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ABSTRACT: In this paper, the finite-time synchronization of large-scale hyper chaotic systems with parametric
uncertainties and time-varying delay is investigated. Based on Lyapunov stability theory and finite-time control
technique, a suitable time-delay state feedback controller is designed, and a sufficient condition of finite-time
synchronization is put forward. Finally, the numerical simulation is presented to illustrate the applicability and
effectiveness of the proposed method.
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INTRODUCTION

Due to its potential applications for secure com-
munication, engineering science, and other fields,
the synchronization of chaotic systems has been
an active research object1. However, most of the
previous researches were primarily concerned with
the asymptotic stability of the synchronization error
system2. In reality, optimizing the synchronization
time is more valuable than achieving asymptotic
synchronization. To realize fast synchronization,
the exponential synchronization which can ensure
the response system converge to the drive system
at an exponential rate has been proposed3. Later,
the finite-time control technique arises naturally in
time-optimal control4. Its key feature is to drive the
controlled system to its target within a finite time
and to keep them there then after5.

In many practical applications, the influence of
parametric uncertainties can not be ignored, oth-
erwise, the stability of the synchronization error
system would be destroyed6. The problem of finite-
time synchronization between two chaotic systems
with unknown parameters has been addressed7,
however, the time-delay has not been considered.
In fact, time-delays exist widely in reality because
of finite signal transformation times and memory
effects. For delayed chaotic system, the relationship
between the drive and the response systems are

more complex. The finite-time synchronization of
chaotic systems with time-delay has been studied8,
but the parametric uncertainty has not been taken
into account, and what is more, it only considers
the simple case in which the time-delay is constant.
It is concluded from the recent research that time-
delayed system is still vulnerable for communication
because the time delay τ can be exposed by several
measures, such as filling factor9, autocorrelation10,
one step prediction error11 and so on. If the delay
time τ is known, the time delayed system becomes
quite a simple one, and the message encoded by the
chaotic signal can be extracted by the common at-
tack method12. Therefore, to realize the finite-time
synchronization of chaotic systems with parametric
uncertainties and time-varying delay, the aforemen-
tioned methods are no longer suitable, and a new
analytical control scheme should be presented.

Furthermore, it is worth pointing out that all
the synchronization methods mentioned above are
involved in one drive and one response system.
However, in practice, since the configuration of
synchronization is limited to a single pair of one
way coupled oscillations, this method can not be
applied for multiuser communication systems13.
Since it can further improve the security when the
synchronization technique is applied in the secure
communication, the technique of multiplexing is
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therefore a very important issue for high-capacity
communications. In addition, the level of the
communication security depends on the complex-
ity level of the drive dynamical system and signal
loading scheme. If the driving system involves
more chaotic subsystems and the way of combi-
nation among subsystems is more complex, then
the geometry topological manifold of the compound
driving system will become more complex, and the
transmitted signal will be separated into several
parts carried by different subsystems to improve
the anti-attack ability and anti-translated capability.
R. Luo proposed the combination synchronization
which contains two drive systems and one response
system14. Recently, the dual synchronization were
investigated which involves two drive systems and
two response systems15. Combining the advantages
of the two methods mentioned above, dual com-
bination synchronization which involves four drive
systems and two response systems has been put for-
ward16. However, the disadvantage of these com-
bination methods is that the subsystems involved
must have the same dimension and the dimension of
the combined system does not change. In fact, the
higher the dimension of chaotic system, the more
complex of the chaotic topology. This inspires our
work.

By combining k ordinary chaotic systems into
one chaotic system (the dimensions of the subsys-
tems can be the same or different), we can obtain
a new drive system. Because the compound sys-
tem involves multiple subsystems and its dimen-
sion increases significantly, we call it large-scale
hyper chaotic system. Using the same method, we
construct another large-scale hyper chaotic system
by a group of ordinary chaotic systems as the re-
sponse system. It is obvious that the problem of
the synchronization between these two large-scale
hyper chaotic systems are more general and of more
practical significance.

Inspired by the discussion above, in this pa-
per, we deal with the finite-time synchronization of
large-scale hyper chaotic systems with parametric
uncertainties and time-varying delay. On the basic
of the finite-time control technique, a nonlinear
controller is designed. Furthermore, a sufficient
condition of finite-time synchronization in the form
of linear matrix inequalities (LMIs) is established.
Finally, the numerical simulation is put forward to
demonstrate the feasibility and correctness of the
advanced scheme.

