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ABSTRACT: An interesting phenomenon when it comes to solving a class of complex linear systems is that the modified
symmetric successive overrelaxation (MSSOR) method with two parameters seems to enjoy the fine convergence
performance over symmetric successive overrelaxation (SSOR) which is recently proposed by Liang 19 and Bai 30. Owing
to the flexible selection of the parameters, the MSSOR method possesses the valuable role to solve some large scale linear
systems including the complex situation. Meanwhile, we also establish an accelerated MSSOR (AMSSOR) which can
offer a meaningful improvement on MSSOR method. This has been illustrated experimentally and shown theoretically
in this study. Our results may provide an analytical justification for popularity of SSOR and its accelerated version as
efficient solvers for some linear systems.
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INTRODUCTION

We consider the following complex linear system
system

A f = g, (1)

where A = W + iT ∈ Cn×n, f = u+ iv ∈ Cn, g =
p+ iq ∈Cn with u, v, p, q ∈Rn and W , T ∈Rn×n are
symmetric with at least one of them being positive
definite. Without loss of generality, we assume that
W is positive definite. The linear system (1) can be
written as

Ax ≡
�

W −T
T W

��

u
v

�

=
�

p
q

�

≡ b. (2)

In recent years, a variety of iterative techniques
are investigated to solve all kinds of linear sys-
tems including the complex situation1–14, 21–23, such
as saddle-point problem and various generalized
forms16, 18, 26. In particular, the SOR, SSOR iterative
schemes and their variants are presented for solving
some large and sparse linear systems17. For exam-
ple, Bai et al presented the GSOR29 for augmented
linear systems and SSOR-like precondition for non-
Hermitian positive definite matrices30, Zhang and
Liang proposed the GSSOR and MUSOR for saddle-
point problem20, 28. Recently, Wang et al studied a
new SSOR-like method with four parameters for the

augmented systems, analysed the convergence of
the method and obtained the optimal convergence
factor under some suitable conditions25.

Consider the splitting A= D− L−U with

D =
�

W 0
0 W

�

, L =
�

0 0
−T 0

�

, U =
�

0 T
0 0

�

.

In Ref. 19, Liang and Zhang proposed the following
efficient SSOR iterative scheme

(D−ωL)x (k+
1
2 ) =

�

(1−ω)D+ωU
�

x (k) +ωb,

(D−ωU)x (k+1) =
�

(1−ω)D+ωL
�

x (k+
1
2 ) +ωb,

(3)

for solving the linear system (1), where x =
(uT, vT ) ∈ R2n, and ω is a positive scalar.

Inspired by these jobs19, 20, 25, 28, we establish
the modified SSOR (MSSOR) iterative

(D−ωL)x (k+
1
2 ) =

�

(1−ω)D+ωU
�

x (k) +ωb,

(D−τU)x (k+1) =
�

(1−τ)D+τL
�

x (k+
1
2 ) +τb,

(4)

where x = (uT, vT) ∈ R2n, and ω and τ are the pos-
itive scalars. Apparently, if we select the parameter
τ=ω, the proposed method is reduced to the SSOR
method19.
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THE MSSOR ITERATIVE METHOD

We now describe briefly the MSSOR approach. In
practice, iterative (4) generates

�

u(k+1)

v(k+1)

�

=Hωτ

�

u(k)

v(k)

�

+M−1
ωτb, (5)

where

Hωτ =
�

H11 H12
H21 H22

�

, M−1
ωτ =

�

M11 M12
M21 M22

�

, (6)

H11 = (1−ω)(1−τ)I

−τ(1−ω)(τ+ω−τω)(W−1T )2,

H12 = (1−τ)(τ+ω−τω)W−1T

−τω(τ+ω−τω)(W−1T )3,

H21 = −(1−ω)(τ+ω−τω)W−1T,

H22 = (1−ω)(1−τ)I +ω(τ+ω−τω)(W−1T )2,

M11 =ω(1−τ)W−1−ωτ2(W−1T )2W−1

−ω2τ(1−τ)(W−1T )2W−1+τW−1,

M12 =ωτ(1−τ)W−1TW−1+τ2W−1TW−1,

M21 = −ωτW−1TW−1− (1−τ)ω2W−1TW−1,

M22 =ω(1−τ)W−1+τW−1.

