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ABSTRACT: The advancement of flow cytometry technology together with a series of novel developments in hardware
and software have facilitated both phenotypic and functional characterizations of different cell types. In addition, the
availability of many monoclonal antibodies and an expanding range of dye-chemistry have made multi-parameter flow
cytometry possible for simultaneous measurements of large numbers of cells with better information of complex cellular
networks such as the immune system. Although it has the advantage of being a fast, objective and quantitative, but
running polychromatic flow cytometry is a complex process with many challenges particularly in the data analysis.
The purpose of this communication is to describe several types of presentation and analysis of both univariate and
multivariate datasets.
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INTRODUCTION

Flow cytometry is a technology that allows rapid and
simultaneous measurements (-metry) of multiple
physical and chemical characteristics of particles
or single cells (cyto-) in a mixed cell populations
flowing in a fluid stream (flow) that delivers the
cells one by one by means of hydrodynamic focusing
of cells that pass a point in a flow system where
they are interrogated by optical and electronic sen-
sors1–4. Flow cytometry has become a powerful
tool for biological research and clinical diagnostics,
and its applications have been essential to innu-
merable advances in cell biology and immunology,
as well as for understanding diseases such as im-
munodeficiency and cancer5, 6. With an advent of
monoclonal antibodies and an increasing number of
fluorescent dyes, together with continuing improve-
ments in the computerized hardware and associated
software, the development of reliable techniques for
performing polychromatic flow cytometry analysis
has been possible7–10. At present, there are over
50 vendors in the flow cytometry business, selling
flow cytometers ranging from high-end of up-to 21-
parameter systems to just one or two-colour point-
of-care systems. It is therefore not surprising that
the number of publications using flow cytometry has
increased dramatically during the past two decades.

The immune system stockpiles a huge arsenal
of immune cells which display a huge diversity with
hundreds of discrete subsets even within the same

lineage, such as T, B, and NK lymphocytes. Identi-
fication of such heterogeneity can be only achieved
through polychromatic flow cytometry that allows
the analysis of multiple cell membrane and intra-
cellular molecules at the level of single cell lineage.
Flow cytometric analyses thus constitute an impor-
tant step towards an understanding of the complex
immune system. Theoretically, as many as 16–
1024 possible subphenotypes can be identified in
a single sample stained with 4–10 fluorochrome-
conjugated monoclonal antibody reagents; and the
number of variables can also be perplexing if the
different experimental conditions or in clinical stud-
ies involving patients in different treatment regi-
mens are applied10, 11. Such large datasets can be
analysed by the conventional approach of sequential
gating and the representation of a particular cell
subset expressing marker(s) of interest are then
determined. For almost two decades, our laboratory
has been using both simple 3/4 to advanced 8/14-
colour flow cytometer to identify the phenotype
and functional characteristics of peripheral blood
immune cells from patients with infection12–15. We
also provide basic and advanced flow cytometry
courses for graduate students. The courses are
given by our staff who share their in-depth expe-
rience of this evolving technology. These lecture
and hand-on based courses designed to build up
knowledge through step-by-step experiments to en-
sure that the students understand the basic elements
of flow cytometry and have invaluable experience
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in designing experiments, executing, analysing and
presenting the data. In this report, we review
several types of presentation and analysis of the
flow cytometric data by discussing how the data are
processed, displayed and interpreted.

