_2(B)) \}$$

= $[(1-t)(I \boxtimes I) + t(\phi_1(A)^{-1} \boxtimes \phi_2(B))^{-1}]^{-1}$
= $[(1-t)(I \boxtimes I) + t(\phi_1(A) \boxtimes \phi_2(B)^{-1})]^{-1}$
= $(I \boxtimes \phi_2(B))[(1-t)(I \boxtimes \phi_2(B)) + t(\phi_1(A) \boxtimes I)]^{-1}$

The concavity of the map $(A, B) \mapsto (1-t)(I \boxtimes \phi_2(B)) + t(\phi_1(A) \boxtimes I)$ and the affinity of the map $(A, B) \mapsto I \boxtimes \phi_2(B)$ together yield the convexity of the map

$$\begin{aligned} (A,B) &\mapsto \\ (I \boxtimes \phi_2(B)) \{ (1-t) I \boxtimes \phi_2(B) + t \phi_1(A) \boxtimes I \}^{-1} (I \boxtimes \phi_2(B)) \\ &= \{ (I \boxtimes I) !_t (\phi_1(A)^{-1} \boxtimes \phi_2(B)) \} (I \boxtimes \phi_2(B)). \end{aligned}$$

Hence the map (8) is convex. Similarly, the map (9) is convex. $\hfill \Box$

Corollary 2 The maps

$$(A,B) \mapsto I \boxtimes (B \log[B]) - \log[A] \boxtimes B, \qquad (10)$$

$$(A,B) \mapsto (A\log[A]) \boxtimes I - A \boxtimes \log[B]$$
(11)

are convex on $\mathbb{B}(\mathcal{H})^{++} \times \mathbb{B}(\mathcal{H})^{++}$.

Proof: Using Lemmas 1 and 2, we obtain

$$I \boxtimes (B \log[B]) - \log[A] \boxtimes B$$

= { $I \boxtimes \log[B] - \log[A] \boxtimes I$ } · ($I \boxtimes B$)
= { $\log[I \boxtimes B] - \log[A \boxtimes I]$ } · ($I \boxtimes B$)
= $\log[(I \boxtimes B)(A \boxtimes I)^{-1}]$ · ($I \boxtimes B$)
= ($I \boxtimes B$) · $\log[A^{-1} \boxtimes B]$.

Since $\log x$ is operator-monotone, by Theorem 2 we obtain that the map

$$(A,B) \mapsto \log[A^{-1} \boxtimes B] \cdot (I \boxtimes B)$$

is convex. Hence the map (10) is convex. Similarly, the map (11) is convex. \Box

Example 2 Let $\phi_1 : \mathbb{B}(\mathscr{H})^{++} \to \mathbb{B}(\mathscr{H}')^{++}$ be a concave map and $\phi_2 : \mathbb{B}(\mathscr{H})^{++} \to \mathbb{B}(\mathscr{H}')^{++}$ an affine map. For any $0 \le p \le 1$, we have by Theorem 2 that the maps

$$(A,B) \mapsto [\phi_1(A)^{-1} \boxtimes \phi_2(B)]^p \cdot (I \boxtimes \phi_2(B)),$$

$$(A,B) \mapsto [\phi_2(B) \boxtimes \phi_1(A)^{-1}]^p \cdot (\phi_2(B) \boxtimes I)$$

are convex on $\mathbb{B}(\mathscr{H})^{++} \times \mathbb{B}(\mathscr{H})^{++}$.

We mention that the maps (5), (7), (9) and (11) are extensions of results discussed in Ref. 7.

CONCAVITY THEOREMS FOR TRACY-SINGH AND KHATRI-RAO PRODUCTS

In this section, we present concavity theorems for Tracy-Singh products of operators. Concavity theorems for Khatri-Rao products of operators are established by using the concavity theorems for Tracy-Singh products and the connection between the Khatri-Rao and Tracy-Singh products.

The next result generalizes Corollary 6.2 of Ref. 1 to the case of Tracy-Singh product of operators.

Theorem 3 Let $0 \le p_i \le 1$, i = 1, ..., k, be such that $\sum_{i=1}^{k} p_i \le 1$. Then the map

$$(A_1, \dots, A_k) \mapsto \bigotimes_{i=1}^k A_i^{p_i} \tag{12}$$

is concave on $\mathbb{B}(\mathscr{H}_1)^{++} \times \cdots \times \mathbb{B}(\mathscr{H}_k)^{++}$.