By some calculations, we can obtain the follow-
ing algorithm for solving the system (2).

Algorithm 1 MSSOR method.
Step 1: Input W, T ∈ Rn×n and p, q ∈ Rn. Given ini-

tial guesses v0, u0 ∈ Rn, arbitrary small positive
number ε, and positive scalarsω, τ ∈ (0,2). Set
k = 0.

Step 2: If rk := ‖Ax k − b‖ < ε, stop, where x k =
((uk)T, (vk)T)T ∈ R2n; otherwise, go to Step 3.

Step 3: Compute vk+1 = (1−ω)(1−τ)vk−(τ+ω−
τω)W−1((1−ω)Tuk +ωTW−1(T vk + p)− q).

Step 4: Compute uk+1 = (1 − ω)(1 − τ)uk +
W−1(ω(1−τ)T vk +τT vk+1+(τ+ω−τω)p).

Step 5: Set k := k+1, return to Step 2.

THE OPTIMAL PARAMETERS OF MSSOR
METHOD

In this section, we will give a way to choose the
optimal parameters ωopt and τopt for Algorithm 1.
Eventually, we are surprised to discover that the
optimal convergence factor of the proposed method
may be the same best effect as one in Ref. 19.
However, owing to more flexible and wide selection
for the parameters, the proposed approach leads
to the favourable convergence results in numerical

tests process which will be verified later. Firstly, we
show the following well-known lemmas.

Lemma 1 (Ref. 27) Both roots of the real quadratic
equation x2− bx+c = 0 satisfy the modulus less than
one if and only if |c|< 1 and |b|< 1+ c.

Since the matrix W is positive definite and T is a
symmetric matrix, thus the matrix S := W−1T is
similar to W−1/2TW−1/2. As a result, it generates
the following lemma.

Lemma 2 (Ref. 24) Suppose that matrix W and T
be symmetric positive definite and symmetric, respec-
tively. Then the eigenvalues of the matrix S :=W−1T
are all real.

We now take a series of similar transformations for
the iterative matrix Hωτ.

QHωτQ−1 =
�

H̃11 H̃12
H̃21 H̃22

�

¬ eHωτ, (7)

where

Q :=
�

U 0
0 U

�

,

U is unitary.
By some calculations of matrix permutations,

we easily obtain that the matrix eHωτ is similar to
Ĥωτ which is constructed by some 2-by-2 matrices
acting as the diagonal element. Furthermore, the
two-order matrix denoted by (Ĥωτ)ii , the ith diago-
nal block of Ĥωτ, i = 1,2, . . . , n, is also similar to

�

h11 h12
h21 h22

�

, (8)

where

h11 = (1−τ)(1−ω)−τ(1−ω)(τ+ω−τω)µ2
i ,

h12 = (1−τ)(τ+ω−τω)µi −τω(τ+ω−τω)µ3
i ,

h21 = −(1−ω)(τ+ω−τω)µi ,

h22 = (1−τ)(1−ω)−ω(τ+ω−τω)µ2
i ,

and µ1, . . . ,µn are the eigenvalues of W−1T .
The eigenvalues of the above two-order matrix

can be determined by the following real quadratic
equation

λ2−
�

2(1−τ)(1−ω)− (τ+ω−τω)2µ2
i

�

λ

+(1−τ)2(1−ω)2 = 0. (9)

According to (7) and (8), we see that λ’s are also
the eigenvalues of the iterative matrix Hωτ. From
(9), we obtain

λ− (1−τ)(1−ω) = ±(τ+ω−τω)µi

p

−λ. (10)
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Theorem 1 Let the matrices W, T be symmetric
positive definite and symmetric, respectively, and S :=
W−1T. Then the MSSOR for the linear system (2) is
convergent if the following conditions hold:
(i) τ,ω ∈ (1, 2) or τ,ω ∈ (0, 1), when ρ(S)¶ 1;
(ii) τ < ((1+ρ(S))ω−2)/(1+ρ(S))(ω−1),

when ρ(S)> 1 and 0<ω< 1;
(iii) τ > ((1+ρ(S))ω−2)/(1+ρ(S))(ω−1),

when ρ(S)> 1 and 1<ω< 2.