DATA DISPLAYS

Once the cells of interest are passed sequentially
through the light source, the scattered light and
fluorescence of different wavelengths elicited from
the cells by the laser are recorded and converted to
electrical pulses by collection optics or photodetec-
tors. In general, flow cytometer has three types of
photodetectors: (1) a forward scatter (FSC) detec-
tor is a relatively sensitive photodiode set behind
an obscuration bar and detects light scatter in a
forward direction of the laser beam. The intensity
of this scatter signal depends on the cross-sectional
area of the cell, i.e., the size. (2) The 90° light
scatter or side scatter (SSC) detector collects re-
fracted and reflected light signals, which are pro-
portional to cell complexity or granularity inside
the cell. (3) Fluorescent light is received by a lens
and divided between several photomultiplier tube
(PMT) detectors either by a dichroic beam splitter or
a semi-silver mirror. The electrical pulses are then
processed by a series of linear and logarithmic am-
plifiers, and finally converted to channel numbers by
the analogue-to-digital converter (ADC). Data accu-
mulated using the flow cytometer can be analysed
using the manufacturer own software, e.g., CELL-
QUEST PRO, FACSDIVA, CYTOEXPERT, KALUZA, etc.
The data outputs can also be stored in the form of
computer files using flow cytometry standard (.FCS)
format file extension developed by the International
Society for Advancement of Cytometry (ISAC). The
structure of .FCS is divided into Header, Text, and
Data. The Header segment is used to identify the file
as an FCS file and specify the version of .FCS used.
Several keywords and numerical values in the Text
segment describe the sample and the experimental
conditions. Data segment is applied for numerical
values in a list mode file format specified in the
Text segment. It should be noted that the current
version of .FCS file format is FCS 3.1 (ISAC Data
Standards Task Force)16. Once data corresponding
to one sample are collected, there is no need to
stay connected to the flow cytometer and analysis
is most often performed on a separate computer.
This is necessary especially in core facilities where
usage of the flow cytometers is in high demand.
The data storage file includes a description of the
sample acquired, the instrument setting on which

the data was created, the data set, and the re-
sults of data analysis. As there are numerous flow
cytometry systems in the market, a well-defined
and uniform file format is therefore important as
it allows data acquired by computer from any flow
cytometer to be correctly exported and analysed by
software on other computers running a variety of
operating systems. At present there are many free
flowing data analysis software, e.g., FLOWING SOFT-
WARE, WINMDI, web-based CYTOBANK, CYTOSPEC,
etc. Catalogue for free flow cytometry software
can be obtained from Purdue University Cytometry
Laboratories (www.cyto.purdue.edu). There are
also many commercial software products, but the
popular software package for analysing flow cytom-
etry data is FLOWJO software (Tree Star, Ashland,
OR; www.flowjo.com), a Windows version with web
portal MyCyte.org.

The data generated by any instruments can be
plotted in a single dimension, to produce univariate
histograms, or in bivariate histograms such as dot
plots, density plot, contour plots, chromatic plots,
isometric plots, or even in three dimensions (Fig. 1).
Univariate histogram is the simplest of all ways to
display data with a list of the events corresponding
to the graphical display specified in the acquisition
protocol. It can be in the form of one-histogram
or two-histogram files. A single parameter can be
displayed as a single histogram, where the hori-
zontal (x) axis represents the parameter’s signal
value in channel numbers and the vertical (y) axis
or ordinate represents the number of events per
channel number. These channels correspond to
the original voltage generated by a scattered flu-
orescence detected by the PMTs. Thus the higher
channel number is related to a higher pulse height
or brighter specific fluorescent events. A graph with
two histograms can also be shown simultaneously
in a plot in which one histogram is displayed on
the x-axis and the other histogram is displayed on
the y-axis. In two-parameter or bivariate plots, one
parameter is displayed on the x-axis and the second
parameter is plotted on the y-axis, and the cell
counts or events are displayed as a density (dot) plot
or contour map. The parameters could be FSC, SSC,
or fluorescence. Displaying three-dimensional plot
by adding the third parameter being the number of
cells is great for presentation and helps clarifying
different cell clusters, but it is not useful for data
analysis. The FLOWJO’s 3D Tool displays three pa-
rameters of the .FCS data simultaneously. Viewers
can adjust the viewing angle by clicking and moving
with the mouse, or use sliders in the interface to
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Fig. 1 Flow cytometric data can be displayed as (a) histogram, (b) dot-plot, (c) density plot, (d) contour plot, (e) zebra
plot as well as (f) 3-dimension plot.

rotate the display of each parameter on x , y , or
z axis. Besides using a graph to present several
parameters of single cell population, multigraph is
another useful option to display all parameters from
cell population. Multigraph overlays or N×N plots
allow the visual comparison of the same parameters
of multiple cell subpopulations of the same sample
or the same parameters of one subpopulation from
different samples (Fig. 2).