Proof: We proceed by induction on k. Clearly, the map $A_1 \mapsto A_1^{p_1}$ is concave. Suppose the assertion is generally true for the case k-1. If $p_k = 0$, then the map becomes

$$(A_1,\ldots,A_k)\mapsto ((A_1\boxtimes A_2)\boxtimes\cdots\boxtimes A_{k-1})\boxtimes I,$$

which is concave. If $p_k = 1$, then $p_i = 0$ for all i = 1, ..., k - 1 and the map is clearly concave. Now suppose $0 < p_k < 1$. By the induction assumption, the map

$$\phi(A_1,\ldots,A_{k-1}) = \bigotimes_{i=1}^{k-1} A_i^{p_i/(1-p_k)}$$

is concave. By applying Theorem 1 with $f(x) = x^{p_k}$, the map

$$(A_1, \dots, A_k) \mapsto f(\phi(A_1, \dots, A_{k-1})^{-1} \boxtimes A_k) \cdot (\phi(A_1, \dots, A_{k-1}) \boxtimes I)$$

is concave. We obtain the concavity of the map (12),

$$f(\phi(A_1, \dots, A_{k-1})^{-1} \boxtimes A_k)(\phi(A_1, \dots, A_{k-1}) \boxtimes I)$$

= $(\phi(A_1, \dots, A_{k-1})^{-p_k} \boxtimes A_k^{p_k})(\phi(A_1, \dots, A_{k-1}) \boxtimes I)$
= $\phi(A_1, \dots, A_{k-1})^{1-p_k} \boxtimes A_k^{p_k} = \bigotimes_{i=1}^k A_i^{p_i}.$

A special case of Theorem 3 is when k = 2.

Corollary 3 For each $r \in (0, 1)$, the map

$$(A,B) \mapsto A^{1-r} \boxtimes B^r \tag{13}$$

is concave on $\mathbb{B}(\mathcal{H})^+ \times \mathbb{B}(\mathcal{H})^+$.

Proof: Theorem 3 implies that the map (13) is concave on $\mathbb{B}(\mathscr{H})^{++} \times \mathbb{B}(\mathscr{H})^{++}$. Since the Tracy-Singh product is jointly continuous (Lemma 1), this map is also concave on $\mathbb{B}(\mathscr{H})^+ \times \mathbb{B}(\mathscr{H})^+$.

Next, we develop concavity theorems for Khatri-Rao products of operators.

Theorem 4 Let $0 \le p_i \le 1$, i = 1, ..., k, be such that $\sum_{i=1}^{k} p_i \le 1$. Then the map

$$(A_1,\ldots,A_k)\mapsto \underbrace{\stackrel{k}{\underset{i=1}{\bullet}}A_i^{p_i}$$
 (14)

is concave on $\mathbb{B}(\mathscr{H}_1)^{++} \times \cdots \times \mathbb{B}(\mathscr{H}_k)^{++}$.

Proof: From Lemma 6, the map $X \mapsto Z^*XZ$, taking the Tracy-Singh product $\boxtimes_{i=1}^k A_i$ into the Khatri-Rao product $\boxdot_{i=1}^k A_i$, is linear and preserves positivity. Recall that the composition between a linear map and a concave map results in a concave map. Since the map $(A_1, \ldots, A_k) \mapsto \boxtimes_{i=1}^k A_i^{p_i}$ is concave by Theorem 3, we have the concavity of the map is concave. We obtain the concavity of the map from (12), since

$$(A_1,\ldots,A_k) \mapsto Z^*(\bigotimes_{i=1}^k A_i^{p_i})Z = \bigcup_{i=1}^k A_i^{p_i}.$$

ScienceAsia 45 (2019)

Corollary 4 For each $r \in (0, 1)$, the map

$$(A,B) \mapsto A^{1-r} \boxdot B^r$$

is concave on $\mathbb{B}(\mathscr{H})^+ \times \mathbb{B}(\mathscr{H})^+$.

Proof: It follows from Theorem 4 when k = 2 together with the continuity of the Khatri-Rao product, Lemma 5.

CONVEXITY THEOREMS FOR TRACY-SINGH AND KHATRI-RAO PRODUCTS

In this section, we establish convexity theorems for Tracy-Singh products and Khatri-Rao products of operators. Weighted arithmetic/geometric/harmonic means of operators serve as useful tools.

