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ABSTRACT: This paper considers the simultaneous stabilization problems of three discrete-time time-varying linear
systems within the framework of nest algebra. Under the transmission condition, a necessary and sufficient condition for
the existence of simultaneously stabilizing controllers is given based on the strong representation. Some simultaneous
stabilizability criteria are established in terms of single strong representation of only one controller in the transmission
condition.
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INTRODUCTION

The stability for different types of discrete-time
time-varying linear systems are studied in Refs. 1–4.
The control theory of time-varying linear systems in
the framework of nest algebra, which was sparked
and developed based on the nest algebra theory
in 1980s, is a generalization of H∞ control in the
sense that 2-norm is used to quantify the size of
signals. In the context of operator theory, the time-
varying linear system can be seen as a (possibly
unbounded) infinite-dimensional lower triangular
matrix. The stability of the system is equivalent to
the boundedness of the infinite-dimensional matrix.
This approach is purely operator theoretic and does
not use any state space realization. This interpreta-
tion of dynamical systems has generated significant
research interest over the last decade, as witnessed
by recent contributions5–7.

The simultaneous stabilization problem con-
cerns the design of a common controller that would
stabilize a finite set of plants, and it was first in-
troduced by Saeks et al8 and Viswanadham9. The
simultaneous stabilization problem for three sys-
tems is recognized as one of hard open problems
in linear system theory. Few criteria for simul-
taneous stabilizability appear without any restric-
tions to the given plants. The traditional nec-
essary and sufficient conditions for simultaneous
stabilization of time-varying linear systems are all

characterized in the form of strong representations
of all given plants10, 11. However, the problem of
how to compute strong representations of a gen-
eral time-varying linear system remains unsolved.
Motivated by practical interest, some new simul-
taneous stabilizability criteria with weaker condi-
tion about strong representations of the plants are
needed. In 2011, Yu and Han brought out the so-
called transitivity in simultaneous stabilization for
three time-varying linear systems, which, when sat-
isfied, will lead to characterizations of simultaneous
stabilizability and simultaneously stabilizing feed-
back controllers12. In other words, the transitivity
problem restricts the search for the existence of
a simultaneously stabilizing controller to the three
plants satisfying the so-called transmission condi-
tion. The transmission condition for three given
plants L0, L1, L2 is that L0, L1 can be simultaneously
stabilized by some system C0, and L1, L2 can be
simultaneously stabilized by some system C1. It was
pointed out that the transmission condition really is
a weaker replacement of the strong representation
condition in the study of simultaneous stabilization
problem13. Under the transmission condition, a
necessary and sufficient condition for the simulta-
neous stabilizability of three plants L0, L1, and L2
was given, and the strong representation of L2 was
avoided13. Some sufficient conditions for the simul-
taneous stabilizability are given in Ref. 14–those
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conditions do not employ strong representations of
L0 and L2. As an improvement of the previous
work, an equivalent condition not depending on the
strong representations of L0 or L2 will be derived15.
Up to the present, some criteria for simultaneous
stabilizability of three plants have been given within
framework of nest algebra. While, those results
were all established in terms of strong representa-
tions of at least one plant, it is natural to ask whether
the simultaneous stabilization can be characterized
by strong representations of fewer given plants or
fewer controllers.

The main goal of this study is to rebuild the
simultaneous stabilization criteria of three plants
under the transmission condition. Compared with
the sufficient conditions in Refs. 12, 14, one of
main contributions here is establishing a necessary
and sufficient condition to the transitivity of time-
varying linear systems. The early equivalent con-
ditions to the simultaneous stability depend on at
least one strong representation of the considering
plants and one of the controllers7, 13, 15, while the
simultaneous stability criteria depend only on the
single strong representation of one controller, which
avoids any information about strong representations
of each given plant. Additionally, a parametrization
for all simultaneous stabilizers is derived under the
restrictive transmission condition. In particular,
a simultaneous stabilization criterion avoiding any
strong representation can be established when one
of the stabilizing controllers becomes stable.