Compared with the existing literatures, there
are two advantages which make the proposed com-

munication scheme attractive. Firstly, both the drive
system and the response system are the compound
of multiple chaotic subsystems. In the process of
secret communication, the transmitted signals can
be split into several different parts and loaded in
different subsystems to improve the security of sig-
nal transmission. In addition, the dimension of the
compound system increases significantly, which lead
to the chaotic topological manifold becoming more
complex. Secondly, by adding a nonlinear term to
the traditional linear controller, fast synchronization
is effectively achieved.

PROBLEM DESCRIPTION

Taking into account the parametric uncertainties
and time-varying delay, we consider a group of
chaotic systems as the master dynamics, which is
described by

ẋ i(t) = (Ai +∆Ai)x i(t)+ (Bi +∆Bi)x i(t −τ(t))

+ (C i +∆C i) f i(x i(t))

+ (Di +∆Di) f i(x i(t −τ(t))) (1¶ i ¶ k),
(1) 127

128

where x i(t) =
�

x i
1(t) · · · x

i
n(t)

�T ∈ Rn is the state
vector of the ith master system, and f i(x i(·)) =
�

f i
1 (x

i(·)) · · · f i
n(x

i(·))
�T ∈ Rn is continuous nonlin-

ear function, where Ai , Bi , C i and Di are known
n × n constant matrices, ∆Ai , ∆Bi , ∆C i and ∆Di

are parametric uncertainties, and τ(t) is the trans-
mission time-varying delay.

Correspondingly, the response system is given
by

ẏ i(t) = (Ai +∆Âi)y i(t)+ (Bi +∆B̂i)y i(t −τ(t))

+ (C i +∆Ĉ i) f i(y i(t))+ (Di +∆D̂i)

× f i(y i(t −τ(t)))+ui(t) (1¶ i ¶ k),
(2) 140

141

where y i(t) =
�

y i
1(t) · · · y

i
n(t)

�T ∈ Rn is the state
vector of the ith response system, ∆Âi ,∆B̂i ,∆Ĉ i

and ∆D̂i are parametric uncertainties, and u(t) =
[u1(t) · · ·un(t)]T ∈ Rn is the vector of control input.

For convenience, define

x(·) = [(x1(·))T , . . . , (x k(·))T ]T ,

y(·) = [(y1(·))T , . . . , (yk(·))T ]T ,

f (·) = [( f 1(·))T , . . . , ( f k(·))T ]T ,

u(·) = [(u1(·))T , . . . , (uk(·))T ]T ,

A= diag{A1, A2, . . . , Ak},
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B = diag{B1, B2, . . . , Bk},

C = diag{C1, C2, . . . , C k},

D = diag{D1, D2, . . . , Dk},

∆A= diag{∆A1, · · · ,∆Ak},

∆B = diag{∆B1, · · · ,∆Bk},

∆C = diag{∆C1, . . . ,∆C k},

∆D = diag{∆D1, . . . ,∆Dk},

∆Ã= diag{∆Ã1, . . . ,∆Ãk},

∆B̃ = diag{∆B̃1, . . . ,∆B̃k},

∆C̃ = diag{∆C̃1, . . . ,∆C̃ k},

∆D̃ = diag{∆D̃1, . . . ,∆D̃k},

and

Ā= A+∆A, B̄ = B+∆B,

C̄ = C +∆C , D̄ = D+∆D,

∆Ãi =∆Ai −∆Âi , ∆B̃i =∆Bi −∆B̂i ,

∆C̃ i =∆C i −∆Ĉ i , ∆D̃i =∆Di −∆D̂i .

Then, the systems (1) and (2) are reduced respec-
tively in the following forms

ẋ(t) = Āx(t)+ B̄x(t −τ(t))+ C̄ f (x(t))
+ D̄ f (x(t −τ(t))), (3)

ẏ(t) = (Ā−∆Ã)y(t)+ (B̄−∆B̃)y(t −τ(t))

+ (C̄ −∆C̃) f (y(t))

+ (D̄−∆D̃) f (y(t −τ(t)))+u(t), (4)

where x(·), y(·), f (·), u(·)∈Rn̄, Ā, B̄, C̄ , D̄,∆Ã,∆B̃,
∆C̃ , ∆D̃ ∈ Rn̄×n̄, and n̄= kn.

In order to obtain the main result, some reason-
able assumptions and necessary lemmas are intro-
duced below.