Lemma 9 (Ref. 13) Let $A_i, B_i \in \mathbb{B}(\mathcal{H})^+, 1 \le i \le k$. Then

$$(\bigotimes_{i=1}^{k} A_{i}) \#_{t}(\bigotimes_{i=1}^{k} B_{i}) = \bigotimes_{i=1}^{k} (A_{i} \#_{t} B_{i}).$$

Theorem 5 Let ϕ_i , i = 1, ..., k, be a concave map from $B(\mathscr{H}_i)^{++}$ to $B(\mathscr{H}'_i)^{++}$. Then the map

$$(A_1,\ldots,A_k)\mapsto \bigotimes_{i=1}^k \phi_i(A_i)^{-1}$$
(15)

is convex on $\mathbb{B}(\mathscr{H}_1)^{++} \times \cdots \times \mathbb{B}(\mathscr{H}_k)^{++}$.

Proof: Let $t \in [0, 1]$. By continuity, we may assume that A_i and B_i are positive invertible operators. Applying Lemmas 1 and 9 and the arithmetic-geometric means inequality for operators, we have

$$\begin{split} & \sum_{i=1}^{k} \phi_{i}((1-t)A_{i}+tB_{i})^{-1} \\ & \leq \sum_{i=1}^{k} ((1-t)\phi_{i}(A_{i})+t\phi_{i}(B_{i}))^{-1} \\ & \leq \sum_{i=1}^{k} (\phi_{i}(A_{i}) \ \#_{t} \ \phi_{i}(B_{i}))^{-1} \\ & = \sum_{i=1}^{k} \phi_{i}(A_{i})^{-1} \ \#_{t} \sum_{i=1}^{k} \phi_{i}(B_{i})^{-1} \\ & \leq (1-t) \sum_{i=1}^{k} \phi_{i}(A_{i})^{-1} + t \sum_{i=1}^{k} \phi_{i}(B_{i})^{-1}. \end{split}$$

Hence the map (15) is convex.

Corollary 5 Let $0 < p_i \le 1$, i = 1, ..., k. Then the map

$$(A_1,\ldots,A_k)\mapsto \bigotimes_{i=1}^{\kappa}A_i^{-p_i}$$

is convex on $\mathbb{B}(\mathcal{H}_1)^{++} \times \cdots \times \mathbb{B}(\mathcal{H}_k)^{++}$.

Proposition 1 Let $0 \le p_i \le 1$, i = 1, ..., k, and $1 \le q \le 2$ be such that $\sum_{i=1}^{k} p_i \le q-1$. Then the map

$$(A_1,\ldots,A_{k+1})\mapsto (\bigotimes_{i=1}^k A_i^{-p_i})\boxtimes A_{k+1}^q$$

is convex on $\mathbb{B}(\mathscr{H}_1)^{++} \times \cdots \times \mathbb{B}(\mathscr{H}_{k+1})^{++}$.

Proof: By Theorem 3, the map

$$(A_1,\ldots,A_{k+1})\mapsto (\bigotimes_{i=1}^k A_i^{p_i})\boxtimes A_{k+1}^{2-q}$$

is concave on $\mathbb{B}(\mathscr{H}_1)^{++} \times \cdots \times \mathbb{B}(\mathscr{H}_{k+1})^{++}$. Clearly, the map

$$(A_1,\ldots,A_{k+1})\mapsto (\bigotimes_{i=1}^k I)\boxtimes A_{k+1}$$

is affine. It follows from Lemma 1 that the map

$$(A_{1},\ldots,A_{k+1}) \mapsto \left[\left(\bigotimes_{i=1}^{k} I \right) \boxtimes A_{k+1} \right] \left[\left(\bigotimes_{i=1}^{k} A_{i}^{p_{i}} \right) \boxtimes A_{k+1}^{2-q} \right]^{-1} \left(\bigotimes_{i=1}^{k} I \right) \boxtimes A_{k+1} \\ = \left(\bigotimes_{i=1}^{k} A_{i}^{-p_{i}} \right) \boxtimes A_{k+1}^{q}$$

is convex.

Theorem 6 For each $r \in (0, 1)$, the maps

$$(A,B) \mapsto A^{-r} \boxtimes B^{1+r}, \tag{16}$$

$$(A,B) \mapsto A^{1+r} \boxtimes B^{-r} \tag{17}$$

are convex on $\mathbb{B}(\mathscr{H})^{++} \times \mathbb{B}(\mathscr{H})^{++}$.

