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ABSTRACT: Trie is a data structure with many applications. High space usage is the major drawback of the trie. The
order-containing trie optimizes the space usage of the trie by rearranging symbols of strings. We present a new heuristic
for building order-containing tries with small space. The heuristic is based on the following observation. For a given
string set P, by moving the symbols on a position to the first position of strings in P, the trie of the resulting pattern set
may have fewer nodes than that of the trie of P. We present an algorithm to find positions that yield the smallest such
trie. The algorithm runs in O(‖P‖) time and uses O(|P| log|P|) bits space, where ‖P‖ is the number of total symbols in
P, and |P| is the number of patterns in P. By using this method recursively in trie constructions, we can build a trie
with fewer nodes than the trie of P. We conduct several experiments that show the new heuristic builds smaller tires
than previous work.
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INTRODUCTION

The trie1 data structure is used in many applica-
tions, including bioinformatics, pattern matching,
and computer security. High space usage is the
major drawback of the trie. Much research focused
on reducing the space of tries. Patricia tree2, also
called path compressed trie, compresses the trie by
deleting the nodes with one fan-out and labelling
edges with a string, the number of nodes in the
patricia tree of a string set P = {p1, p2, . . . , pk} over
an alphabet Σ is not greater than 2|P| + 1. Aho-
Corasick automaton3 augments the trie with failure
links. The multi-pattern matching can be solved in
linear time and space by AC autotomata. Recently,
Belazzougui et al4 used succinct data structures to
implement AC automata with small space without
slowing down.

De Maine and Rotwitt5 found that the order
in which the characters are tested in building the
trie has influences on the size of resulting tries.
Using this idea, Comer and Sethi6 defined the order-
containing trie (O-Trie). In an O-Trie the characters
are tested in different orders along different paths
from the root to leaves. The O-Trie construction
reads the patterns in a specific order other than in
serial. The orders of testing the characters are con-
tained in the trie nodes. Using alternative orders,

the resulting O-Tries have some interesting features,
such as with fewer number of nodes. Comer and
Sethi6 proved that to generate an O-Trie with the
minimal number of nodes is NP-complete. Comer7, 8

presented heuristic methods to build small O-Tries
and gave thorough analysis. These methods may
produce a trie larger than the trie for the original
pattern set.

We present a new heuristic for the minimal
full trie problem. Our approach guarantees that
the number of nodes of the resulting O-Trie is not
greater than that of the trie. Our method has
the same time complexity of the greedy method of
Comer7. It is based on a solution of the following
problem. Assume that the patterns in P are of the
same length. By moving the symbol on the position
i of each pattern to the first position, we have a new
set of patterns, say P(i). The problem is to search for
a position i such that the trie of P(i) has the smallest
number of nodes. We present an algorithm that
solves the problem in O(‖P‖) time and O(|P| log|P|)
bits space, where ‖P‖ is the sum of lengths of all the
patterns in P, and |P| is the number of patterns in
P. By applying the algorithm recursively to the trie
construction, we can generate O-Tries such that the
number of nodes is not greater that of the tries.
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Fig. 1 Examples of an O-Trie and tries of P =
{aaa, aba, bab, cba}, where terminal nodes are double
circled. The number in a node q is Pos(q).

PRELIMINARIES

Let Σ denote the alphabet of |Σ| symbols and ε the
empty string. Let x = x[1]x[2] · · · x[l] be a string
over Σ of length l. Given strings x and y , we say
that x is a prefix of x y . Let Pref(P) denote the set
of all prefixes of patterns in P. Define the trie of a
pattern set as follows.

Definition 1 The trie of a string set P is a tree with
edges labelled by a symbol in Σ, the set of nodes
is V = Pref(P), the set of edges is E = {(x , a, xa) |
x , xa ∈ Pref(P), a ∈ Σ}. We use Trie(P) to denote
the trie of P.

The node-depth of a trie node u, denoted by
depth(u), is the number of nodes on the path from
the root to u. We assume that all strings in the
dictionary are of the same length L. The trie nodes
are classified into levels according to their depths,
the root is in level 1, and children of a node in level
l are in level l + 1. The nodes corresponding to
patterns in P are called terminal nodes. The subtree
rooted at the node pointed by an a-edge from the
root of a tree is called an a-subtree of the tree.
Throughout the paper we use T to denote Trie(P).
We denote by Size(T ) the number of nodes in T .
An example of the trie is given in Fig. 1, the upper
left tree.