Lemma 1 (Ref. 3) Let Λ ∈ Rn×n is a positive sym-
metric matrix, then, for any real matrices X1, X2 ∈
Rn×m, the following inequality holds

X T
1 X2+ X T

2 X1 ¶ X T
1 Λ
−1X1+ X T

2 ΛX2.

Specially, choosing Λ= εI , we obtain

X T
1 X2+ X T

2 X1 ¶ ε−1X T
1 X1+ εX

T
2 X2,

where ε is a positive scalar.

Lemma 2 (Ref. 17) Assume V (t) is a continuous
and positive definite function which satisfies the fol-
lowing differential inequality

V̇ (t)¶ −b1Vρ(t)− b2V (t), t ¾ t0, V (t0)¾ 0

where b1 > 0, b2 > 0 and 0 < c < 1 are constants.
Then, when V 1−ρ(t0) ¶ b1/b2, the following results
are true

V (t)



















¶ eb2(t−t0)[V 1−ρ(t0)+
b1

b2

−
b1

b2
e−b2(1−ρ)(t−t0)]1/(1−ρ) if t0 ¶ t < T ,

= 0 if t ¾ T ,

with T given by

T = t0+
1

b2(1−ρ)
ln

�

1+
b2V 1−ρ(t0)

b1

�

.

Assumption 1. For the time-varying delay τ(t),
there exist non-negative constants h and q, i.e.

0¶ τ(t)¶ h, 0¶ τ̇(t)¶ q < 1.

Assumption 2. Parametric uncertainties ∆A, ∆B,
∆C , ∆D, ∆Â, ∆B̂, ∆Ĉ and ∆D̂ are bounded, and
they can be decomposed as

∆A= H1F1(t)E1, ∆B = H2F2(t)E2,

∆C = H3F3(t)E3, ∆D = H4F4(t)E4,

∆Â= H1 F̂1(t)E1, ∆B̂ = H2 F̂2(t)E2,

∆Ĉ = H3 F̂3(t)E3, ∆D̂ = H4 F̂4(t)E4,

where H j , E j are known constant matrices with ap-
propriate dimensions, F j(t) and F̂ j(t) are uncertain
matrices satisfying

F j(t)
T F j(t)¶ I , F̂ j(t)

T F̂ j(t)¶ I , j = 1, 2,3, 4.

Assumption 3. The difference between the corre-
sponding parametric uncertainties of systems (1)
and (2) are norm-bounded, i.e.



∆Ã


¶ α1,


∆B̃


¶ α2,


∆C̃


¶ α3,


∆D̃


¶ α4,

where α j > 0 ( j = 1, 2,3, 4) are known real con-
stants, and ‖ · ‖ represents the 2-norm.
Assumption 4. The parametric uncertainties and
the time-varying delay do not destroy the chaotic
behavior of the drive and response systems.

Definition 1 For the large-scale drive system (3)
and the large-scale response system (4), it is said
that these two systems are complete synchroniza-
tion, if

lim
t→∞

‖x(t)− y(t)‖= 0. (5)
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Definition 2 For the large-scale drive system (3)
and the large-scale response system (4), if there
exists a constant T > 0 , such that







lim
t→T
‖x(t)− y(t)‖= 0,

‖x(t)− y(t)‖= 0 if t ¾ T ,
(6)

then it is said that these two large-scale hyper
chaotic systems are finite-time synchronization.

Assumption 5. The nonlinear functions fi(·) are
bounded, and satisfy the Lipschitz condition,
namely there exist positive constants l1, · · · , ln̄ such
that

| fi(a)− fi(b)|¶ li |a− b|, i = 1, 2, · · · , n̄.

Denote l =max{l1, · · · , ln̄}, it follows that

‖ f (x(·))− f (y(·))‖¶ l ‖x(·)− y(·)‖= l ‖e(·)‖ .

The main object in this paper is to design an
appropriate controller u(t) to guarantee the large-
scale hyper chaotic systems (3) and (4) are finite-
time synchronization.

