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ABSTRACT: In recent years, the compressive sensing (CS) has received considerable attention in signal processing
and statistical inference. The classical proximal point algorithm (PPA) for some reformulations of CS often involves
an inverse matrix at each iteration, which usually requires expensive computation if high dimensional variables are
considered. Our contribution in this paper is to propose a novelly inverse matrix-free PPA to solve CS for the first time.
More specifically, we first establish some equivalent reformulations of CS, which are smooth and convex. Based on
these equivalent reformations, a new proximal point algorithm is proposed to solve CS, whose inverse matrix can be
removed by choosing some special parameter. Thus we get an inverse matrix-free PPA, which is implementable for large
scale CS. Global convergence of the new PPA and its inverse matrix-free version is established. Comparative numerical
results are presented, which substantiate the efficacy and validity of the inverse matrix-free PPA for solving some sparse
signal recovery problems.
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INTRODUCTION

The problem of compressive sensing (CS) is consid-
ered to be an important issue encountered in the
fields of signal processing and statistical inference,
which is to recover a sparse signal x̄ ∈ Rn from
an undetermined linear system y = Ax̄ , where A ∈
Rm×n (m<<n) is the sensing matrix. A fundamental
decoding model of CS is the following basis pursuit
denoising (termed as QPρ):

min
x∈Rn

1
2
‖Ax − y‖2

2+ρ‖x‖1, (1)

where ρ > 0 is the regularization parameter and
‖x‖1 is the `1-norm of the vector x defined as
‖x‖1 =

∑n
i=1 |x i |. Throughout this paper, we assume

that the solution set of (1) is nonempty.
The CS has been an important research direc-

tion in optimization since its appearance, and the
theory about it has been extensively developed in
the literature1. Though the presence of nonsmooth-
ness of `1-norm makes QPρ become a nonsmooth
optimization problem, a lot of numerical algorithms
have been investigated in the last decades, which

can be classified into two categories. The first
category aims to reformulate QPρ as a smooth op-
timization problem by some splitting technologies.
For example, by splitting the decision variable x
into two positive variables, Figueiredo et al2 trans-
formed QPρ into a bound-constrained quadratic
programming formulation, and proposed some gra-
dient projection algorithms for the reformulation of
QPρ. These approaches perform quite well in a wide
range of applications, especially the approach based
on the famous Barzilai-Borwein method. Then, as
a follow-up to Figueiredo et al2, Xiao and Zhu3

further transformed QPρ into a convex constrained
monotone equations, and presented a conjugate
gradient method for the equivalent forms of QPρ.
The numerical results3 substantiated the efficacy of
such conjugate gradient method. Wang et al4 pro-
posed a Lagrange-dual reformulation of QPρ, whose
dimensionality is m, which is much smaller than
n, the dimensionality of the original problem QPρ.
Furthermore, it is smooth and convex. Therefore,
many state of the art gradient-type algorithms can
be used to solve the reformulation. The second
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category reformulates QPρ as a separable convex
programming by introducing some auxiliary vari-
able. All the numerical methods which can solve
the separable convex programming are applicable
to QPρ, such as the alternating direction method
of multipliers and its linearized version7–10, 14, the
Peaceman-Rachford splitting method of multipli-
ers11–13, 15, 16, the symmetric alternating direction
method of multipliers5, etc. Compared to the meth-
ods in the first category, the methods in the second
category don’t need the backtracking line search to
find the steplength.

Since the work of Martinet6, the proximal point
algorithm (PPA) has received much attention of
researchers and practitioners and it is a powerful
tool for algorithmic interpretation. Many famous
numerical methods for optimization problems can
be casted to PPA framework. The classical PPA for
some reformulations of CS often involves an inverse
matrix at each iteration, which usually requires ex-
pensive computation if high dimensional variables
are considered. To the best of the authors’ knowl-
edge, there is no inverse matrix-free PPA for QPρ.
On the basis of the previous work2, 3, 11, in this paper,
we are going to propose a new numerical method
for QPρ, which is quite simple in the sense that
its iterative scheme has a closed-form expression.
Furthermore, the new method can also be casted to
the proximal point algorithm framework. Though
its iterative scheme involves an inverse matrix, by
choosing some suitable parameter, the new method
can reduce to an inverse matrix-free method.