DATA SCALING

Univariate histograms are commonly used for the
simplest display of flow cytometry data. Histograms
display the distributions of the events for one param-
eter of light scatter or relative fluorescence. They
are useful for comparing the total number of cells
in multiple samples that have been stained with
the same marker or antigen of interest. Expres-
sion of positive antigen or fluorescence intensity of
a sample can be distinguished by the distribution
and quantitatively determined as percentage of cells
above a certain threshold, or alternatively as the
mean fluorescence intensity (MFI) of the antigen
(see below). Most histogram analysis software
also provides tools for overlaying histograms from
several data files, allowing a rapid comparison of
the parameter of interest. In bivariate plots, two

parameters have to be discerned at the same time.
Normally, dot plots are the most popular displays
for this purpose, where each dot represents one
event or cell. However, displaying bivariate data can
influence interpretation, e.g., contour maps are rel-
ative insensitive to cell number which could mislead
impression as some cells in particularly rare cells are
excluded in the plots. For monochromatic (black
and white) dot plots, there are several drawbacks
of using these dot displays as different cell types
expressing the same amount of fluorescence signals
might be overlayed in the plot making it impossible
to distinguish the two cell types. This is also par-
ticularly true when rare cell populations have to be
analysed among a huge number of acquired cells.
To overcome this so called outlier problem, using
density or preferably coloured dot displays which
give the graph a three-dimensional feel, may as well
be recommended10, 11, 17.

In general, linear scaling is applied for fluores-
cence signals that vary 2- to 10-fold such as DNA dis-
tributions and cell cycle in which the amount stain-
ing fluorescence signal is proportional to the amount
of DNA, it is therefore more logical to use linear
scales for comparison. Linear scale is displayed as
channel numbers, i.e., 0–1023, but if it is logarith-
mic (a 4 decade logarithmic amplification, for ex-
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Fig. 2 Flow cytometric N×N plots display all parameters of selected subpopulations. The lymphocytes were stained
with antibodies reactive to IL-4, IL-17, CD8, CD4, IFN-γ, and CD3. The IL-4, IL-17, and IFN-γ expressions on CD4 T
cells (grey) and CD8 T cells (black) are comparable by using multigraph overlays.

ample), it is as linear values of 1–10 000. Hence the
log decade 100–101 is equivalent to 0–255 channel
number or 1–10 linear values. To convert channel
number to linear value, one can use the formula:
log(linear value)×256 or vice versa, a channel
number can be converted to linear value by using
the formula: 10(channel number)/256, e.g., if channel
number is 255, then the linear value is 10255/256 ∼
10, or if the channel number is 1023, the linear
value will be 101023/256 ∼ 10 000. For data that
have been acquired by linear amplification, channel
numbers and linear values are equivalent, but for
logarithmic amplified data, either channel numbers
or linear values can be used as they are equivalent.
Generally, the logarithmic scales used in the flow
cytometer are 4 decade logs so the range is from
100 to 104 and each log decade takes up a quarter
of the available channels. Apart from DNA analysis,
linear scaling is also used for FSC/SSC light signals
of white blood cell populations in immunophenotyp-
ing assay. Whereas the logarithmic scaling is valu-
able for immunofluorescence with wide dynamic
ranges found on cell surface antigens and have
fluorescence signals that are greater than 100-fold,

e.g., fluorescence-labelled anti-CD3 antibody. Small
cell populations such as red blood cells, platelets,
and microparticles also require logarithmic scaling
for their FSC/SSC light signals. In two-parameter
displays, both logarithmic x and y axes have a four-
to five-decade range, representing 10 000-fold from
lower end to 100 000-fold of upper end of the scale.
The logarithmic scaling compresses the channels of
visual space as the scale increases, this often leads
to visual misrepresentations of cell populations with
negative fluorescence or minimal fluorescence that
pile up on both axes especially in the zero channel.
This could either due to fluorescence compensation
error and/or fluorescence baseline subtraction error
(Fig. 3a). To avoid misinterpretation of the data,
one can either draw the gates or regions (see below)
to cover cells that have been stacked up or use
the newly adopted logicle or bi-exponential scaling
approach11. This new scaling method is specially
designed not only incorporating the useful feature
of logarithmic displays but also transforming cell
populations of low or background fluorescence with
more accurate visualization (Fig. 3b).
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Fig. 3 Flow cytometric two-parameter dot-plots using
logarithmic scaling display (a) and after applying logicle
or bi-exponential display (b).