We define the synchronization error vector

e(t) = x(t)− y(t). (7)

Combining systems (3),(4) with the error vector (7),
the following error dynamical system is obtained

ė(t) = ẋ(t)− ẏ(t)

= Āx(t)+ B̄x(t −τ(t))+ C̄ f (x(t))

+ D̄ f (x(t −τ(t)))− [(Ā−∆Ã)y(t)

+ (B̄−∆B̃)y(t −τ(t))+ (C̄ −∆C̃) f (y(t))

+ (D̄−∆D̃) f (y(t −τ(t)))+u(t)],

that is

ė(t) = Āe(t)+ B̄e(t −τ(t))+ C̄[ f (x(t))
− f (y(t))]+ D̄[ f (x(t −τ(t)))

− f (y(t −τ(t)))]+∆Ãy(t)

+∆B̃ y(t −τ(t))+∆C̃ f (y(t))

+∆D̃ f (y(t −τ(t)))−u(t), (8)

based on what will be proposed in the main results.

MAIN RESULTS

It is clear that the finite-time synchronization of
these two large-scale hyper chaotic systems is di-
rectly equivalent to the finite-time stabilization of

the error system (8). In this section, we will pay our
attention to design a suitable feedback controller to
ensure the error trajectory converges to zero within
a finite time. Without loss of generality, we employ
the time-delay state feedback controller written by

u(t) = K1e(t)+ K2e(t −τ(t))
+ sgn e(t)[α1Y (t)+α2Y (t −τ(t))

+α3F(y(t))+α4F(y(t −τ(t)))]

+
γ

2

�

eT (t)Pe(t)

+

∫ t

t−τ(t)
eT (s)Qe−β(t−s)e(s)ds

�η Pe(t)

‖Pe(t)‖2 ,

(9) 286
287

with










































Y (t) = [|y1(t)|, · · · , |yn̄(t)|]
T ,

Y (t −τ(t)) = [|y1(t −τ(t))|,
. . . , |yn̄(t −τ(t))|]T ,

F(y(t)) = [| f1(y(t))|, · · · , | fn̄(y(t))|]T ,

F(y(t −τ(t))) = [| f1(y(t −τ(t)))|,
. . . , | fn̄(y(t −τ(t)))|]T ,

sgn e(t) = diag{sgn e1(t), · · · , sgn en̄(t)},
(10) 289

290

where K1, K2 P and Q are control gain matrices with
appropriate dimensions, γ > 0 and 0 < η < 1 are
known constants.

Remark 1 According to Eqs. (9), the control input
u(t) contains the factor Pe(t)/‖Pe(t)‖2 . In fact,
when the error trajectory e(t) = 0, it is obvious
that ‖Pe(t)‖2 = 0 , which means Pe(t)/‖Pe(t)‖2 is
singular. In order to overcome this disadvantage,
the control law (9) is modified as follows

u(t) = K1e(t)+ K2e(t −τ(t))
+ sgn e(t)[α1Y (t)+α2Y (t −τ(t))

+α3F(y(t))+α4F(y(t −τ(t)))]

+
γ

2

�

eT (t)Pe(t)

+

∫ t

t−τ(t)
eT (s)Qe−β(t−s)e(s)ds

�η

∆ (11)

with

∆=

¨ Pe(t)
‖Pe(t)‖2 if ‖Pe(t)‖¾ δ,

0 if ‖Pe(t)‖< δ,
(12)

where the switching gain δ is a sufficiently small
positive constant which can be chosen according to
the designer’s requirement.

www.scienceasia.org

358

http://www.scienceasia.org/20??.html
www.scienceasia.org


ScienceAsia 44 (2018)

Remark 2 Another effective approach is using
the function Pe(t)/(‖Pe(t)‖2 + ξ) to approximate
Pe(t)/‖Pe(t)‖2, where ξ is a small positive constant.
Then the control law (9) is modified as

u(t) = K1e(t)+ K2e(t −τ(t))
+ sgn e(t)[α1Y (t)+α2Y (t −τ(t))

+α3F(y(t))+α4F(y(t −τ(t)))]

+
γ

2

�

eT (t)Pe(t)

+

∫ t

t−τ(t)
eT (s)Qe−β(t−s)e(s)ds

�η Pe(t)

‖Pe(t)‖2+ξ
.

(13)

Based on the above controller, a sufficient con-
dition of the finite-time synchronization in terms of
LMIs is established as follows.