ORDER-CONTAINING-TRIE

Definition 2 A fractional string is a string with
some positions that have no symbol, called blank
positions.

We use symbol� to represent a blank position, when
� is not in Σ. A fractional string is thus a string over
Σ ∪ {�}. Let p be a fractional string. If u and p
are of the same size and for each position i of p,
u[i] = p[i] or u[i] = �, we call u a fractional factor
of p, or u matches p. Function facIns(u, i, c) sets
the blank position i of u to c ∈ Σ and returns the
resulting fractional string. For examples, a�a and
aa� are fractional strings, a�a matches aaa, and
facIns(a�a, 1, b) = aba.

We introduce the O-Trie using the notion of the
fractional string. The set of nodes of an O-Trie, say
V , is a subset of fractional factors of patterns in
P, the root q0 is �L , a string with � repeats for L
times. Each O-Trie involves a unique function Pos
that is defined on each non-terminal node q of the
O-Trie and returns a blank position of q; if there is no
blank position in q, Pos(q) is undefined. For q ∈ V ,
we denote the set of patterns in P that match q by
PatSet(q). The set of symbols on position Pos(q) in
each PatSet(q) is denoted by A(q). The set of edges
starting from q is defined as

E(q) = {(q, a, facIns(q, Pos(q), a)) | a ∈ A(q)}.

The nodes corresponding to patterns in P are termi-
nal. An example of the O-Trie is given in Fig. 1, the
upper right trie. Let q be the node pointed by the
a-edge from the root of this O-Trie. We have that
q = ��a, PatSet(q) = {aaa, aba, cba}, and A(q) =
{a, b}, and Pos(q) = 2.

An O-Trie is a tree. If not, assume that there
exists a node such that there are two paths from the
root to this node. Let i be the first position where
the nodes are different in the two paths. According
to the definition of O-Trie, the fractional string of
the two nodes have one mismatch on a position.
Thus descendants of the two nodes are all different,
which contradicts the assumption.

For an edge (q, a, q′) in an O-Trie, node q is the
parent node of q′, denoted by q = parent(q′). A
trie can be viewed as an O-Trie such that Pos(q) =
depth(q). Comparing with a trie, O-Tries of the
same pattern set may have different shapes and
numbers of nodes. This difference is due to the Pos
function of the O-Trie.
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CONSTRUCTION OF O-TRIES

We give a construction algorithm of an O-Trie. The
implementation of function Pos will be given later
when we introduce an instance.

The following is the framework of the breadth-
first construction algorithm of O-Tries, called
BuildOT. The algorithm builds an O-Trie level by
level. By definition, a node of an O-Trie corresponds
to a fractional factor of some patterns in P. In
generating level i nodes from nodes in level i − 1,
each level i − 1 node is extended by adding edges
and children. We select a blank position of the i−1
level node and fill the bank position with a letter
to form a new fractional factor that is a child. In
the algorithm, we use PosSet(s) to denote the set of
blank positions of node s and PatSet(s) to denote
the set of patterns that match s. Set A is the set
of symbols on position pos of each PatSet(s), and
PS[a] is the set of patterns in PatSet(s) such that the
symbol on the position pos is a.

Algorithm 1 Procedure BuildOT(P, L)
Step 1: Create a node q0
Step 2: PatSet(q0)← P
Step 3: PosSet(q0)← {1, . . . , L}
Step 4: Expand(q0)

Algorithm 2 Procedure Expand(s)
Step 1: if PosSet(s) =∅ then return
Step 2: pos← Pos(s)
Step 3: set all elements of PS to ∅, set A to ∅
Step 4: for each p ∈ PatSet(s) do

1: a← p[pos]

2: if a 6= ε then
add p to PS[a]
if a /∈ A then Add a to A

Step 5: for each a ∈ A do

1: create a node s′

2: create an edge (s, a, s′)

3: PatSet(s′)← PS[a]

4: PosSet(s′)← PosSet(s)−{pos}
5: Expand(s′)

Construction of O-Tries with fewer nodes

In this section, we present an instance of function
Pos such that the corresponding O-Tries have fewer
nodes than that of tries.