PRELIMINARIES

The signal space considered in this paper is the
complex separable Hilbert space

H =
§

(x0, x1, . . .) : x i ∈ C,
∞
∑

i=0

|x i |<∞
ª

,

and He = {(x0, x1, . . .) : x i ∈ C} denotes the ex-
tended space ofH .

LetB(H ) denote the Banach space of bounded
linear operators on H , endowed with the operator
norm

‖T‖= sup
x∈H ,‖x‖¶1

‖T x‖.

For T ∈ B(H ), Im T denotes the range of T and
Ker T denotes the kernel of T .

For each n ¾ 0, we denote by Pn the standard
truncation projection onH orHe as

Pn(x0, x1, . . . , xn, . . .) = (x0, x1, . . . , xn, 0, . . .)

with P−1 = 0 and P∞ = I .

{Pn :−1¶ n¶∞} is used to define the physical
definition of causality. A linear transformation L
on He is causal if Pn LPn = Pn L for each n. L is a
(time-varying) linear system if it is a causal linear
transformation on He and continuous with respect
to the standard seminorm topology11. Indeed, any
linear system is an infinite-dimensional lower trian-
gular matrix with respect to the standard basis of
H . A linear system is stable if its restriction toH is
a bounded operator.

Let L be the algebra of linear systems with
respect to the standard addition and multiplication.
The set of stable ones, denoted by S , referred to
in the operator theory literature as a nest algebra
determined by the discrete nest11 {I − Pn : −1 ¶
n ¶∞}. S is a non-self adjoint sub-algebra of the
Banach algebraB(H ), closed in the weak operator
topology.

The definition of stabilizability and its charac-
terization in terms of strong representations are
given as follows.

Consider the feedback configuration
contributed by the plant L ∈ L and the controller
C ∈ L , where the closed-loop equation is

�

u1
u2

�

=
�

I C
−L I

��

e1
e2

�

.

The closed-loop system {L, C} is well posed if the
internal input [e1 e2]T can be expressed as a causal
function of the external input [u1 u2]T. This is equiv-

alent to requiring that
�

I C
−L I

�

being invertible.

The inverse is given by the transfer matrix

H(L, C) =
�

(I + C L)−1 −C(I + LC)−1

L(I + C L)−1 (I + LC)−1

�

.

Definition 1 (1) The closed-loop system {L, C} is
stable if each entry of H(L, C) belongs to S .

(2) The plant L is stabilizable if there exists a causal
system C ∈L such that {L, C} is stable. In this
case, C is said to be a stabilizing controller for
L.

(3) A family of plants L0, L1, . . . , Ln are simulta-
neously stabilizable if they admits a common
stabilizing controller.

Definition 2 [Ref. 16] Let M , N , M̂ , N̂ ∈S and L ∈
L .

(1) [M N]T is a strong right representation of L if
G (L) = Im [M N]T and there exist X , Y ∈ S
such that [Y X ][M N]T = I .
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(2) [−N̂ M̂] is a strong left representation of
L if G (L) = Ker [−N̂ M̂] and there exist
X̂ , Ŷ ∈ S such that [−N̂ M̂][X̂ Ŷ ]T = I ,
where G (L) is the graph of L, i.e., G (L) =
�

[x Lx]T : x ∈H , Lx ∈H
	

.

Remark 1 In fact, the strong representation is an
alternative, but equivalent, approach to the coprime
factorization in stability theory of linear systems.
More precisely, [M N]T is a strong right represen-
tation of L if and only if L = N M−1 with M−1 ∈ L
and M , N are right-coprime. Similarly, [−N̂ M̂] is
a strong left representation of L if and only if L =
M̂−1N̂ with M̂−1 ∈ L and M̂ , N̂ are left-coprime.