Theorem 1 If there exist symmetrical positive matri-
ces P,Q, R, T, positive diagonal matrices M , N , control
gain matrices K1, K2 with appropriate dimensions,
and positive real scalars ε1,ε2,ε3,ε4, such that the
following LMI holds

Ω̃=











Ω̃1 Ω̃2 Ω̃3 Ω̃4 Ω̃5
∗ −ε1 I 0 0 0
∗ ∗ −ε2 I 0 0
∗ ∗ ∗ −ε3 I 0
∗ ∗ ∗ ∗ −ε4 I











< 0 (14)

where

Ω̃1 =







Ω̃11 Ω̃12 PC PD
∗ Ω̃22 0 0
∗ ∗ Ω̃33 0
∗ ∗ ∗ Ω̃44







Ω̃2 =
�

HT
1 P, 0, 0, 0

�T
,

Ω̃3 =
�

HT
2 P, 0, 0, 0

�T
,

Ω̃4 =
�

HT
3 P, 0, 0, 0

�T
,

Ω̃5 =
�

HT
4 P, 0, 0, 0

�T
,

and


























































Ω̃11 = PA+AT P −2R+Q+ l2M
+βP + ε1ET

1 E1,

Ω̃12 = PB− T,

Ω̃22 = l2N −ηe−βhQ+ ε2E2
T E2,

Ω̃33 = −M + ε3E3
T E3,

Ω̃44 = −N + ε4E4
T E4,

R= PK1,

T = PK2,

η= 1− q,

(15)

here ∗ denotes the symmetrical block in one symmet-
rical matrix.

Then the large-scale hyper chaotic systems (3) and
(4) are finite-time synchronization under the feedback
controller (9).

Proof : Choose the following Lyapunov-Krasovskii
type function

V (t) = V1(t)+ V2(t), (16) 348
349

with

V1(t) = eT (t)Pe(t), (17) 351

V2(t) =

∫ t

t−τ(t)
eT (s)Qe−β(t−s)e(s)ds. (18)

Differentiating V1(t) along the error system, we
obtain

V̇1(t) = 2eT Pė

= 2eT P{Āe(t)+ B̄e(t −τ(t))+ C̄[ f (x(t))
− f (y(t))]+ D̄[ f (x(t −τ(t)))

− f (y(t −τ(t)))]+∆Ãy(t)+∆B̃ y(t −τ(t))

+∆C̃ f (y(t))+∆D̃ f (y(t −τ(t)))−u(t)}.

Submitting (9) into (8) and using the fact

eT (t)P
Pe(t)

‖Pe(t)‖2 = 1,

we get

V̇1(t) =2eT (t)P(Ā− K1)e(t)+2eT (t)P(B̄− K2)

× e(t −τ(t))+2eT PC̄[ f (x(t))− f (y(t))]

+2eT (t)PD̄[ f (x(t −τ(t)))

− f (y(t −τ(t)))]+2eT (t)P

× [∆Ãy(t)+∆B̃ y(t −τ(t))+∆C̃

f (y(t))+∆D̃ f (y(t −τ(t)))]

−2eT (t)P sgn e(t)[α1Y (t)+α2Y (t −τ(t))
+α3F(y(t))+α4F(y(t −τ(t)))]
−γVη(t). (19) 374

375

Using Assumption 3 and the fact

y(t)¶ Y (t), f (y(t))¶ F(y(t)),
y(t −τ(t))¶ Y (t −τ(t)),
f (y(t −τ(t)))¶ F(y(t −τ(t))),
Y (t)¾ 0, Y (t −τ(t))¾ 0,

F(y(t))¾ 0, F(y(t −τ(t)))¾ 0,
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eT (t) sgn e(t) = [|e1(t)|, . . . , |en̄(t)|]
T ,

we obtain the following inequations

eT (t)P∆Ãy(t)¶ α1eT (t) sgn e(t)PY (t),

eT (t)P∆B̃ y(t −τ(t))

¶ α2eT (t) sgn e(t)PY (t −τ(t)),

eT (t)P∆C̃ f (y(t))¶ α3eT (t) sgn e(t)PF(y(t)),

eT (t)P∆D̃ f (y(t −τ(t)))

¶ α4eT (t) sgn e(t)PF(y(t −τ(t))),

which yields

V̇1(t)¶ 2eT (t)P(Ā− K1)e(t)

+2eT (t)P(B̄− K2)e(t −τ(t))

+2eT (t)PC̄[ f (x(t))− f (y(t))]

+2eT (t)PD̄[ f (x(t −τ(t)))
− f (y(t −τ(t)))]−γVη(t).