Let p be a string of length L. For 1 ¶ l ¶
L, we construct a string u such that u[1] = p[l],
u[ j] = p[ j − 1] for 2 ¶ j < l, and u[ j] = p[ j] for

j > l. We denote u by p(l). For P, define P(l) =
{p(l)1 , p(l)2 , . . . , p(l)k }.

We define function ML(P) such that for a
pattern set P, ML(P) returns a level x of P
such that Size(Trie(P(x))) is the minimum among
Size(Trie(P(l))), 1¶ l ¶ L.

We use ML to implement Pos in BuildOT(P) as
follows. Given a node s, we can build a pattern
set from PatSet(s) and PosSet(s). Let PatSet(s) =
{ps1, . . . , pst}, PosSet(s) = {l1, . . . , lc}, and ps′i =
psi[l1]psi[l2] · · · psi[lc]. We define the pattern set
Pat(s) = {ps′1, . . . , ps′t}. We implement Pos(s) by
ML(Pat(s)). According to the definition of ML we
have the following result.

Theorem 1 Let P be a pattern set. Let T be the
trie generated by BuildOT(P) using ML(Pat(·)) as
Pos(·). We have Size(T )¶ Size(T ), where T denotes
Trie(P).

When context is clear, we use T l to denote
Trie(P(l)). The time and space complexities of
computing ML(P) by building each T l are O(‖P‖2)
and O(‖P‖). We present here a faster algorithm
that only scans P for one pass, which has time and
space complexities O(‖P‖) and O(|P|), respectively.
We first present a naive algorithm based on a rela-
tionship between T and T l , and then give a faster
method.

A naive algorithm to compute function ML

Given T , we construct the a-subtree of T l , 1 ¶ l ¶
L, as follows.
Step 1: Mark all the l-level nodes that have an a-

edge, and mark the subtrees rooted at the nodes
pointed by these a-edges. Mark the paths from
marked l-level nodes to the root.

Step 2: For each marked l-level node s, redirect the
edge, which points to s, to the destination of the
a-edge from s.

Step 3: Delete all marked l-level nodes and edges
from them. Delete all un-marked nodes and
edges.
Using this method, we generate the a-subtree of

T l for each symbol a to have T l , and the function
ML is then computed. We give an illustration in
Fig. 2.

Next, we give a faster method base on the
followed observation. The differences between T
and T l lie in the first l levels, for the subgraphs of
T and T l from level l+1 to level L are isomorphic.
Thus the difference of the number of nodes of T
and T l equals the difference of the number of nodes
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Fig. 2 The construction of Trie(P(2)). Dark nodes and
edges are marked, and dotted ones are deleted. The trees
in the first line are marked Trie(P)’s according to a and b.
The trees in the second line are a-subtree and b-subtree
of Trie(P(2)) generated from the marked tries. Trie(P(2))
is built from the two trees.

in the first l levels of T and T l . Define ∆(l) =
Size(T l) − Size(T ). The minimal T l corresponds
to the minimal ∆(l). We count the number of
nodes in the first l levels of T l efficiently from
T without building T l explicitly. Given T , the
counting procedure CountT(l, a) is as the following.

Algorithm 3 Procedure CountT(l, a)
Step 1: Mark the root, count ← 1
Step 2: for each l-level node s that has a-edge do

while s is not marked do

1: mark s and the edge to s

2: count ← count +1

3: s← parent(s)

Step 3: return count

CountT(l, a) first marks the root of T . For each l-
level node s that has an a-edge, it marks the path
from s to the root and counts the newly marked
nodes. In the procedure, after the for loop, the tree

of the marked nodes and edges is isomorphic to the
first l levels of the a-subtree of T l , and we know
the number of nodes. We summarize the result as
follows.

Proposition 1 Given the trie T of P, procedure
CountT(l, a) returns the number of nodes of the first
l levels of a-subtree of T l .

Proof : Each path from root to an l-level node with
an a-edge spells out a prefix of length l, denote the
set of such prefixes by B. Procedure CountT(l, a)
marks the trie of B and returns the number of nodes
of the trie. By appending a to the end of each string
in B, we have the set of prefixes of P of length l +1
that end with a. Hence the trie of B is isomorphic
to the first l levels of the a-subtree of T l . Thus
procedure CountT(l, a) returns the number of nodes
of the first l levels of the a-subtree of T l . 2

Properties of trees used to implement ML

Procedure CountT works when T is given. To count
the nodes in T l , many nodes are accessed redun-
dantly by CountT(l, a) for many a’s. We introduce
a faster and space efficient algorithm to count T l .
The method does not need T or backtracking. It
generates at most |P| nodes in the running and the
time complexity for compute ML(P) is O(‖P‖).