Proof : By Lemma 1, we obtain that the roots of the
quadratic equations (9) satisfy |λ|< 1 if and only if

(1−τ)2(1−ω)2 < 1 (11)

and

�

�2(1−τ)(1−ω)− (τ+ω−τω)2µ2
i

�

�

< 1+(1−τ)2(1−ω)2. (12)

It follows from (11) that

−1< (1−τ)(1−ω)< 1. (13)

Clearly, (13) holds if

0< τ < 2, 0<ω< 2. (14)

We now discuss (12) under the condition (14) being
satisfied. In fact, by (12), we have

(τ+ω−τω)2µ2
i <

�

1+(1−τ)(1−ω)
�2

. (15)

Notice that µi ¶ ρ(S). Hence (15) holds if

1+(1−τ)(1−ω)> (τ+ω−τω)ρ(S). (16)

Next we consider three cases: (a) ρ(S) ¶ 1;
(b) ρ(S) > 1 and 0 < ω < 1; (c) ρ(S) > 1 and
1<ω< 2.

Case (a): This case implies that (16) holds if

1+(1−τ)(1−ω)> (τ+ω−τω).

After simple calculation, one gets that τ−1 andω−1
have the same positive (or negative) sign, that is,
τ,ω ∈ (1,2) or τ,ω ∈ (0, 1).

Case (b): This case indicates that (16) holds if

((1+ρ(S))(ω−1))τ− (1+ρ(S))ω+2> 0. (17)

Observing 0<ω< 1, by (17) we have

τ <
(1+ρ(S))ω−2
(1+ρ(S))(ω−1)

.

Case (c): Similarly, from (17) we obtain

τ >
(1+ρ(S))ω−2
(1+ρ(S))(ω−1)

,

which completes the proof. 2
Next, we give an important theorem to mini-

mize the spectral radius of iteration matrix Hτω.

Theorem 2 Let the matrices W, T be symmetric
positive definite and symmetric, respectively. Suppose
that the conditions of Theorem 1 are satisfied. Let
the two parameters satisfy ω= kτ. Then the optimal
parameters of the MSSOR are

ωopt =
1+ k±

p

(1+ k)2−4k2ς

2k2
(18)

and

τopt =
1+ k±

p

(1+ k)2−4k2ς

2k
. (19)

The optimal spectral radius is

ρopt(Hτω) = 1−
2

q

1+µ2
min+1

, (20)

where 0< k < 1 and ς= 2/(
q

1+µ2
min+1).

Proof : From (9), we have the discriminant

∆=
�

(1−η)2µ2
i −4η

�

(1−η)2µ2
i ,

where η= (1−τ)(1−ω), and the two roots of (9)

λ1,2 =
2η− (1−η)2µ2

i ±
p
∆

2
.

If∆¾ 0, namely, (1−η)2µ2
i −4η¾ 0, then λ1,2 ¶ 0,

and the spectral radius

ρ(Hτω) =max
η

�

�

�

�

�

2η− (1−η)2µ2
i −
p
∆

2

�

�

�

�

�

.