Let A be a Banach algebra containing identity
and A n×m be the set consisting of all the n×m
matrices with the elements inA .

Definition 3 [Ref. 17]A is completely finite if ev-
ery right invertible element R∈A 1×n is the first row
of an invertible matrix in A n×n for all n ¾ 1. A
Banach algebraA is stably finite if every right (left)
invertible element A ∈ A n×n is invertible in A n×n

for all n¾ 1.

Lemma 1 (Ref. 17) If Banach algebra A is com-
pletely finite, then it is stably finite.

Proposition 1 (Ref. 17) The nest algebra S is com-
pletely finite.

The lemmas below are used to formulate the
main results shown in the next section.

Lemma 2 (Ref. 15) A linear system L ∈ L is stabi-
lizable if and only if L has a strong right representa-
tion.

Lemma 3 (Ref. 11) Assume that [M N]T is a strong
right representation of L, and [V U]T and [−Û V̂ ]
are the strong left and right representations of C,
respectively. Then the followings are equivalent:

(1) {L, C} is stable.

(2) V̂ M + ÛN is invertible in S .

(3)
�

M −U
N V

�

is invertible in S 2×2.

MAIN RESULTS

In this section, we deal with the simultaneous stabi-
lization problem of three given plants L0, L1, and L2
with restriction of the transmission condition. The
following result is an extension of the classical Youla
Parametrization Theorem, which is stated in terms
of a strong right, but not both, representation.

Lemma 4 A linear system L is stabilizable if and
only if L admits a right representation [M N]T with
�

M −X̂
N Ŷ

�

invertible in S 2×2 for some X̂ , Ŷ ∈ S .

A linear system C ∈ L stabilizes L if and only if it

admits a strong right representation

�

Ŷ −NQ
X̂ +MQ

�

for

some Q ∈ S .

Proof : According to Lemma 2, L is stabilizable if and
only if L has a strong representation [M N]T. By the
complete finiteness of S , [M N]T is the first column

of an invertible matrix in S 2×2,

�

M −X̂
N Ŷ

�

. Note

that
�

M −(X̂ +MQ)
N Ŷ −NQ

�

=

�

M −X̂
N Ŷ

�

�

I −Q
0 I

�

.

By the stable finiteness of S , it is clear that
�

M −(X̂ +MQ)
N Ŷ −NQ

�

is invertible in S 2×2 for every

Q ∈S . Choose Q ∈S such that Ŷ−NQ is invertible

in L , then

�

Ŷ −NQ
X̂ +MQ

�

is a strong right representa-

tion of some linear system C ∈ L . According to
Lemma 3, C is a stabilizing controller for L. The
converse is obvious by Lemma 3. 2

In Ref. 13, the authors provide a design method
of simultaneously stabilizing controller for three
plants L0, L1, and L2 under the transmission con-
dition, which is characterized in the form of strong
representations of the plants L0, L1 and the con-
troller C2. Next, we give a simpler and useful
simultaneous stabilizability criterion of three plants
in terms of a strong right representation of only one
controller C2.

Theorem 1 Suppose that C0 stabilizes L0 and L1 and
C2 stabilizes L1 and L2. Let [V U]T be a right repre-

sentation of C2 with

�

V −X̂
U Ŷ

�

invertible inS 2×2. Set

T1 = (L1U+V )−1(L1Ŷ − X̂ ). Then L0, L1, and L2 are
simultaneously stabilizable if and only if there exists
Q ∈ S such that

�

L0U + V +(L0− L1)(I + C0 L1)
−1(C0V −U)

	−1

×
�

L0U + V +(L0− L1)(Ŷ −U T1)Q
	

(1)

and

I +(V + L2U)−1(L2− L1)(Ŷ −U T1)Q (2)

are both invertible in S . Moreover, C ∈ L stabilizes
L0, L1, and L2 if and only if C has a strong right
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representation

�

V − (Ŷ −U T1)Q
U +(X̂ + V T1)Q

�

for some Q ∈ S

such that (1) and (2) are invertible in S .