Proof: The convexity of the map (16) follows from Proposition 1. By continuity, we may assume that *A* and *B* are invertible. Lemma 1 implies that

$$A^{1+r} \boxtimes B^{-r} = (A^r \boxtimes B^{-r})(A \boxtimes I) = (A \boxtimes B^{-1})^r (A \boxtimes I).$$

It follows from Lemmas 1 and 8 that

$$A^{1+r} \boxtimes B^{-r} = \int_{0}^{1} ((I \boxtimes I)!_{t} (A \boxtimes B^{-1})) d\mu(t) (A \boxtimes I)$$

=
$$\int_{0}^{1} [(1-t)(I \boxtimes I) + t(A \boxtimes B^{-1})^{-1}]^{-1} (A \boxtimes I) d\mu(t)$$

=
$$\int_{0}^{1} [(1-t)(I \boxtimes I) + t(A^{-1} \boxtimes B)]^{-1} (A \boxtimes I) d\mu(t)$$

=
$$\int_{0}^{1} (A \boxtimes I) [(1-t)(A \boxtimes I) + t(I \boxtimes B)]^{-1} (A \boxtimes I) d\mu(t).$$

www.scienceasia.org

Since the map $A \mapsto A^{-1}$ is convex and the map $(A, B) \mapsto (1-t)(A \boxtimes I) + t(I \boxtimes B)$ is affine, the map

$$(A,B) \mapsto (I \boxtimes B)\{(1-t)(A \boxtimes I) + t(I \boxtimes B)\}^{-1}(I \boxtimes B)$$

is convex. Thus the map $(A, B) \mapsto A^{1+r} \boxtimes B^{-r}$ is convex. \Box

Proposition 2 Let ϕ_i , i = 1, ..., k, be concave maps from $B(\mathcal{H}_i)^{++}$ to $B(\mathcal{H}'_i)^{++}$. Then the map

$$(A_1,\ldots,A_k)\mapsto \bigcup_{i=1}^k \phi_i(A_i)^{-1}$$

is convex on $\mathbb{B}(\mathscr{H}_1)^{++} \times \cdots \times \mathbb{B}(\mathscr{H}_k)^{++}$.

Proof: It follows from Lemma 6 and Theorem 5. \Box

Corollary 6 Let $0 < p_i \le 1$ for each i = 1, ..., k. Then the map

$$(A_1,\ldots,A_k)\mapsto \underbrace{\bullet}_{i=1}^k A_i^{-p}$$

is convex on $\mathbb{B}(\mathcal{H}_1)^{++} \times \cdots \times \mathbb{B}(\mathcal{H}_k)^{++}$.

Proof: It follows from Proposition 2 by putting $\phi_i(A_i) = A_i^{p_i}$ for each *i*.

Proposition 3 For each $r \in (0, 1)$, the maps

$$(A,B) \mapsto A^{-r} \boxdot B^{1+r},$$

$$(A,B) \mapsto A^{1+r} \boxdot B^{-r}$$

are convex on $\mathbb{B}(\mathscr{H})^{++} \times \mathbb{B}(\mathscr{K})^{++}$.

Proof: It follows from Lemma 4 and Theorem 6. \Box

Recall that the Moore-Penrose inverse of an operator $T \in \mathbb{B}(\mathcal{H}, \mathcal{H}')$ is the operator $T^{\dagger} \in \mathbb{B}(\mathcal{H}', \mathcal{H})$ satisfying the conditions $TT^{\dagger}T = T$, $T^{\dagger}TT^{\dagger} = T$, $(TT^{\dagger})^* = TT^{\dagger}$, and $(T^{\dagger}T)^* = T^{\dagger}T$. It is well known that T^{\dagger} exists if and only if the range of *T* is closed ¹⁴.

Lemma 10 (Ref. 15) Let

$$T = \begin{bmatrix} T_{11} & T_{12} \\ T_{12}^* & T_{22} \end{bmatrix} \in \mathbb{B}(\mathscr{H}_1 \oplus \mathscr{H}_2)$$

be a self-adjoint operator. Suppose that T_{11} has a closed range. Then $T \ge 0$ if and only if $T_{11} \ge 0$, $T_{12} = T_{11}T_{11}^{\dagger}T_{12}$, and $T_{22} \ge T_{12}^*T_{11}^{\dagger}T_{12}$.

Recall that for any interval *J*, a continuous function $f : J \to \mathbb{R}$ is convex if and only if $f(x + h) + f(x - h) - 2f(x) \ge 0$ for all $x \in J$ and h > 0 such that $x \pm h \in J$.