DATA GATING

The purpose of flow cytometry data gating is to
draw gates or regions on light scatter plots of cell
populations of interest for further characterization.
A region is the normal term used for defining a
cluster of cells preferably in two-parameter plot,
whereas a gate is used for gating mixed populations.
The first step in gating is typically to distinguish the
cells based on their light scatter properties. Informa-
tion of size and granularity, as well as fluorescence
characteristics of cells has to be known prior to
any gating. For instance, platelets and red blood
cells are relatively small when compared to white
blood cells, subcellular debris can be discriminated
from single cells by relative size, estimated by FSC.
Also, dead cells tend to have lower FSC and higher
SSC than living cells. Lysed-and-washed whole
blood cell analysis is the most common form of
gating, and Fig. 4 depicts typical data gating of FSC
versus SSC of whole blood using linear scaling anal-
ysis. The different light scatter signals of lympho-
cytes (FSC+/SSC+), monocytes (FSC++/SSC++),
and granulocytes (FSC+++/SSC+++) allow them to
be easily distinguished from each other and from
cell debris. Data can be analysed as histograms

(a) (b)

(c) (d)

Fig. 4 Flow cytometric dot-plot data from human pe-
ripheral blood leucocytes stained with antibody reactive
to CD45. (a) FSC/SSC light scatter of lymphocytes
FSC+/SSC+, monocytes (FSC++/SSC++) and granulocytes
(FSC+++/SSC+++). (b) Cell clumps or doublets outside
each leucocyte populations can be eliminated by using
Doublet Discrimination Module (DDM) of FSC-A versus
FSC-H. (c) DDM provides improved representation of
leucocyte populations of rectangular gated lymphocytes,
ellipse gated monocytes and polygon gated granulocytes.
(d) A region R1 has been drawn around the CD45+++

lymphocytes.

or in two-parameter displays. On a histogram or
univariate plot, a region is drawn to cover the whole
histogram of interest. However, establishing regions
on histograms can be somewhat subjective, if the
histograms are heterogeneous. Proper controls,
i.e., isotype control, biological control, are therefore
essential for accurate gating. On a density plot, sev-
eral styles of gating options are used; these include
quadrant, rectangular, ellipse, polygon, and spider.
There is no obligation to use many styles of regions
in one plot. The customary approach to analyse
the data is the use of marker method in which
four quadrants, as an example, are created from
which double negative cells, two single-positive cell
populations, and double-positive cell populations
for each marker can be readily determined. It
should be noted that the coloured intensity displays
are the most common way to represent a density
plot. Each of the colour levels indicates increasing
numbers of cells resulting from discrete populations
of cells. However, it is a matter of preference, as
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sometimes, discrete populations of cells are also
easily visualized on contour maps. Although there
is no single best way to display data as each display
style has its advantages and disadvantages, but be
consistent with the style across all displays within
an analysis.

Over the years, the FSC/SSC or morphological
gating has been customarily used as the first plot
for immunophenotyping assay by drawing a region
around the desired cell cluster, e.g., lymphocytes
and then gate the fluorescence expression on them.
However, such FSC/SSC gating approach tends to
be unreliable as all the desired lymphocytes may
not be included in the region and undesired non-
lymphocytes (monocytes, basophils and immature
red blood cells) may be included. A more reliable
approach for gating cells with their SSC (in linear
scale in case of lymphocytes, and in logarithmic
scale in case of red blood cells, as a few examples)
versus their fluorescent antibody has been used to
define the desired cells and used as a region. The
advantage of using this gating approach is that
only one region for each phenotype or marker, i.e.,
CD45 for all leucocytes with SSC+/CD45+++ for
lymphocytes (Fig. 4d), or combined markers, i.e.,
CD3+/CD4+ for T-helper cells, is required to define
cells of interest. However, when there are several
regions, data analysis can become complicated; a
Boolean combination of several regions can be used
to define a cell gate and its characteristics. To
give an example of two cytokines’ expression on
CD4+ T-cells that have been stimulated with stim-
ulants. The two cytokines: IFN-γ and IL-17 can
be broken down to 8 populations that represent all
combination of IFN-γ and IL-17 using either ‘And’,
‘Not’ or ‘Or’ type of gate: e.g., IFN-γ+ And IL-17+,
IFN-γ+ Not IL-17+, IFN-γ+ Or IL-17+ on stimulated
CD4+ T-cells. A Boolean gating strategy such as that
from FLOWJO software can be used to automatically
generate these combinations. Details of certain
cytokine-producing cells from these 8 IFN-γ and IL-
17 combinations can be displayed as part of the
gating hierarchy (see below).