Proof : Define the operator

T2 = (L2U + V )−1(L2Ŷ − X̂ ). (3)

Suppose that [−N̂L j
M̂L j
] is a strong left representa-

tion of L j , j = 0,1, 2. For i = 1, 2, it follows from the
stability of {Li , C2} that N̂Li

U + M̂Li
V is invertible in

S , hence

Ti = (N̂Li
U + M̂Li

V )−1(N̂Li
Ŷ − M̂Li

X̂ ) ∈ S .

Assume that C2 has a strong left representation
[−N̂C2

M̂C2
]. By the complete finiteness of S ,

[−N̂C2
M̂C2
] can be extended to an invertible element

of S 2×2, say

�

Y X
−N̂C2

M̂C2

�

. It follows from the

stable finiteness of S that
�

Y X
−N̂C2

M̂C2

��

V −X̂
U Ŷ

�

=

�

Y V + X U −Y X̂ + X Ŷ
0 N̂C2

X̂ + M̂C2
Ŷ

�

is invertible in S 2×2, which implies that N̂C2
X̂ +

M̂C2
Ŷ is invertible in S . Then

Ŷ −U Ti = Ŷ −U(LiU + V )−1(Li Ŷ − X̂ )

= Ŷ − C2(LiC2+ I)−1(Li Ŷ − X̂ )

= (I + C2 Li)
−1(Ŷ + C2X̂ )

= (I + C2 Li)
−1M̂−1

C2
(N̂C2

X̂ + M̂C2
Ŷ )

is invertible in L . Then one can compute that

Li = (X̂ + V Ti)(Ŷ −U Ti)
−1, i = 1,2. (4)

Note that
�

Ŷ −U Ti −U
X̂ + V Ti V

�

=
�

0 I
−I 0

�

�

V −X̂
U Ŷ

�

�

−Ti −I
I 0

�

. (5)

According to the stable finiteness of S and (4), Li

admits a strong right representation

�

Ŷ −U Ti

X̂ + V Ti

�

with
�

Ŷ −U Ti −U
X̂ + V Ti V

�

invertible in S 2×2. Since

C0X̂ + C0V T1+ Ŷ −U T1 = (I + C0 L1)(Ŷ −U T1)

is invertible in L , the operator

R= (C0X̂ + C0V T1+ Ŷ −U T1)
−1(C0V −U) (6)

is well-defined. Let [−N̂C0
M̂C0
] be a strong left

representation of C0. It follows from the stability
of {L1, C0} that

R=
�

M̂C0
(X̂ + V T1)+ N̂C0

(Ŷ −U T1)
	−1

× (N̂C0
V − M̂C0

U) ∈ S . (7)

Observe that

V − X̂ R− V T1R

= V − (X̂ + V T1)(C0X̂ + C0V T1 + Ŷ −U T1)
−1(C0V −U)

= V − L1(I + C0 L1)
−1C0V + L1(I + C0 L1)

−1U

= (I + L1C0)
−1(I + L1C2)V.

Hence V − X̂ R− V T1R is invertible in L . It follows
from (6) that

C0 = (U + Ŷ R−U T1R)(V − X̂ R− V T1R)−1. (8)

Again applying the stable finiteness of S ,

�

V − X̂ R− V T1R −(X̂ + V T1)
U + Ŷ R−U T1R Ŷ −U T1

�

=
�

0 I
−I 0

�

�

Ŷ −U T1 −U
X̂ + V T1 V

�

�

−R −I
I 0

�

(9)

is invertible in S 2×2. Therefore,

�

V − X̂ R− V T1R
U + Ŷ R−U T1R

�

is a strong right representation of C0. According to
Lemma 3 and Lemma 4, L0, L1, L2 are simultane-
ously stabilized by a linear system C if and only if C