We first give some necessary notions. Let n1
and n2 be nodes in the l level of T . We denote
the least common ancestor (LCA) of n1 and n2 by
n = LCA(n1, n2). The encounter distance between
n1 and n2 is defined as D(n1, n2) = l −depth(n).

Definition 3 Define a partial order < on the set of
nodes of T as follows.
(i) If n1, . . . , nk are children of a node, then n1 <

n2 < · · ·< nk.
(ii) For nodes n, m in the same level, if parent(n)<

parent(m), then n< m.
Let n, m be nodes in the same level and n < m. If
there does not exist node n′ such that n < n′ < m,
then n is called the predecessor of m, denoted by
n= pre(m).

The order in which the nodes are generated by
BuildOT(P) satisfies Definition 3. The computation
of the number of nodes of T l and that of encounter
distance are based on the following results on trees.

Proposition 2 Let n1 < n2 < n be nodes in the same
level. We have D(n, n2)¶ D(n, n1).

Proof : If LCA(n1, n) = LCA(n2, n) = q, then
D(n, n2) = D(n, n1). Let LCA(n1, n) 6= LCA(n2, n).
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Then LCA(n1, n2) is either LCA(n1, n) or LCA(n2, n).
Let q1 = LCA(n, n1) and q2 = LCA(n, n2). If
D(n, n2) > D(n, n1), then q2 = LCA(n1, n2). Let q′2
be the node in the path from n2 to m of the same
depth of q1. We have q1 < q′2, for n1 < n2. As
q1 is an ancestor of n and q′2 is an ancestor of n2,
we have n < n2, which contradicts n > n2. Hence
D(n, n2)¶ D(n, n1). 2

The number of nodes in the first l levels of
the a-subtree of T l is computed by the encounter
distances between adjacent nodes according to < in
the level l of the subtree.

Proposition 3 Let n1 < n2 · · · < nk be the set of l-
level nodes that have an a-edge. The number of
nodes in the first l levels of a-subtree of T l is l +
∑k

j=2 D(n j , n j−1).

Proof : In the running of CountT(l, a), we denote the
tree of the marked nodes after the jth iteration by
T j . After backtracking n1, we marked a path from
n1 to the root, say T1, to have Size(T1) = l. After
the tth iteration of CountT(l, a), we assume that

Size(Tt) = l +
t
∑

j=2

D(n j , n j−1)

= Size(Tt−1)+ D(nt−1, nt).

In the (t+1)th iteration of CountT(l, a), let q be the
first node in Tt in the path from nt+1 to the root.
We have that q is the LCA of nt and nt+1, which is
also the deepest among LCAs of n j and nt+1. If it
is not the case, then there are some nodes on the
path that is a part of Tt , contradicting the definition
of q. By Proposition 2, D(nt+1, nt) is the minimum
among {D(nt+1, n j) | 1¶ j ¶ t}. Hence the number
of nodes in the path that is not q is D(nt+1, nt). Thus

Size(Tt+1) = Size(Tt)+ D(nt , nt+1)

= l +
t+1
∑

j=2

D(n j , n j−1).

By Proposition 1, the number of nodes of the first l
levels of T l = l +

∑k
j=2 D(n j , n j−1). 2

The encounter distance between two nodes in
the same level is computed as follows.

Proposition 4 Let n1 < n2 · · ·< nc be the set of nodes
in the same level. For i < j, we have D(ni , n j) =
Max{D(nt−1, nt) | i < t ¶ j}.

Proof : For j = i + 1, D(ni , n j) = Max{D(nt−1, nt) |
i < t ¶ j}. Assume that for j > i + 1, D(ni , n j) =

nj

ni

m

nt+1

nt

...

...

nj

ni

m

nt+1

nt

...

...

Fig. 3 There exist adjacent nodes nt and nt+1, where i ¶
t < j such that LCA(nt , nt+1) = LCA(ni , n j).