Accordingly, the optimal spectral radius ρopt(Hτω)
reaches on ∆= 0, that is,

�

(1−η)2µ2
i −4η

�

(1−η)2µ2
i = 0. (21)

If µi = 0, by (10) we have λ1 = λ2 = (1−τ)(1−ω).
Thus the optimal parameters τopt = 1 and ωopt = 1.
If µi 6= 0, it follows from (21) that (1−η)2µ2

i−4η= 0
owing to η 6= 1 by (13). Thus, we obtain

η= 1−
2

q

1+µ2
i +1

. (22)
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Hence

(1−τ)(1−ω) = 1−
2

q

1+µ2
i +1

. (23)

It follows from (23) and the relation ω= kτ that

ωopt =
1+ k±

p

(1+ k)2−4k2ς

2k2
,

τopt =
1+ k±

p

(1+ k)2−4k2ς

2k
,

where 0 < k < 1, ς = 2/(
q

1+µ2
min + 1), and the

optimal spectral radius

ρopt(Hτω) = 1−
2

q

1+µ2
min+1

.

If ∆ < 0, the quadratic equation (9) has two conju-
gate complex roots and

|λ1,2|=

�

�

�

�

�

2η− (1−η)2µ2
i ±
p
−∆i

2

�

�

�

�

�

= |η|.

Observing that 1− η > 0 and combining with the
precondition of ∆< 0, we immediately obtain

0< 1−η <
2

q

1+µ2
i +1

,

i.e.,

0< 1−
2

q

1+µ2
i +1

< η < 1.

Consequently,

|η|> 1−
2

q

1+µ2
i +1

, i = 1, 2, . . . , n.

Furthermore,

|η|> 1−
2

p

1+ρ(S)2+1
> 1−

2
q

1+µ2
min+1

.

Based on the above analysis, we conclude that the
optimal parameters and spectral radius satisfy (18)–
(20), respectively. This completes the proof. 2

Remark 1 As a matter of fact, by taking k = 1 in
(18) and (19), we can see that ωopt = τopt, the
optimal parameter is reduced to the single ωopt =

1± (
q

1+µ2
min−1)/µmin as mentioned in Ref. 19.

ACCELERATED VARIANT OF THE MSSOR
METHOD

In this section, we develop the accelerated variant
of the MSSOR method. The basic idea and refined
analysis are similar to the discussions in Ref. 1.

By preconditioned scheme we obtain

�

I I
−I I

��

W −T
T W

��

u
v

�

=
�

I I
−I I

��

p
q

�

≡ b̂.

It can be formulated as

Âx ≡
�

Ŵ −T̂
T̂ Ŵ

�

�

u
v

�

=
�

p̂
q̂

�

≡ b̂, (24)

where

Ŵ =W + T, T̂ = T −W, p̂ = p+ q, q̂ = q− p. (25)

Applying the MSSOR technique to the above linear
system (24), we immediately have the accelerated
version of the MSSOR (AMSSOR) method. The
concrete scheme is described as follows.

Algorithm 2 (AMSSOR method)
Step 1: Input W, T ∈ Rn×n, p, q ∈ Rn. Given initial

guesses v0, u0 ∈ Rn, arbitrary small positive
number ε, and positive scalarsω, τ ∈ (0,2). Set
k = 0.

Step 2: If rk := ‖Âx k − b̂‖ < ε, stop, where x k =
((uk)T, (vk)T)T ∈ R2n, otherwise, go to Step 3.

Step 3: According to formulae (24) and (25), com-
pute vk+1 = (1 − ω)(1 − τ)vk − (τ + ω −
τω)Ŵ−1((1−ω)T̂uk +ωT̂ Ŵ−1(T̂ vk + p̂)− q̂).

Step 4: Compute uk+1 = (1 − ω)(1 − τ)uk +
Ŵ−1(ω(1−τ)T̂ vk +τT̂ vk+1+(τ+ω−τω)p̂).

Step 5: Set k := k+1, return to Step 2.

NUMERICAL EXPERIMENTS

In this section, numerical examples are executed
to illustrate the effectiveness and robustness of the
proposed methods for solving the complex linear
systems (1). We compare the convergence perfor-
mances of these methods with the SSOR and ASSOR
methods19 by the iteration step (IT), elapsed CPU
time in seconds (CPU) and relative residual error
(RES), RES = ‖b − Ax k‖2/‖b‖2. In actual compu-
tations, the running is terminated when the cur-
rent iteration satisfies RES< 10−6 or if the number
of iteration exceeds the prescribed iteration steps
kmax = 100 in Algorithm 1 or Algorithm 2.