Theorem 7 Let $A \in \mathbb{B}(\mathcal{H})^+$ and $B \in \mathbb{B}(\mathcal{H})^+$ have closed ranges. Then the operator-valued function

$$\phi: [-1,1] \to \mathbb{B}(\bigoplus_{i=1}^{n} \mathscr{H}_{i} \otimes \mathscr{H}_{i}),$$

$$\phi(t) = A^{1+t} \boxdot B^{1-t} + A^{1-t} \boxdot B^{1+t}$$
(18)

is convex on [-1, 1], decreasing on [-1, 0], increasing on [0, 1], attains minimality at t = 0, and attains maximality at t = -1, 1.

Proof: Let $s \in [-1, 1]$ and t > 0 be such that $s \pm t \in [-1, 1]$. Consider the operator matrices

$$T_{1} = \begin{bmatrix} A^{1+s+t} & A^{1+s} \\ A^{1+s} & A^{1+s-t} \end{bmatrix}, \quad T_{2} = \begin{bmatrix} A^{1-s-t} & A^{1-s} \\ A^{1-s} & A^{1-s+t} \end{bmatrix},$$
$$T_{3} = \begin{bmatrix} B^{1+s+t} & B^{1+s} \\ B^{1+s} & B^{1+s-t} \end{bmatrix}, \quad T_{4} = \begin{bmatrix} B^{1-s-t} & B^{1-s} \\ B^{1-s} & B^{1-s+t} \end{bmatrix}.$$

Note that

$$A^{1+s} = (AA^{\dagger}A)^{1+s+t}A^{-t} = A^{1+s+t}(A^{1+s+t})^{\dagger}A^{1+s},$$

$$A^{1+s-t} = A^{-t}(AA^{\dagger}A)^{1+s+t}A^{-t} = A^{1+s}(A^{1+s+t})^{\dagger}A^{1+s}.$$

We have by Lemma 10 that T_i is positive for all i = 1, 2, 3, 4. By the monotonicity of Khatri-Rao product, Lemma 3, we have that the operator $X \equiv T_1 \boxdot T_4 + T_2 \boxdot T_3$ is

$$\begin{bmatrix} A^{1+s+t} \boxdot B^{1-s-t} + A^{1-s-t} \boxdot B^{1+s+t} & A^{1+s} \boxdot B^{1-s} + A^{1-s} \boxdot B^{1+s} \\ A^{1+s} \boxdot B^{1-s} + A^{1-s} \boxdot B^{1+s} & A^{1+s-t} \boxdot B^{1-s+t} + A^{1-s+t} \boxdot B^{1+s-t} \end{bmatrix},$$

which is positive. Similarly, the operator *Y*,

$$\begin{bmatrix} A^{1+s-t} \boxdot B^{1-s+t} + A^{1-s+t} \boxdot B^{1+s-t} & A^{1+s} \boxdot B^{1-s} + A^{1-s} \boxdot B^{1+s} \\ A^{1+s} \boxdot B^{1-s} + A^{1-s} \boxdot B^{1+s} & A^{1+s+t} \boxdot B^{1-s-t} + A^{1-s+t} \boxdot B^{1+s+t} \end{bmatrix}$$

is also positive. It follows that

$$0 \leq X + Y = \begin{bmatrix} \phi(s+t) + \phi(s-t) & 2\phi(s) \\ 2\phi(s) & \phi(s+t) + \phi(s-t) \end{bmatrix}$$

= $U \begin{bmatrix} \phi(s+t) + \phi(s-t) + 2\phi(s) & 0 \\ 0 & \phi(s+t) + \phi(s-t) - 2\phi(s) \end{bmatrix} U^*,$

where

$$U = \frac{1}{\sqrt{2}} \begin{bmatrix} I & -I \\ I & I \end{bmatrix}$$

Again, Lemma 10 guarantees that

$$\phi(s+t) + \phi(s-t) \ge 2\phi(s).$$

This means that ϕ is convex. The fact that $\phi(t) = \phi(-t)$ for all $t \in [-1, 1]$ and the convexity of ϕ implies that ϕ has the minimal value at 0. Hence ϕ is decreasing on [-1, 0] and increasing on [0, 1]. \Box

ScienceAsia 45 (2019)

Corollary 7 Let $A \in \mathbb{B}(\mathcal{H})^+$ and $B \in \mathbb{B}(\mathcal{H})^+$ have closed ranges. Then the parameterization

$$\psi: [0,1] \to \mathbb{B}(\bigoplus_{i=1}^{n} \mathscr{H}_{i} \otimes \mathscr{H}_{i}),$$
$$\psi(t) = A^{t} \boxdot B^{1-t} + A^{1-t} \boxdot B^{t}$$

is convex on [0, 1], decreasing on [0, 1/2], increasing on [1/2, 1], attains minimality at t = 1/2, and attains maximality at t = 0, 1.