Applying Lemma 1, we obtain the following rela-
tionships

2eT (t)PC̄[ f (x(t))− f (y(t))]

¶ eT (t)PC̄ M−1C̄ T Pe(t)+ [ f (x(t))

− f (y(t))]T M[ f (x(t))− f (y(t))],

2eT (t)PD̄[ f (x(t −τ(t)))− f (y(t −τ(t)))]

¶ eT (t)PD̄N−1 D̄T Pe(t)+ [ f (x(t −τ(t)))

− f (y(t −τ(t)))]T N[ f (x(t −τ(t)))
− f (y(t −τ(t)))].

where M and N are positive diagonal matrices. So
we have

V̇1(t)¶ eT (t)[P(Ā− K1)+ (Ā− K1)
T P]e(t)

+2eT (t)P(B̄− K2)e(t −τ(t))

+ eT (t)PC̄ M−1C̄ T Pe(t)+ [ f (x(t))

− f (y(t))]T M[ f (x(t))− f (y(t))]eT (t)P

+ D̄N−1 D̄T Pe(t)

+ [ f (x(t −τ(t)))− f (y(t −τ(t)))]T

×N[ f (x(t −τ(t)))− f (y(t −τ(t)))]
−γVη(t). (20)

Applying Assumption 5, we obtain

[ f (x(t))− f (y(t))]T M[ f (x(t))− f (y(t))]

¶ l2eT (t)Me(t),

[ f (x(t −τ(t)))− f (y(t −τ(t)))]T N

× [ f (x(t −τ(t)))− f (y(t −τ(t)))]

¶ l2eT (t −τ(t))Ne(t −τ(t)).

Then, (20) is reduced to

V̇1(t)¶ eT (t)[P(Ā− K1)+ (Ā− K1)
T P]e(t)

+2eT (t)P(B̄− K2)e(t −τ(t))

+ eT (t)PC̄ M−1C̄ T Pe(t)+ eT (t)P

× D̄N−1 D̄T Pe(t)+ l2eT (t)Me(t)

+ l2eT (t −τ(t))Ne(t −τ(t))−γVη(t).

This is equivalent to

V̇1(t)¶ eT (t)[P(Ā− K1)+ (Ā− K1)
T P

+ PC̄ M−1C̄ T P + PD̄N−1 D̄T P

+ l2M +βP]e(t)+ eT (t −τ(t))

× (l2N)e(t −τ(t))+2eT (t)P(B̄− K2)
× e(t −τ(t))−βV1(t)−γVη(t). (21)

Notice V2(t) can be rewritten as

V2(t) = e−β t

∫ t

t−τ(t)
eT (s)Qeβse(s)ds, (22)

the time derivative of V2(t) along the trajectory of
the error system (8) is obtained as follows

V̇2(t) = −βe−β t

∫ t

t−τ(t)
eT (s)Qeβse(s)ds

+ e−β t eT (t)Qeβ t e(t)

− (1− τ̇(t))e−β t eT (t −τ(t))Q

× eβ(t−τ(t))e(t −τ(t))

= −βV2(t)+ eT (t)Qe(t)− (1− τ̇(t))

× eT (t −τ(t))Qe−βτ(t)e(t −τ(t)).

Since

0¶ τ(t)¶ h, 0¶ τ̇(t)¶ q, η= 1− q,

we have

−(1− τ̇(t))¶ −η, −e−βτ(t) ¶ −e−βh.

Then it follows by

−(1− τ̇(t))e−βτ(t) ¶ −ηe−βh,

which yields

V̇2(t)¶ −βV2(t)+ eT (t)Qe(t)

−ηeT (t −τ(t))Qe−βhe(t −τ(t)). (23)
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Combining (21) and (23), we have

V̇ (t)¶ eT (t)[P(Ā− K1)+ (Ā− K1)
T P

+ PC̄ M−1C̄ T P + PD̄N−1 D̄T P

+Q+ l2M +βP]e(t)

+ eT (t −τ(t))(l2N −ηe−2βhQ)e(t −τ(t))

+2eT (t)P(B̄− K2)e(t −τ(t))
−βV (t)−γVη(t). (24)

For simplicity, we denote

Φ=
�

Φ11 Φ12
∗ Φ22

�

,

with

Φ11 = P(Ā− K1)+ (Ā− K1)
T P

+ PC̄ M−1C̄ T P + PD̄N−1 D̄T P

+Q+ l2M +βP,

Φ12 = P(B̄− K2),

Φ22 = l2N −ηe−βhQ.

Then (24) is reduced to

V̇ (t)¶
�

e(t)
e(t −τ(t))

�T

Φ

�

e(t)
e(t −τ(t))

�

−βV (t)−γVη(t). (25)

It is obvious that, if Φ < 0 then V̇ (t) < −βV (t)−
γVη(t).