One of the important grating strategies is to
discriminate cell aggregation from single cell pop-
ulation. It is known that cells tend to aggregate
to each other and become cell clumps. These cell
clumps when passing through the laser take longer
time than single cell or singlet; this in turn will affect
the area of the light scatter signal. To deplete the
cell clumps or doublets, a pulse geometry gate or
Doublet Discrimination Module (DDM), e.g., FSC-
A versus FSC-H is applied to eliminate the doublets

(Fig. 4b,c). Another example of using this DDM is
in the DNA analysis. A common feature of DNA
analysis is the finding of cellular or event aggregates
of doublets in which a doublet is formed when
two cells or two nuclei with a G1-phase DNA are
mistakenly documented by flow cytometer as one
event with a cellular DNA content similar to a G2/M
phase resulting in an overestimation of the number
of cells in the G2/M phase of the cell cycle. Another
good feature in flow cytometric gating strategy is
the ‘back gating’ tool, a tool that allows the data
inspection to determine what cells would fall in
the final population, assuming the gate of interest
was not used in the gating scheme. This can be
achieved by applying a given gate to see where the
population is with respect to the total population.
It also allows for confirmation that a given gate or
region is appropriately drawn. This is so important,
especially for analysing rare cell population samples
where there are a lot of cells that would be included
in the final gate and are positive for a viability
marker.

DATA INTERPRETATION

Flow cytometric data are numerous particularly
data that are generated by polychromatic flow cy-
tometer, thus finding the best way to compare those
data can be challenging. In general, a positive
population of cells with any immunofluorescent
markers from any flow experiments can be pre-
sented as population measurements, e.g., percent
of CD4+ T-cells or it can be expressed as MFI, e.g.,
MFI of IL-17 expression on activated CD4+ T-cells.
Nowadays, most flow cytometers provide software
that automatically generate the percent positive cell
population, i.e., the BD MULTISET and FACSDIVA

software. For MFI, this is the measurement of the
level of florescence distribution of a cell population,
e.g., when comparing the level of fluorescence from
two fluorescent distributions. To quantify MFI data,
one can measure the central fluorescent tendency
by using the modal, mean, or median channel. In
the ideal situation, the fluorescent data are normal
distributions, thus the mean, median and mode are
very similar. But in reality, the fluorescent data are
not normally distributed, the more that the data
skew, the further the mean MFI drifts towards the
direction of fluorescent skew. In the linear scaling
data, both the mean and median of MFI are used
to quantitate cellular MFI, i.e., a cell population
with a linear value of 200 is 20 times brighter
than a cell population with a linear value of 10.
But in the logarithmic amplified data, arithmetic
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Fig. 5 A series of Boolean gates that represent all combinations (plus and minus) of IFN-γ and IL-17 expressed on
stimulated CD4+ T-cells. A table shows statistics of combination gates applied to IFN-γ and IL-17 on CD4 T-cells.

mean becomes less representative of the data, it is
the geometric mean that is often used as it takes
into account the weighting of the data distribution.
However, if the geometric mean shows significant
shifts, then the median is recommended as it is less
influenced by skew distribution. It should be noted
that if the fluorescent data are a bimodal distribu-
tion, a continuous probability distribution with two
different populations or modes, then gating each
population and presenting as the percentage value
is easier as well as more statistically significant.

