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ABSTRACT: The Ptolemy constant of two-dimensional Lorentz sequence spaces is computed in this paper. On the way,
we also calculate the Ptolemy constant in the dual space of two-dimensional Lorentz sequence spaces in the case of g = 1

and g = 2. Moreover, we determine the Ptolemy constant of absolute normalized norms under some new conditions.
These results which not only contain some previous results, but also give the exact value of the Ptolemy constant in

some concrete Banach spaces.
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INTRODUCTION

Let X be a non-trivial Banach space, and Sy =
{xeX :|x]| =1}, By ={x € X : ||x|| < 1}
be the unit sphere of X and unit ball of X, re-
spectively. In general, the study of the geometric
property of a Banach space X is not easy. Alter-
natively, one can do this with the help of some
geometric constants. Some geometric constants for
a Banach space X have been investigated in the
literature, such as von Neumann-Jordan constants
Cy;(X)'3, Zbiganu constant C,(X)*®, Ptolemy
constant C,(X)”®. These constants are important
due to its strong connection with some useful geo-
metric properties, such as uniformly nonsquareness
and uniform normal structure '°'2. Moreover, the
Ptolemy constant C,(X) turns out to be useful in
the study of the equivalence of Green’s functions of
second-order linear elliptic operators!®. It is also
a useful tool in the study of the existence of posi-
tive solutions of certain nonlinear equations'*. As
mentioned above, it is thus meaningful to calculate
the exact value of some constants in some concrete
spaces 1>17,

Recently, we give a simple method to determine
the Ptolemy constant C,(X) of absolute normalized
norms on R? which are complementary to the results
of Llorens-Fuster, Mazcunan-Navarro and Reich?.
Moreover, the exact values of the Ptolemy constant
C,(X) were calculated in some classical Banach

spaces, such as the space {,,, Cesaro space ces}(f), and
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Lorentz sequence spaces d®(w, 2)% 8 1%, However,
to our best knowledge, there are no results about the
exact value of Ptolemy constant C,(X) in Lorentz
sequence spaces d?(w,q)(1 < q < oo and q # 2)
and their dual spaces.

In this paper, we firstly determine the exact
value of Ptolemy constant C,(X) under some new
conditions on the correspondence continuous con-
vex function on [0,1]. As an application, we
can compute the value of the Ptolemy constant
CP(X ) in some concrete Banach spaces. Moreover,
we completely compute the Ptolemy constant of
two-dimensional Lorentz sequence spaces d®(w, q)
(1 < ¢ < 00) and their dual spaces d®(w, q)* in the
case of ¢ =1 and g = 2. The new results which not
only contain some previous results*2°, but also give
some new results in some concrete Banach spaces.

PRELIMINARIES

Let us first recall some definition of some canstants:

[l + y 11+ llx — yII?

Cry(X) = ,
N o 202+ [y
[lxll+1ly1I>0
lx +  lllx —zI
C,(X)= sup 2T _ZL
z oo X2+ TyIP
[lxll+lly1I>0
X — Z
()= sup lx—ylllzl
cysonoy I —zllyTT+ llz— y ]
XFEYF2#X


http://www.scienceasia.org/20??.html
mailto:zuozhanfei@163.com
www.scienceasia.org

ScienceAsia 44 (2018)

It is well known that 1 < C,(X) < 2 for all normed
spaces X. The Ptolemy inequality shows that
C,(H) = 1 whenever (H,|.||) is an inner product
space. From the above definition, we can get that
Cz(X) < C,(X). However, there is no relation-
ship between the Ptolemy constant C,(X) and von
Neumann-Jordan constants Cy;(X)”.

Recall that a norm on R? is called absolute if
[1Gz, Wl = |I(z], Iw))I| for all z,w € R and normal-
ized if ||(1,0)|| = ]|(0,1)|| = 1. Let N, denote the
family of all absolute normalized norms on R?, and
let ¥ denote the family of all continuous convex
functions on [0, 1] such that ¢(1) =1(0) = 1 and
max{l —¢t,t} < YP(t) <10 <t <1) IfyY()=
Y(1—t) for all t € [0, 1], we call the function v is
symmetric. It has been shown that N, and ¥ are a
one-to-one correspondence in view of the following
Proposition?!