Applying Shure complement, we obtain that
Φ< 0 if and only if

Ω̄=







Ω̄11 Ω̄12 PC̄ P D̄
∗ Ω̄22 0 0
∗ ∗ −M 0
∗ ∗ ∗ −N






< 0, (26)

where

Ω̄11 = P(Ā− K1)+ (Ā− K1)
T P +Q+ l2M

+βP,

Ω̄12 = Φ12 = P(B̄− K2),

Ω̄22 = Φ22 = l2N −ηe−βhQ.

Combined with (F j(t))T F j(t) ¶ I , j = 1, 2,3, 4,
based on the Lemma 1 and Shure complement, we
obtain a sufficient condition of Ω̄< 0 as follows

Ω̃=











Ω̃1 Ω̃2 Ω̃3 Ω̃4 Ω̃5
∗ −ε1 I 0 0 0
∗ ∗ −ε2 I 0 0
∗ ∗ ∗ −ε3 I 0
∗ ∗ ∗ ∗ −ε4 I











(27)

where

Ω̃1 =







Ω̃11 Ω̃12 PC PD
∗ Ω̃22 0 0
∗ ∗ Ω̃33 0
∗ ∗ ∗ Ω̃44







Ω̃2 =
�

HT
1 P, 0, 0, 0

�T
,

Ω̃3 =
�

HT
2 P, 0, 0, 0

�T
,

Ω̃4 =
�

HT
3 P, 0, 0, 0

�T
,

Ω̃5 =
�

HT
4 P, 0, 0, 0

�T
,

and

Ω̃11 = P(A− K1)+ (A− K1)
T P +Q+ l2M

+βP + ε1E1
T E1,

Ω̃12 = P(B− K2),

Ω̃22 = l2N −ηe−βhQ+ ε2E2
T E2,

Ω̃33 = −M + ε3E3
T E3,

Ω̃44 = −N + ε4E4
T E4.

To obtain the LMI-based conditions, we set

R= PK1, T = PK2,

it is clear that if the matrix P is invertible, the control
gains K1, K2 can be calculated by

K1 = P−1R, K2 = P−1T.

Based on the above discussion, we conclude that

Ω̃< 0 ⇒ Ω̄< 0

⇒ Φ< 0

⇒ V̇ (t)< −βV (t)−γVη(t). (28)

Applying Lemma 2, the large-scale chaotic systems
(3) and (4) are finite-time synchronization when the
LMI (14) holds, and T is given by

T =
1

β(1−η)
ln

�

1+
βV 1−η(0)

γ

�

. (29)

Hence, the proof is completed. 2

NUMERICAL SIMULATION

In our simulation, Lorenz system and Chen system
with time-varying delay are chosen as the drive
systems, which is described by

ẋ(t) = (A+∆A)x(t)+ (B+∆B)x(t −τ(t))
+ (C +∆C) f (x(t))

+ (D+∆D) f (x(t −τ(t))), (30)
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Fig. 1 Time response of the synchronization errors ei(t)
with β = γ= 2, (a) i = 1, 2, 3, (b) i = 4, 5, 6.

Meanwhile, the identical system with different para-
metric uncertainties and different initial value are
considered as the response systems, which is de-
scribed by

ẏ(t) = (A+∆Â)y(t)+ (B+∆B̂)y(t −τ(t))

+ (C +∆Ĉ) f (y(t))

+ (D+∆D̂) f (y(t −τ(t)))+u(t), (31)

where

A=















−10 10 0 0 0 0
28 1 0 0 0 0
0 0 −8/3 0 0 0
0 0 0 −35 35 0
0 0 0 −7 28 0
0 0 0 0 0 3















f (x(·)) =
�

0,−x1(·)x3(·), x1(·)x2(·), 0,

− x4(·)x6(·), x4(·)x5(·)
�T

,

and the parametric uncertainties are given as

∆A= diag{0.1 sin t, −0.1 sin3t, 0.1 sin t,

0.1 cos 2t, 0.1 cos 4t, 0.1 sin t},
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e
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)
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Fig. 2 Time response of the synchronization errors ei(t)
with β = γ= 0, (a) i = 1,2, 3, (b) i = 4, 5, 6.