All numerical experiments were performed by
MATLAB R2011b 7.1.3 on a PC equipped with an
Intel (R) Core(TM) i7-2670QM, CPU running at
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2.20GHZ with 8 GB of RAM under the Microsoft
Windows 7 operating system.

In the next example, we consider the complex
symmetric linear system arises in centred differ-
ence discretization of R22-Padé approximations in
the time integration of parabolic partial differential
equations1.

Example 1 Consider the complex linear system
�

�

K +
3−
p

3
τ

Im2

�

+ i
�

K +
3+
p

3
τ

Im2

�

�

x̂ = b̂ ∈ Rn,

where τ is the time step-size, K = Im ⊗ Vm + Vm ⊗
Im, and Vm = h−2 tridiag{−1, 2,−1} ∈ Rm×m with
n = m2. K is the five-point centred difference ap-
proximation of negative Laplacian operator L =−∆
with homogeneous Dirichlet boundary conditions
on uniform mesh in the unit square [0,1]× [0, 1].
The symbol ⊗ denotes the Kronecker product and
h = 1/(m + 1) represents the discretization mesh-
size. In this example, we take the matrices W =
K + ((3−

p
3)/τ)Im2 and T = K + ((3+

p
3)/τ)Im2 .

The vector b̂ = (1− i) j/τ( j+1)2, j = 1,2, . . . , n.
Next, we consider another complex symmetric

linear system arises in direct analysis of an n degree
of freedom (n-DOF) linear system15.

Example 2 Consider the complex linear system
�

(−ν2M + K)+ i(νCV + CH)
�

x̂ = b̂ ∈ Rn,

where K defined as in Example 1 is the stiffness
matrix, M is the inertia matrix, CV and CH are the
viscous and hysteretic damping matrices, respec-
tively, and ν is the driving circular frequency. Here
the matrices W = −ν2M + K and T = νCV + CH ,
where CH = µK , CV = 10Im2 , and M = Im2 . We also
choose different values of ν, µ. The right-side vector
b̂ is selected such that the exact solution of the linear
system (1) is (1+ i) · [1, 1, . . . , 1]T ∈ Cn.

All numerical results are shown for the various
problem sizes in Tables 1–5. From these results,
we see that the proposed methods MSSOR and
AMSSOR keep almost the favourable convergence
results with SSOR and ASSOR. In some situations,
our approaches are compared to the existing meth-
ods in terms of both iteration steps and CPU time.
In particular, the fact of superiority has clearly been
elucidated between ASSOR and AMSSOR meth-
ods (Tables 2 and 3. The optimal parameters for
SSOR and ASSOR complied with Table 119. Our
experiment parameters are chosen according to the
numerical test effect.

CONCLUSIONS

Two efficient iterative methods are presented for
solving a class of block two-by-two linear systems.
To some extent, the proposed methods are regarded
as generalized versions of SSOR and ASSOR, respec-
tively. The selections of the optimal parameters are
analysed in detail under a proper condition. Finally,
we give some numerical examples to demonstrate
that the introduced iterative algorithms are effective
and workable. Meanwhile, our results may provide
an analytical justification for the popularity of SSOR
technique and its accelerated version as efficient
solvers for some linear systems.
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Table 1 Numerical results for Example 1 with 16×16.

Methods SSOR ASSOR MSSOR AMSSOR

Parameters ωopt = 0.33 ωopt = 0.80 ωexp = 0.26, τexp = 0.35 ωexp = 1.6, τexp = 1.1
IT 19 9 19 6

τ= h CPU 0.081 0.0396 0.0787 0.0360
RES 6.9117×10−7 5.4486×10−9 6.4008×10−7 1.1024×10−9

IT 18 9 19 6
τ= 2h CPU 0.0913 0.0408 0.0903 0.0288

RES 5.3516×10−7 9.8011×10−9 7.8282×10−7 1.3915×10−9

IT 18 10 18 6
τ= 3h CPU 0.0794 0.0400 0.0724 0.0257

RES 5.3320×10−7 1.6191×10−9 7.6330×10−7 1.4537×10−9

Table 2 Numerical results for Example 1 with 32×32.