Proposition 1 If||-|| € N, then y(t) =||(1—t,t)| €
W. On the other hand, if Y (t) € ¥, define a norm
ll1ly as

a1+l ) (z.0) # (0.0),
0 (z,w) =(0,0),

ll(z, w)Il =

then the norm || - ||, € N,.

A simple example of absolute normalized norm
is usual £, (1 < p < 00) norm. From Proposition 1,
one can easily get the corresponding function of the
{, norm:
— )P 4+ ¢PY1/p
wp(t):{{u L +tP}/P 1< p< oo,

max{l—t,t} p = 0.

Also, the above correspondence enable us to get
many non-{, norms on R2. One of the properties
of these norms is stated in the following result.

Proposition 2 Let ¢, € ¥ and ¢ <. Put M =
maXg<, <1 :ﬁ(t), then

1-Mlg <N -1ly < M-l

Let0 < w < 1and 1< q < o0. The two-dimensional
Lorentz sequence space d®(w,q) is R? with the
norm

166 Mg = ()T + (1)),

where (x*,y*) is the rearrangement of (|x|,|y|)
satisfying x* > y*, then ||(x, y)ll, 4 is @ symmetric
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absolute normalized norm on R?, and the corre-

sponding convex function is '®

if0<

(1—1)T + t?)VVa t
if1/2 <

The authors get the dual norm of ||(x, y)I|,, ; and the
corresponding convex function 2

<1/2,
t<1.

Theorem 1 Let 0 < w <1land1<q< oo.
() Ifq=1, then
1—-t fO<t< 7,
_ ) 1
Vo D=\1ms s <t<ms
t if &= <t<L
(i) If 1 < q < oo, then
1op.pd
((1—t)i’+w PEP)e ifOSt < 15,
O e
(tP+o™PA—t)F)r if=<t<l1
1,1 _
WhereE+a—1.
Now, let us put
Yo(t) Y(t)

M, = and M, =

max max .
o<t<1 (t) o<t<1 ), (t)

We consider the Ptolemy constant C,(X) of abso-
lute normalized norms on R?, the exact values of
C,(X) were also calculated in some classical Banach

spaces”®.

Theorem 2 Let 1) € ¥ and 1) =y, then C,(||.|l,) =
MZ
5

Theorem 3 Let 1) € ¥ and 1 < v, if there exist
s,t € [0,1] (s < t) satisfying one of the following
conditions:

(D) Y(s) = YPy(s),(t) = ,(t), and if we put r =
WP g Yalr) w(l N _p
YT 9~ an — M-
(i) w(ﬁ))— 1(,0)2(8) P (t) —(1/))2(f) (am)l if we put r =
YP(t)s+(s)t 1/; r Y(1—r
TOrey then 5oy = yoan = M-

then C,(||.Il,) = M7}

Theorem 4 Let ) € ¥ and Y(t) = Y (1 —t) for all

1/2
t€[0,1]. If My = L82 then C,(-II,) = M2M2.

Theorem 5 Let 1 € ¥ and ¢ (t) = (1 —t) for all

te[0,1]. If M, = 12"((11//22)), M, > 1 and if there exist
s,t € [0,1] (s < t) satisfying one of the following
conditions:
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(D) Ya(s) = My (s),,(t) = Mya(t), and if we put
= S then ¥(r) = Myo(r).
D) Py(s) = Myp(s), Po(t) = Myyp(t), and if we put
r = TS, then (1) = Myip,(r),
then C,(I| - Il,) = M7 M3.

MAIN RESULTS AND SOME EXAMPLES

In this section, we will consider some new condi-
tions of the convex function v that Ptolemy constant
C,(|I-]1) coincide with the upper bound M7 M. For a
norm ||-|| on R?, we write C,(||-|l,,) for C,(R?, [|-I|,;).

Theorem 6 Let 1) € ¥ and ¢ (t) = (1 —t) for all
t €[0,1]. If there exist unique points t, t, € [0,1/2]
such that
Po(ty) Y(t,)
M, = , My, =
()" T (1)

then C,(I| - Il) = M?M3.

Proof: By Proposition 2, we have M%H o < - ly <
M,||-|l,. Let x, ¥y € X, (x,y) # (0,0), where X = R?.
Then
lIxx = ylly lizlly,
lx ==l Ly lly + 11z =y lly llxlly
< Mz llx = yll2llzll
(1/Mlx =zllallyllz + llz = yll2llx]l2)
< MM Cy(I1),
— Ap2ag2
= M2?M2.