∆B = diag{0.01 cos 2t, 0.01 sin t, −0.01

sin2t, 0.01cos t, 0.01cos 2t, −0.01cos t},
∆C = diag{−0.01cos 3t, −0.01cos 3t, 0.01 sin t,

−0.01 cos3t, 0.01cos t, 0.01 sin 3t},
∆D = diag{0.04 sin t, −0.04 sin t, 0.04 sin 3t,

0.04cos t, 0.04 sin t, 0.04 cos2t},

and

∆Â= diag{−0.05 sin t,−0.06 sin3t,−0.03

cos2t, 0.08 sin2t,−0.12 sin 4t, 0.2 sin2t},

∆B̂ = diag{0.02 cos t, 0.01 sin2t, 0.01 cos2t,

−0.02cos t, 0.01 sin2t,−0.02 cos t},

∆Ĉ = diag{0.02 sin 3t,−0.01cos t, 0.02 sin t,

−0.04cos 2t, 0.01 cos t,−0.01 cos2t},

∆D̂ = diag{0.04 sin t, 0.02 cos2t, 0.04 sin2t,

0.02 sin2t, 0.04cos t,−0.01cos 2t},

then, according to Assumption 2 we have

H1 = 0.1I , H2 = 0.1I , H3 = 0.1I , H4 = 0.2I ,
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E1 = I , E2 = 0.1I , E3 = 0.1I , E4 = 0.2I .

and

F1(t) = diag{sin t,− sin 3t, sin t, cos 2t,

cos 4t, sin t},
F2(t) = diag{cos 2t, sin t,− sin 2t, cos t,

cos2t,− cos t},
F3(t) = diag{− cos 3t,− cos 3t, sin t,− cos 3t,

cos t, sin 3t},
F4(t) = diag{sin t,− sin t, sin 3t, cos t,

sin t, cos2t}.

Choosing β = 2,γ = 2,η = 0.5, using the MATLAB

LMI Toolbox, we obtain

K1 =
�

K11 0
0 K12

�

, K2 =
�

K21 0
0 K22

�

,

where

K11 =





152.1597 −248.2540 0
−229.9479 591.3069 0

0 0 86.5369



 ,

K12 =





875.8940 214.3962 0
151.3313 117.3855 0

0 0 93.1439



 ,

K21 =





0.6639 −1.0658 0
−0.7290 2.7139 0

0 0 0.3488



 ,

K22 =





3.0586 4.8151 0
0.4773 3.0556 0

0 0 0.3683



 .

In the simulation, the drive system is started with
x(0) = (1, 1,1, 1,1, 1) and the response system is
initialized with y(0) = (8, 8,8,−8,−8,−8), the de-
lay time τ(t) = 2+ (cos3 t)/6. Using the controller
(13) with ξ = 0.01, the synchronization error is
revealed in Fig. 1. It is obvious that the synchro-
nization error converges to zero in a short time.

When we choose the parameters β = γ = 0,
the controller (13) will reduce as an ordinary linear
controller

u(t) = K1e(t)+ K2e(t −τ(t))
+ sgn e(t)[α1Y (t)+ Y (t −τ(t))
+α3F(y(t))+α4F(y(t −τ(t)))],

then, the inequality

V̇ (t)¶
�

e(t)
e(t −τ(t))

�T

Φ

�

e(t)
e(t −τ(t))

�

−βV (t)−γVη(t)

reduces to

V̇ (t)¶
�

e(t)
e(t −τ(t))

�T

Φ

�

e(t)
e(t −τ(t))

�

.

Once the LMI (14) in Theorem 1 holds, we have
Φ < 0, which yield V̇ (t) < 0, applying Lyapunov
stability theory, we derive the error system (8) is
asymptotically stable. The simulation result is show
in Fig. 2. In addition, the comparison between
Fig. 1 and 2 shows that the control technique in this
paper can effectively shorten the synchronization
time, which verifies the superiority of the of the
proposed method.

CONCLUSION

In this paper, we dealed with the finite-time synchro-
nization of two large-scale hyper chaotic systems
with parametric uncertainties and time-varying de-
lay. Using the finite-time control technique and Lya-
punov stability theory, we designed a suitable time-
delay state feedback controller and put forward a
sufficient finite-time synchronization condition in
the form of LMI. The numerical simulation verified
the correctness and effectiveness of the proposed
scheme. In the further work, we will introduce the
event-triggering mechanism based on the result of
this paper to improve the ability of data filtering in
the process of network synchronization and save the
burden of the network.
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