As mentioned above, polychromatic flow cy-
tometry provides us with the ability to defy many
discrete subsets of the immune system. For ex-
ample, determination of the frequency distribu-
tion of naïve, central memory, effector memory
and effector cells of CD4+ and CD8+ T-cells in
peripheral blood mononuclear cells (PBMC) stim-
ulated with viral antigen plus cytokine, i.e., IL-
15. Stimulated and unstimulated PBMC are stained
using 8-colour immunostaining panel consisting of

human T-cell phenotype panel consisting of CD3,
CD8, CD27, CD28, CD45RA, CD57, CCR7 and a
dump channel cocktail of monocyte (CD14) and B-
cell (CD19) antibodies plus one live/dead marker
of 7-aminoactinomycin-D (7-AAD) or a panel us-
ing CD3, CD4, CD8, CD45RA, CD45RO, CCR7,
CD62L with a dump channel antibodies and 7-
AAD. Viable CD14−/CD19−/7-AAD− are gated
through CD3+T-cells. These pan T-cells are fur-
ther dissected into CD4+ and CD8+ T-cells. The
events in the CD4+ and CD8+ regions are then
interrogated by the remaining 4 surface markers
to determine as many as 16 possible discrete sub-
populations of CD4+ and CD8+ T-cells, e.g., naïve
(CD45RA+CD45RO−CCR7+CD62L+), central mem-
ory (CD45RA−CD45RO+CCR7+CD62L+), effector
memory (CD45RA−CD45RO+CCR7−CD62L−), and
effector (CD45RA+CD45RO−CCR7−CD62L−). This
so called, hierarchical gating provides the best gat-
ing strategy to identify target populations and to
determine the subphenotype frequencies from each
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Fig. 6 Multivariate dataset analyses of 16 subphenotypes of each of the 20 samples defined by FCOM (Winlist) data
reduction were analysed by average-linkage hierarchical cluster analysis. Differences in frequency distribution among
subphenotypes expressed on the samples were indicated by colour shading.

sequential dot-plots. However, this procedure is
very complicated and time-consuming if multiple
testing samples are determined as might occur in
clinical settings involving many patients in different
treatment protocols. To simultaneously show pat-
tern distributions and compare statistics on these
T-cell subpopulations under many variables: e.g.,
treatment protocols, age group, etc. Simple and
easy graphical displays in the forms of bar charts
or pie charts are therefore required. At present, a
freely-available US Government supported applica-
tion named SPICE (Simplified Presentation of In-
credibly Complex Evaluations) which works on Ap-
ple Mac-based software is used along with FLOWJO

background subtraction and formatting of exported
data software. SPICE is a user-friendly data mining
software tool that analyses and organizes large data
files from polychromatic flow cytometry and dis-
plays the normalized data graphically. The software
enables users to study potential correlations in their
experimental data within complex data sets18. In
certain circumstances, there are some subpopula-
tions in the analysis of many multivariate datasets
that are less important as they exhibit very low
frequencies and weak positive staining11, 19, such
as T-cells that are not naïve, central memory, ef-
fector memory and effector cells, but they are T-
cells with and CD45RA+CD45RO−CCR7−CD62L+

and CD45RA+CD45RO−CCR7+CD62L−. A rapid
and effective approach for reduction and analysis
of these superfluous data in the complex multi-
variate analysis is therefore critical. There are
several available analytical tools using automated
data elimination analysis on hierarchical gating to
interpret and compare the frequency patterns of
distribution. Among them hierarchical clustering
analysis using FCOM, a ‘combination function’ data

reduction and cluster analysis software from Win-
list (Verity House Software) is the most common
method as it allows for an easy visual representation
of the data20. This hierarchical clustering analysis
algorithms are similar to the software tools used
in a wide diversity of gene expression studies21–23.
Cells analysed by polychromatic flow cytometry are
divided into multiple subpopulations, the number
of cells within each subphenotype is provided as
a relative frequency of the total cell population of
interest (Fig. 6). This method is very useful and
more organized approach to cluster analysis of large
subpopulation arrays such as 1024 datasets in a 10-
colour panel.

In conclusion, a number of practical consid-
erations have been described when analysing the
complex datasets generated from the polychromatic
flow cytometry. These guidelines are also applied to
simple two to four-colour experiments.
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