Max{D(nt−1, nt) | i < t ¶ j}. If D(ni , n j) =
D(ni , n j+1), then D(ni , n j+1) =Max{D(nt−1, nt) | i <
t ¶ j + 1}. Assume that D(ni , n j) < D(ni , n j+1).
Let m = LCA(ni , n j+1). We have LCA(n j , n j+1) = m.
Hence we prove the proposition. 2

An illustration of Proposition 4 is shown in
Fig. 3.

Let n1 < n2 · · · < nc be the set of l level nodes.
Define DP l as an array of k entries such that
DP l[i] = LCA(ni , ni−1), n0 = n1. According to
Proposition 4, the computation of D(ni , n j) = l −
depth(LCA(ni , n j)), i > j, can be reduced to the
problem of range minimum query (RMQ) on DP l .
The problem of RMQ has been studied extensively.
For a sequence of n integers, the work9–12 solve
the RMQ problem in O(1) query time using O(n)
space and O(n) preprocessing time. The array DP l

can be computed from DP l−1 using the following
observation.

Proposition 5 Let s, s′ be nodes such that s= pre(s′).
If s and s′ are siblings, we have D(s, s′) = 1, otherwise,
D(s, s′) = D(parent(s), parent(s′))+1.

A faster algorithm to compute ML

Based on Proposition 3–5, we design the algorithm
Cholevel to compute ∆(1), . . . ,∆(L) in building T
breadth-firstly. In contrast to procedure CountT, any
node is accessed once without redundant visiting.
In expanding the nodes in level l, the algorithm
computes ∆(l). In the running, the algorithm only
keeps the information of some nodes in level l and
l +1, the number of which does not exceed |P|+1.

In round l, the algorithm generates the nodes
in level l + 1 in the increasing order defined in
Definition 3, and computes the array of the depth
of the LCA node of each (l + 1)-level node and its
predecessor. We build the RMQ data structure for
the array. Using the RMQ structure, we compute the
encounter distance between nodes (Proposition 4)
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in O(1) time and count the number of nodes of the
first l levels of the trie T l by Proposition 3. we
compute∆(l) using the number of nodes of the first
l levels of the trie T . By finding out the l with the
maximum ∆(l), we implement the function ML.

Algorithm 4 Procedure Cholevel(n)

FS← {n}; NS← ∅; l ← 1; Ntrie← 1; NOtrie← 1;
∆← 0

for each pos ∈ PosSet[n] do

for each s ∈ FS do

for each p ∈ PatSet[s] do

if edge (s, p[pos], s′) does not exist then

Create node s′ and edge (s, p[pos], s′)

Add s′ to NS

DP[s′]← l

if s′ is the first child of s being created

then DP[s′]← DP[s]

Add p to PatSet[s′]

Build the RMQ structure for {DP[t] | t ∈ NS}
Set all entries of LAST to n

for each s ∈ NS do

Let a be the label of the edge to s

NOtrie← NOtrie+ l −RMQ(s, LAST[a])

LAST[a]← s

if Ntrie+ |NS| −NOtrie>∆ then

∆← Ntrie−NOtrie

OptLevl← pos

FS← NS; NS←∅; l ← l +1

Ntrie← Ntrie+ |NS|; NOtrie← 1

return OptLevl

In the algorithm, l is the number of levels processed,
NOtrie is the number of nodes in the first l levels of
T l , Ntrie is that of T , and pos is the position of the
pattern set being used. The algorithm uses FS to
keep all the nodes in level l that are not expanded
and NS to keep the children of nodes in level l.
For array DP, DP[s] = depth(LCA(s, pre(s))). For
a node s in level l, D(s, pre(s)) = l − DP[s]. Ac-
cording to Proposition 5, DP[s] is computed from
DP[parent(s)]. The RMQ structure is built upon
the array of DP values of nodes in NS. Let n1 <
n2 < · · · < nc be the set of nodes in NS. Function
RMQ(ni , n j), i < j, returns the minimum value in
DP[ni], DP[ni+1], . . . , DP[n j].

Let n′ be the newly generated node and pointed
by an edge labelled by a. Table LAST has |Σ|
entries for each character in Σ, where LAST[a] is
the node in NS, which is the latest node being
created and pointed by an a-edge. By definition,
the encounter distance between n′ and LAST[a] is
l − depth(LCA(n′, LAST[a])). The number of nodes
in the first l levels of T l can be computed from
Proposition 3. Cholevel returns the l with the
maximum ∆(l).