has a strong right representation

�

V − (X̂ + V T1)Q
U +(Ŷ −U T1)Q

�

,

where Q ∈ S satisfies

M̂Li
(V − (X̂ + V T1)Q)+ N̂Li

(U +(Ŷ −U T1)Q) (10)

being invertible inS for i = 0,2. Since M̂L2
V+N̂L2

U
is invertible in S , for i = 2, (10) is invertible in S
if and only if

(M̂L2
V+N̂L2

U)−1
�

M̂L2
V−M̂L2

(X̂+V T1)Q+N̂L2
U+N̂L2

(Ŷ−U T1)Q
�

= I +(M̂L2
V + N̂L2

U)−1(N̂L2
− M̂L2

L1)(Ŷ −U T1)Q

= I +(V + L2U)−1(L2 − L1)(Ŷ −U T1)Q
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is invertible in S . Since C0 stabilizes L0, we have

M̂L0
(V − X̂ R− V T1R)+ N̂L0

(U + Ŷ R−U T1R)

= M̂L0

�

L0U + V +(L0 − L1)(Ŷ −U T1)R
�

= M̂L0

�

L0U + V +(L0 − L1)(Ŷ −U T1)

×(C0X̂ + C0V T1 + Ŷ −U T1)
−1(C0V −U)

�

= M̂L0

�

L0U + V +(L0 − L1)(I + C0 L1)
−1(C0V −U)

�

is invertible in S . Then, for i = 0, (10) is invertible
in S if and only if
�

M̂L0
(V − (X̂ + V T1)R)+ N̂L0

(U +(Ŷ −U T1)R)
�−1

×
�

M̂L0
V − M̂L0

(X̂ + V T1)Q+ N̂L0
U + N̂L0

(Ŷ −U T1)Q
�

=
�

L0U + V +(L0 − L1)(I + C0 L1)
−1(C0V −U)

�−1

×
�

L0U + V +(L0 − L1)(Ŷ −U T1)Q
�

is invertible in S . The proof is complete. 2
As a consequence, we give a sufficient condition

for the simultaneous stabilizability of three plants.
The criteria listed in the following are much simpler
than those given in Theorem 1 in Ref. 14.

Corollary 1 Suppose that C0 stabilizes L0 and L1 and
C2 stabilizes L1 and L2. Let [V U]T be a strong right
representation of C2. If




(L1U + V )−1(I + L1C0)(I + L0C0)
−1

× (L0− L1)(I + C0 L1)
−1(C0V −U)





< 1, (11)

then L0, L1, and L2 are stabilizable.

Proof : Observe that

∆= L0U + V +(L0− L1)(I + C0 L1)
−1(C0V −U)

= L0U + L0(I + C0 L1)
−1C0V +(I + L1C0)

−1V

− L0(I + C0 L1)
−1U + L1(I + C0 L1)

−1U

= L0C0(I + L1C0)
−1 L1U + L0C0(I + L1C0)

−1V

+(I + L1C0)
−1V +(I + L1C0)

−1 L1U

= (I + L0C0)(I + L1C0)
−1(L1U + V ).

Therefore, (1) becomes

∆−1
�

∆−(L0− L1)(I+C0 L1)
−1(C0V −U)+(L0− L1)(Ŷ −U T1)Q

�

= I−∆−1(L0−L1)(I+C0 L1)
−1(C0V−U)+∆−1(L0−L1)(Ŷ−U T1)Q

Since ‖∆−1(L0−L1)(I+C0 L1)−1(C0V−U)‖< 1 from
(11), we have ∆−1(L0− L1)(I+C0 L1)−1(C0V −U) ∈
S . Then
�

I −∆−1(L0− L1)(I + C0 L1)
−1(C0V −U)

�−1

=
∞
∑

n=0

�

∆−1(L0− L1)(I + C0 L1)
−1(C0V −U)

�n ∈ S ,

and then one can choose Q = 0 such that (1) and
(2) are both invertible in S . 2

Remark 2 If one of the stabilizing controllers in
transmission condition is stable, the simultaneous
stabilizability criteria can be characterized without
any information about strong representations.