Methods SSOR ASSOR MSSOR AMSSOR

Parameters ωopt = 0.29 ωopt = 0.77 ωexp = 0.26, τexp = 0.35 ωexp = 1.6, τexp = 1.1
IT 21 10 21 6

τ= h CPU 2.5123 1.1977 2.2836 0.6241
RES 5.6263×10−7 2.2899×10−9 7.0772×10−7 1.4529×10−9

IT 21 10 21 6
τ= 2h CPU 2.4961 1.0744 2.3419 0.6429

RES 5.6000×10−7 1.9733×10−9 8.2911×10−7 1.5122×10−9

IT 21 10 21 6
τ= 3h CPU 2.1786 1.1978 2.1682 0.7445

RES 5.6489×10−7 2.2899×10−9 8.1649×10−7 1.4881×10−9

Table 3 Numerical results for Example 1 with 64×64.

Methods SSOR ASSOR MSSOR AMSSOR

Parameters ωopt = 0.29 ωopt = 0.77 ωexp = 0.26, τexp = 0.35 ωexp = 1.6, τexp = 1.1
IT 21 10 21 6

τ= h CPU 105.1976 47.0798 99.8367 27.8777
RES 5.6959×10−7 2.0626×10−9 8.4682×10−7 1.5466×10−9

IT 21 10 21 6
τ= 2h CPU 94.8650 43.9566 92.3694 27.6447

RES 6.0926×10−7 2.5794×10−9 8.5401×10−7 1.4636×10−9

IT 21 10 21 5
τ= 3h CPU 98.0843 38.1562 97.2459 23.4235

RES 5.6979×10−7 2.8105×10−9 8.4858×10−7 8.7778×10−9

Table 4 Numerical results for Example 2 with 16×16.

Methods SSOR ASSOR MSSOR AMSSOR

Parameters ωopt = 0.26 ωopt = 0.61 ωexp = 0.24, τexp = 0.28 ωexp = 1.7, τexp = 1.3
IT 23 11 23 10

ν= π, µ= 0.02 CPU 0.137 0.513 0.1298 0.0437
RES 9.6629×10−7 2.8227×10−8 5.3485×10−7 5.3559×10−8

IT 23 13 23 11
ν= 1, µ= 0.01 CPU 0.1183 0.0788 0.1130 0.0722

RES 9.6531×10−7 6.9059×10−8 9.4939×10−7 9.6248×10−8

IT 23 11 23 10
ν= 2, µ= 0.1 CPU 0.1092 0.0572 0.1084 0.0487

RES 9.6565×10−7 7.4053×10−8 9.9018×10−7 8.9181×10−8
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Table 5 Numerical results for Example 2 with 32×32.

Methods SSOR ASSOR MSSOR AMSSOR

Parameters ωopt = 0.26 ωopt = 0.60 ωexp = 0.24, τexp = 0.28 ωexp = 1.7, τexp = 1.3
IT 24 12 23 11

ν= π, µ= 0.02 CPU 3.1287 1.5598 3.0862 1.5111
RES 5.5262×10−7 4.1854×10−9 9.7797×10−7 1.1270×10−9

IT 23 13 23 11
ν= 1, µ= 0.01 CPU 3.1022 1.5688 2.9378 1.4435

RES 9.6529×10−7 4.1506×10−9 9.4926×10−7 1.1979×10−9

IT 23 8 23 8
ν= 2, µ= 0.1 CPU 2.7483 0.9733 2.6972 0.9590

RES 9.6536×10−7 5.0130×10−9 9.4996×10−7 5.8064×10−9
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