Time and space complexities

Theorem 2 Let P be a set of L-length strings. The
level 1 ¶ l ¶ L such that T l has the minimum
number of states can be computed in O(‖P‖) time and
O(|P| log|P|) space.

Proof : The algorithm Cholevel computes ML(P) by
finding the maximum among ∆(1), . . . ,∆(L). For
the running-time analysis, we divide the time into
two components. The first component consists of
generating NS from FS and DP values of nodes of
NS from that of FS. It takes time proportional to the
number of visited nodes. The total number of visited
nodes is just the number of nodes in T , which is
O(‖P‖).

The second component consists of building the
RMQ structure for DP values of nodes in NS and
computing RMQ of each node and its precedent in
NS. It takes time proportional to the number of
visited nodes. The total number of visited nodes is
the number of nodes in T . According to Refs. 9–12,
RMQ structure is built in linear time and answers the
query in O(1) time. The time is O(‖P‖). Thus the
total time of the two components is O(‖P‖).

The space used by FS and NS is not greater than
|P|. The total number of elements in PatSet(n) of
nodes in FS, NS, and DP is not greater than |P|+
1. Each entry in these arrays, index or value, uses
O(log|P|) bits. The total used space is O(|P| log|P|)
bits. 2

EXPERIMENTS

We implemented the algorithms in C to compare
with previous work. We conducted experiments on
a machine with an Intel i7-4610M Haswell 3.0 GHz
processor, 8 GB RAM, running 64 bit CentOS 7.
Programs are compiled by GCC. We tested with
random pattern sets that are generated using the
uniform random distribution. The parameters of
pattern sets include the number of patterns |P|, the
length of each pattern |p|, and the size of alphabets
|Σ|.
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Table 1 Results of pattern sets of 4000 patterns when each pattern is of length 20. The size of alphabets ranges from
2–128.

|Σ| 2 4 8 16 32 64 128

Trie 36 794 59 346 66 913 70 296 72 320 72 790 75 220
Greedy 30 355 52 976 62 641 68 340 71 176 71 503 74 564

(18%) (11%) (6%) (3%) (2%) (2%) (0.87%)
O-Trie 28 979 52 744 62 397 67 613 71 058 71 503 74 523

(21%) (11%) (7%) (4%) (2%) (2%) (0.93%)

Table 2 Results on pattern sets of 4000 patterns when the size of alphabet is 4. The length of patterns ranges from
10–140.

|p| 10 20 40 60 80 100 140

Trie 19 280 59 271 139 477 219 216 299 516 379 305 539 307
Greedy 17 543 53 016 124 365 196 254 267 023 339 631 483 063

(9%) (11%) (11%) (10%) (11%) (10%) (10%)
O-Trie 17 313 52 821 124 398 195 950 264 484 340 048 482 880

(10%) (11%) (11%) (11%) (12%) (10%) (10%)

We compared the number of nodes of tires and
the O-Tries generated by the greedy heuristic7 with
our method. The results are given in Table 1–
Table 5, where each entry is the number of nodes
of a trie or O-Trie. The improvement ratio between
an O-Trie T and a trie T is defined as 1− |T |/|T |.
We give the improvement ratios in the tables under
the size of each O-Trie, each ratio is expressed as
a percentage. The results for random patterns are
given in Table 1–Table 3.

The results for real patterns are given in Table 4
and Table 5. The DNA sequences are from Homo
sapiens chromosome 21. The English texts are from
the novel ‘Mona Lisa Overdrive’. The length of

patterns is 40 symbols. The patterns are consecutive
strings picked from texts. In all cases (Table 1–
Table 5), our method generates O-Tries that are
smaller than that of the greedy method. Table 1
shows that when the size of the pattern sets is fixed,
both methods perform better on short alphabets.
For large alphabets, a better level of space saving
can be achieved on pattern sets of larger size, which
is implied by Table 5.