Corollary 2 Suppose that C0 ∈ L stabilizes L0 and
L1, and C2 ∈ S stabilizes L1 and L2. Then a linear
system C ∈ L simultaneously stabilizes L0, L1, L2
if and only if C has a strong right representation
�

I − (I + C2 L1)−1Q
C2+ L1(I + C2 L1)−1Q

�

, where Q ∈ S such that

(I + L1C2)
−1(I + L1C0)(I + L0C0)

−1

×
�

I + L0C2+(L0− L1)(I + C2 L1)
−1Q

�

(12)

and

I +(I + L2C2)
−1(L2− L1)(I + C2 L1)

−1Q (13)

are both invertible in S .

Proof : If C2 ∈ S , then C2 has a strong right repre-

sentation [I C2]T with
�

I 0
C2 I

�

invertible in S 2×2.

The result is clear by Theorem 1. 2

EXAMPLE

In this section we present an example to demon-
strate the effectiveness and applicability of the pro-
posed method in Theorem 1. Consider the following
three plants,

L0 =























−1
a1 2
a2 b2

8
3

a3 b3 0 15
4

...
...

...
. . .

. . .

an bn 0 · · · 0 n2+2n
n+1

...
...

... · · ·
...

. . .
. . .























,

L1 = I , and

L2 =





















1
2
−1 2

22 −23 4
−23 24 −23 2

25 −26 25 −23 4
−26 27 −26 24 −23 2

...
...

...
...

... · · ·
. . .





















,
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where {an : n ¾ 1} and {bn : n ¾ 2} are two
bounded sequences in C. Note that the computa-
tion for the strong representation of L0 is compli-
cated, in fact there is no explicit method to com-
pute the strong representation of general infinite-
dimensional lower-triangular operator. However, it
is easy to check that C0 = diag{0,0, 3,4, . . .} is a
common stabilizer for L0, L1, and C2 = I simulta-
neously stabilizes L1, L2. Clearly, [I C2]T is a strong

right representation of C2 with
�

I 0
C2 I

�

invertible

in S 2×2. That is, the parameters in Theorem 1 are
chosen to be U = V = Ŷ = I and X̂ = 0. We compute
that

L0U + V +(L0− L1)(I + C0 L1)
−1(C0V −U)

= L0+ I +(L0− I)(I + C0)
−1(C0− C2)

= diag
§

2,2,
9
2

,
32
5

, · · · ,
2n2+4n+2

n+2
, . . .

ª

,
(14)

then

�

L0U + V +(L0 − L1)(I + C0 L1)
−1(C0V −U)

�−1

×
�

L0U + V +(L0 − L1)(Ŷ −U T1)Q
�

=



















0
a1
2

3
2

2a2
9

2b2
9

2·11
3·9

5a3
32

5b3
32 0 5·19

4·32
...

...
...

. . .
. . .

(n+2)an
2n2+4n+2

(n+2)bn
2n2+4n+2 0 · · · 0

...



















+





















− 1
2a1

4
1
4

a2
9

b2
9

5
27

5a3
64

5b3
64 0 5·11

64·4
...

...
...

. . .
. . .

(n+2)an
2(2n2+4n+2)

(n+2)bn
2(2n2+4n+2) 0 · · · 0

...





















Q.

(15)

Also, we compute

I +(V + L2U)−1(L2 − L1)(Ŷ −U T1)Q

= I +(I + L2)
−1(L2 − I)(I + C2 L1)

−1Q

= I +
1
2
(I + L2)

−1(L2 − I)Q

= I +

























− 1
6

− 2
32

1
6

2
32

4
5 − 2

3
4
5

3
10

− 22

33
4
5

22

32
4
5 − 2

3
4
5

1
6

22

33
42

52 − 22

32
42

52
2
3

42

52 − 2
3

4
5

3
10

− 23

34
42

52
23

33
42

52 − 22

32
42

52
22

32
4
5 − 2

3
4
5

1
6

...
...