Proof: Let $f : [0,1] \rightarrow [-1,1]$ be defined by f(t) = 2t - 1. Then $\psi = \phi \circ f$ where ϕ is given by (18). Now, the desired results follow from Theorem 7 by using f([0,1]) = [-1,1], f([0,1/2]) = [-1,0], f([1/2,0]) = [0,1], and f(1/2) = 0. □

As a consequence, we obtain an operator version of the arithmetic-geometric mean inequality as follows.

Corollary 8 Let $A \in \mathbb{B}(\mathcal{H})^+$ and $B \in \mathbb{B}(\mathcal{H})^+$ have closed ranges. For any $t \in [1/2, 1]$, we have

$$2(A^{1/2} \boxdot B^{1/2}) \leq A^t \boxdot B^{1-t} + A^{1-t} \boxdot B^t \leq A \boxplus B,$$

where \boxplus denotes the Khatri-Rao sum¹⁶ defined by $A \boxplus B = A \boxdot I + I \boxdot B$.

We mention that Theorem 5, Corollary 5, and Proposition 1 generalize the matrix results involving Tracy-Singh products provided in Ref. 5.

Acknowledgements: The first author expresses his gratitude towards Thailand Research Fund for providing the Royal Golden Jubilee PhD Scholarship, grant No. PHD60K0225 to support his PhD study.

REFERENCES

- Ando T (1979) Concavity of certain maps on positive definite matrices and applications to Hadamard products. *Linear Algebra Appl* 26, 203–41.
- 2. Bhatia R (2007) *Positive Definite Matrices*, Princeton University Press, Princeton, New Jersey.

- Matharu JS, Aujla JS (2009) Hadamard product versions of the Chebyshev and Kantorovich inequalities. *J Inequal Pure Appl Math* 10, 1–6.
- Tracy DS, Singh RP (1972) A new matrix product and its applications in partitioned matrix differentiation. *Stat Neerl* 26, 143–57.
- Al-Zhour Z (2014) Several new inequalities on operator means of non-negative maps and Khatri-Rao products of positive definite matrices. *J King Saud Univ Sci* 26, 21–7.
- Khatri CG, Rao CR (1968) Solutions to some factional equations and their applications to characterization of probability distributions. *Sankhyā* 30, 167–80.
- Mond B, Pečarić JE (1998) Operator convex functions of several variables. *Soochow J Math* 24, 239–54.
- Ploymukda A, Chansangiam P, Lewkeeratiyutkul W (2018) Algebraic and order properties of Tracy-Singh products for operator matrices. *J Comput Anal Appl* 24, 656–64.
- Ploymukda A, Chansangiam P, Lewkeeratiyutkul W (2018) Analytic properties of Tracy-Singh products for operator matrices. *J Comput Anal Appl* 24, 665–74.
- Ploymukda A, Chansangiam P (2016) Khatri-Rao products of operator matrices acting on the direct sum of Hilbert spaces. *J Math* 2016, 1–7.
- 11. Hiai F, Petz D (2014) Introduction to Matrix Analysis and Applications, Springer, New Delhi.
- Chansangiam P, Lewkeeratiyutkul W (2015) Operator connections and Borel measures on the unit interval. *ScienceAsia* 41, 273–9.
- Ploymukda A, Chansangiam P (2018) Geometric means and Tracy-Singh products for positive operators. *Commun Math Appl* 9, 475–88.
- Caradus SR (1978) Generalized Inverses and Operator Theory, Queen's Papers in Pure and Applied Mathematics 50, Queen's University, Kingston.
- Xu Q, Sheng L (2008) Positive semi-definite matrices of adjointable operators on Hilbert C*-modules. Linear Algebra Appl 428, 992–1000.
- Ploymukda A, Chansangiam P (2018) Khatri-Rao sums for Hilbert space operators. Songklanakarin J Sci Technol 40, 595–601.