From the definition of C,,(X), implies that
Gyl lly) < MPM3. D

On the other hand, note that (1—t,)(1—¢t,) = 3,

put x = (1_ ty, tl): y= (tb ty _1): 2= (1’2t1 _1);
then x —y = (1—2t4,1), x —2 = (—t;,1—t;) and
—Yy= (1 - t15 tl)
Il = (e = 2200
1
Iylly = -1 = Y2000
1
2] P(t,) Mz“\/)z(fz)
YT (-t
(o 1 _Y(1—ty)
lx=ylly = =20 (55 ) = T2
_ Mopo(t,)
(1-t,) ’
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P,(ty)
—zlly = (1 —t;) = 212,
Ibe—slly = 91— = 2=
Yy(tq)
—_ = t =
llz—ylly =(t1) M,
Since
V2(1—t ( )z t).
21—t | 557 ) = ¥a(®)
Consequently, we have
[l = ylly lizlly, _ MEMZY3(t,)
llx =zl llylly + 1z = yllylixlly, 201 —t)243(t:)
— A2ng2
= M2M2.

From the inequality (1) and the above equality, then
C,(|I.lly) = M2M2. This completes the proof. O

Remark 1 When the function 1 is symmetric, if
t; = 1/2, from the equality (1 —t;)(1 —t,) = %
in Theorem 6, then t, = 0, M, = 1, we can also
obtain the Ptolemy constant C,(||.||) coincide with
the upper bound M?MZ by Theorem 4. If t, =1/2,
then t; =0, M; =1 and v =2 1), we can also obtain
the Ptolemy constant C,(|| - [|) coincide with the
upper bound M?MZ by Theorem 2. However, M; =

¥2l) and M, = :pp ((tt)) need not attain the maximum
at t = 1/2 in Theorem 6. Indeed, there are some
examples satisfy this case®. Moreover, we give a

Example 1 to satisfy the condition in Theorem 6.

Example 1 LetO<c¢
function is given by

< 1, the corresponding convex

2
—max{l—ct,1—c+ct,1——} (0<t<1).
¢ 2

Then .
() fO<c<-1++3,then C,(||-Ily,)=E.

2. 2
(ii) If— 1+f<c 1, then G, ([I-ll.) = X252

Proof: If 0 < ¢
Theorem 2, then

< —1+ +/3, then v > 1,. From

2_02 2
1l =m2 = B2 . .
If -1+ +/3 <c <1, then
M2 = Pi(ty) _ 2(c?—2c+2)?
Vo) (2—c2)
2
t
M2 = 1/);( 2) =c2—2c+2,
wz(tz)
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where t; =c¢/2,ty, = (1—c)/(2—c), they satisfy (1—
t)(1—ty) = % From Theorem 6, then C,(||- |,) =

2252 _ 2(c?—2c+2)?
MMy = =y O

The exact values of Cp(d(z)(w, 2)) were calcu-
lated by Theorem 3. In the following, we completely
compute the Ptolemy constant of two-dimensional
Lorentz sequence spaces d®(w,q) (1 < g < 00)
and their dual spaces d®(w,q)* in the case of g = 1
and g = 2.

Theorem 7 Let 0 < w < 1and1<q < oo. The two-
dimensional Lorentz sequence space d®(w,q) is R?
with the norm

166, Yl = ()T + (¥4,
where (x*,y*) is the rearrangement of (|x|,|y|) sat-
isfying x* = y*.
(D) If1<q<2then

Cy(IH) =1+ o max{

(i) If g > 2 then C,(||.Il) = 2(535)*".
Proof: If 1 < g < 2, we get the following inequal-
ity 15

allx|ly < Ixllwq < Dllxl,
where

. (1+w)% 2 11
a=min{ ———,1 and b=[1+wz7]a 2,
{ 72 [+ o]

Let x,y €X, (x,y) # (0,0), where X = R?. Then

”x_y”w,q”Z“w,q
llx —=2llw g1y llog + 112 =¥ llo gl X1l eog
b2(llx — yllpll=ll5)
=< b
a?(llx =zl llyll2 + llz =y ll2llx]l2)
b? b>
< 2G)=—3

a?’