Discussion

The results of Table 1 show the improvement
achieved by the new algorithm and the greedy al-
gorithm over the trie. The improvements decline as

Table 3 Results on pattern sets of patterns of length 20 on alphabet of size 16. The number of patterns in each set
ranges from 100–12 000.

|P| 100 500 1000 2000 4000 8000 12 000

Trie 1892 9204 18 127 35 705 70 275 138 368 205 600
Greedy 1837 8925 17 592 34 649 68 320 134 243 199 197

(3%) (3%) (3%) (3%) (3%) (3%) (3%)
O-Trie 1825 8878 17 515 34 463 67 544 132 523 196 695

(4%) (4%) (3%) (3%) (4%) (4%) (4%)

Table 4 Results on DNA patterns of length 40.

|P| 100 500 1000 2000 4000 8000 12 000

Trie 3750 18 034 35 660 70 316 138 537 273 527 406 533
Greedy 3394 15 990 31 638 62 568 123 285 243 505 360 908

(10%) (11%) (11%) (11%) (11%) (11%) (11%)
O-Trie 3312 15 969 31 594 62 286 123 193 242 922 360 388

(12%) (11%) (11%) (11%) (11%) (11%) (11%)
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Table 5 Results on English patterns of length 40.

|P| 100 500 1000 2000 4000 8000 12 000

Trie 3889 19 098 37 763 74 594 147 251 290 565 421 917
Greedy 3772 18 519 36 622 72 207 141 974 279 676 405 949

(3%) (3%) (3%) (3%) (4%) (4%) (4%)
O-Trie 3775 18 414 36 496 71 890 141 376 278 344 403 529

(3%) (4%) (3%) (4%) (4%) (4%) (4%)

Fig. 4 Results of pattern sets of 2–400 patterns when each
pattern is of length 100. The size of alphabets ranges from
4–64.

Fig. 5 Results of pattern sets of 200 patterns, the length
of patterns ranges from 20–400. The size of alphabets
ranges from 4–64.

|Σ| = σ increases. The results in Table 2–Table 5
show that for a given alphabet the improvement
ratios are close to each other, and thus unrelated
to the length of patterns or the number of patterns.
The ratios of different alphabets are close to ratios
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Fig. 6 Results of pattern sets of 200 patterns of length
300. The size of alphabets ranges from 2–128.

of alphabets shown in Table 1. To verify the sur-
mise, we conducted more experiments. We give the
results in Fig. 4 and Fig. 5 where each data point is
the median of improvement ratios of ten trials. The
results imply that the size of alphabet determines
the improvement ratio, the ratio equals 1/2|Σ| in
average.

When we select a level with s different letters
of the current PatSet, s nodes will be generated.
Denote the average number of different letters in
a string of |P| symbols as ac(|P|). In the case of
two patterns, the probability of two letters in the
same position of the two patterns being the same is
1/σ. The number of nodes of the trie of P is very
close to ‖P‖, for the average length of the common
prefix of the two random strings is 1/σ + 1/σ2 +
· · ·+ 1/σ|p|, approximately 1/(σ− 1). The trie has
2|p|+1−1/(σ−1) nodes in average. But the O-Tries
for two patterns are smaller, for the average number
of positions with the same symbol of two random
strings is |p|/σ. The O-Trie have 2|p| + 1 − |p|/σ
nodes in average.

We give an upper bound of ac(|P|) as follows.
Partition the letters in a level to a set of disjoint pairs.
In average there are |P|/2σ pairs in which the letters
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are the same. Thus ac(|P|)¶ |P|−|P|/2σ. Hence for
a node q in an O-Trie, the mean of A(q) is not greater
than |PatSet(q)|(1−1/2σ), here A(q) is the number
of children of q. In average |A(q)|/|PatSet(q)|¶ 1−
1/2σ. Thus the improvement ratio of O-Trie over
‖P‖ is greater than 1/2σwith high probability. With
the length of patterns grows, |Trie(P)|/‖P‖ is near
1. The average improvement ratio of O-Tries over
tries is near 1/2σ with high probability.

The experiments also show that the improve-
ment ratio is mainly determined by the size of al-
phabets. We conducted experiments testing a wide
range of combinations of |P| and |p|. The result in
Fig. 6 depicts the ratios of pattern sets on different
sizes of alphabets with a fixed |P| and |p| and the
curve y = 1/2|Σ|. In the experiments, the ratio is
close to 1/2|Σ|.

CONCLUSIONS

We have presented a new heuristic for full trie
minimization based on rearranging the symbols of
strings, which is an efficient method to compute
the heuristic function. Further research includes a
thorough analysis of the quality of solutions of the
method. It is interesting to design pattern matching
algorithms using O-Tries. Some orders of O-Tries
may help to skip more input symbols. We can use
these O-Tries to speed up the dictionary lookup or
dictionary matching.
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