...
...

...
...

























Q.

(16)

Choosing Q = diag{−2, 0,0, 0, . . .} gives

I +(V + L2U)−1(L2− L1)(Ŷ −U T1)Q

=























4
3
22

32 1
− 22

32
4
5 0 1

23

33
4
5 0 0 1

− 23

33
42

52 0 0 0 1
...

...
...

...
. . .

. . .
cn 0 0 0 · · · 0 1























,

where Cn =

¨

−( 2
3 )

k+1( 4
5 )

k, n= 2k,

( 2
3 )

k+2( 4
5 )

k, n= 2k+1.
Since lim

n→∞
Cn = 0, we have I+(V+L2U)−1(L2−

L1)(Ŷ −U T1)Q invertible in S . Note that

�

L0U + V +(L0 − L1)(I + C0 L1)
−1(C0V −U)

�−1

×
�

L0U + V +(L0 − L1)(Ŷ −U T1)Q
�

=

























1
0 3

2
0 2b2

9
2·11
3·9

0 5b3
64 0 5·19

4·32

0
... 0

.. .
. . .

0 (n+2)bn
2(2n2+4n+2) 0 . . . 0 (n+2)(n2+3n+1)

(n+1)(2n2+4n+2)
...

...
... · · ·

...
...

























.

Since the sequence {bn : n¾ 2} is bounded, we have
lim

n→∞
(n+2)bn/2(2n2+4n+2) = 0. It is clear that

any diagonal element of the above matrix is non-
zero and

lim
n→∞

(n+2)(n2+3n+1)
(n+1)(2n2+4n+2)

=
1
2

,

then
�

L0U + V +(L0− L1)(I + C0 L1)
−1(C0V −U)

�−1

×
�

L0U + V +(L0− L1)(Ŷ −U T1)Q
�

is invertible in S .
According to Theorem 1, we conclude that L0,

L1, and L2 can be simultaneously stabilized. Again
applying Theorem 1, we can construct a simultane-
ous stabilizer for L0, L1, and L2 as

C = (U +(X̂ + V T1)Q)(V − (Ŷ −U T1)Q)
−1

= (C2+ L1(I + C2 L1)
−1Q)(I − (I + C2 L1)

−1Q)−1

= (I +
Q
2
)(I −

Q
2
)−1

= diag
§

1
2

,1, 1,1, 1, . . .
ª

.
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Since the parameters an and bn of L0 are irregu-
lar, the computation of strong representation for L0
is complicated. The previous work in Refs. 14, 15
has demonstrated their applications. Compared
with the criteria in Theorem 1, the design method
of simultaneous stabilizing controllers in Theorem 1
really is quite simple when the strong representation
of a controller in transmission condition is clear.

CONCLUSION

This paper has dealt with the simultaneous stabiliza-
tion problem of three discrete time-varying systems
from the transitivity version. This simultaneous sta-
bilizability criteria extends the results in Refs. 14, 15
by requiring only the strong representation of a
controller in the transmission condition. It is noted
that the main results can cover all the discrete-
time time-varying linear system with the realization
described by the difference equations

xn+1 = an xn+ bnun, x0 = 0,

yn = cn xn+ dnun,

where xn, un, yn ∈ Ck are the state, the input,
and the output of the plant, an, bn, cn, dn are
complex matrices of appropriate dimensions.
Clearly, the time-varying linear system is
the operator from u = (u0, u1, . . . , un, . . .) to
y = (y0, y1, . . . , yn, . . .) with matrix representation












d0
c1 b0 d1

c2a1 b0 c2 b1 d2
c3a2a1 b0 c3a2 b1 c3 b2 d3

...
...

...
...

. . .













.
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