From the definition of C,,(X), implies that
b2
a

(2

On the other hand, take x = (1,0), y =
(0, 0@ 9), and z = (1, 0> D), then
Cp(d®(w,q)

”X _y”w,q”Z”w,q

=
llx =2l g 1Yl g + 12— Y lleo g lIx g

2 1}
(1+w)e )

343

(1, = /C= )|, (1, 0 /C D), 4
110, —e /D)l 410, D)l ¢ +1I(1,0)I12,

_ (1+ w2 D)2/a 2
1+ w2/(2—q9) ’

Also, let us put x = (1 + /@ D)(1,1), y = (1 +
w!?0)(1,-1), and z = (2, 20"/* ), s0

”x_.y”a),q”z“a),q
15 =2l egl1¥ lles.q + 112 = ¥ [l gl g
4[1 + ww? D)2/
(1 4+ w)2/[(1 4 wl/CD)2 + (1 — wl/(2-0)2]’
_ 2(1 + w?/@0)2/e1 2 2 .
(1 + w)?/a (1+ w)?/a

C,(dP(w,q)) >

From the above discussion, we have the equality (i).
If 2 < q < 0o, then

(1+ w)'a

V2

From the above inequality, we can similarly have

llxllz < flxlle,q < [l

1 2/q
Cp(dP(w,q)) <2 (—) : (3)

1+w

On the other hand, take x = (a,a), y = (a,—a),
and z = (2a,0), where a = then ||x||,,, =
l¥llwq =1, and so

1
(1+w)/a>

Cp(d®(w, )
||X _.y”w,q”ZHw,q
1 =2l gl g + 12 = Yl glxXlleng”

=(2a)2+(2a)2=2( 1 )2/‘1.
4 1+w

From the inequality (3), we have (ii). O
In order to get the exact value of Cp(d(z)(co, q)*)

in the case of ¢ = 1, we need the following exam-

ple®.

Example 2 Let 1/2 < f3 < 1, the two-dimensional
space Xz which has corresponding convex function
is given by 1 4(t) = max{1—t,t, B}. Then

(i) 1f1/2<p <1/v2, then C,(|-ll,,) = 2L
(i) 1f1/v2<p <1, then G,(ll-lly,)=2(B*+(1~

B)?).

Theorem 8 Let0 < w < 1and 1/p+1/q =1, where
v, q(t) is the corresponding convex function to dual
norm of [|(x, y)lleq-
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(i) If g =1 then

) )< < V/2—1,
C(dP(w,q)) = TF7, .
1+w? fv2—1<w<l.

(i) Ifg=2thenC (d(z)(a) q)") = 2(15)a.
Proof: By the def1n1t10n of Yg(t) =max{l—t,t, B},
we have

1—t ifo<t<1-8,
Yp()=1{p  f1-p<t<p,
t ifp<e<l

If ¢ =1, let § = g, then 9% ,(t) = 14(t). From
Example 2, we obtain the following conclusion (i):

2(1+w?) . _
G, (AP (w,qy) = { Tron, HO<w@<V2L
P l+w? fv2-l<w<l
If ¢ = 2, from the the symmetry of 1/)*; (t), we
can only consider the function g(t) = ww‘“‘zt) from
[0,1/2]into R. The derivative of g(t) at t € (0, 73
is
‘)= (1—t)P + wiPep)t/p-t
N (R ERTR O
x (—t(1—t)P 1+ P(1—t)tP™h).

Since ¢ = 2, then 1 < p < 2, we have g’(t) = 0 for all
t € (0, 13=), so g(t) is non-decreasing on [0, 13- .
Moreover, it is obvious that g(t) is non-decreasing
on [13, %] Therefore g(t) is non-decreasing on

*

[0, 2] we obtain that ¢¢ (S) has the maximum M, =

2( 1-&&) )1

s> 1 at t = 1/2. Thus by Theorem 2, we get

1 2/q
c,(d® * MZ_z( ) )
(A7 (w,q)") = o
O

Remark 2 From Theorem 7 and Theorem 8,
C,(d?(w,q)) = C,(dP(w,q)*) in the case of g =1
and q = 2. Although we do not know the exact
value of Cp(d(z)(a),q)*) in the case of 1 < q < 2,
It will be interesting to determine if the equality
C,(X) = C,(X*) holds for any Banach space X.
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