The rest of this paper is organized as follows. In
the next section some equivalent reformulations of
QPρ are established. Then we propose a new PPA
and an inverse matrix-free PPA for QPρ. The global
convergence of both new methods are discussed in
detail. Some numerical experiments on compres-
sive sensing are given to illustrate the efficiency
of the proposed method. Finally, some concluding
remarks are drawn in the last section.

To end this section, some notations used in
this paper are in order. We use Rn

+ to denote the
nonnegative quadrant of Rn, and x+ to denote the
orthogonal projection of vector x ∈ Rn onto Rn

+,
that is, (x+)i :=max{x i , 0}, 1¶ i ¶ n. Furthermore,
‖ · ‖1, ‖ · ‖ and ‖ · ‖M denote the Euclidean 1-norm,
2-norm and M -norm, respectively. For any two
vectors x , y ∈ Rn, we use (x; y) to denote the
column vector (x>, y>)>, and use Im to denote an
identity matrix of order m. The transpose of a matrix
M is denoted by M>. λM

min and λM
max denote the

minimum eigenvalue and the maximum eigenvalue
of the matrix M , respectively.

EQUIVALENT REFORMULATIONS OF QPρ

In this section, we shall establish some equivalent
reformulations of QPρ. These reformulations are
the basis of our analysis to be conducted.

First, to get a smooth reformulation2–4 of QPρ,
let us introduce two sets of auxiliary variables µi and
νi (i = 1, 2, · · · , n), which satisfy

µi +νi = |x i |, µi −νi = x i , i = 1, 2, . . . , n.

Then, the QPρ can be equivalently reformulated as
the following smooth optimization problem

min
(µ;ν)∈R2n

s.t. µ,ν¾0

1
2
‖(A,−A)(µ;ν)− y‖2

2+ρ(e
>, e>)(µ;ν) (2)

where e ∈ Rn denotes the vector composed by
elements 1, i.e., e = (1,1, . . . , 1)>.

By a simple manipulation, we can further
rewrite (2) as the following compact form:

min
(µ;ν)∈R2n

1
2
[(µ;ν)>M(µ;ν)−2p>(µ;ν)+ y> y] (3)

where M = (A,−A)>(A,−A) and p = (A,−A)> y −
ρ(e>, e>)>.

It is easy to check that the Hessian matrix M
of the quadratic function f (µ;ν) is positive semi-
definite, so f (u; v) is a convex function. Further-
more, the feasible set is a polyhedral. Thus, problem
(3) is a standard convex optimization. By the theory
of the convex optimization17, we have that the
stationary set of (3) coincides with its solution set,
which again coincides with the solution set of the
following linear variational inequality problem: find
(µ;ν)∗ ∈ R2n

+ such that

((µ;ν)− (µ;ν)∗)>(M(µ;ν)∗− p)¾ 0, (4)

for all (µ;ν) ∈ R2n
+ . Obviously, the solution set of

(4) is nonempty under the nonempty assumption of
the solution of (1). That is, the problem (4) is also
an equivalent reformulation of the QPρ.

In conclusion,

QPρ⇔ (2)⇔ (3)⇔ (4).

ALGORITHM AND GLOBAL CONVERGENCE

In this section, based on the equivalent reformu-
lations presented above, we shall propose a new
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proximal point algorithm and its inverse matrix-free 
version to solve QPρ. Furthermore, their global 
convergence is proved under some standard as-
sumptions.

First, the new PPA for QPρ is described as 
follows.

Algorithm 1

Step 1. Choose the parameters ε ¾ 0,γ¾ 0, and a
symmetric matrix N ∈ R2n×2n such that

γ >max
§

−2λN
min+

1
2
λM

max,−λN
min

ª

. (5)

Select a randomly generated initial guess

(µ;ν)0 ∈ R2n, and set k
4
= 0.

Step 2. Compute the new iterate (µ;ν)k+1 by

(µ;ν)k+1 =
1
2
{(M +

γ

2
I +N)−1

[(M +γI +2N)(µ;ν)k + p]}+. (6)

Step 3. If ‖(µ;ν)k+1 − (µ;ν)k‖ ¶ ε, then stop;

Otherwise, go to Step 2 with k
4
= k+1.

Remark 1 In Algorithm 1, by (5), we obtain

λM
min+

γ

2
+λN

min > λ
M
min−λ

N
min+

1
4
λM

max+λ
N
min

=
1
4
λM

max+λ
M
min ¾ 0.

Thus, the matrix M+ γ2 I+N is positive definite, and
Algorithm 1 is well-defined.

To establish the convergence of Algorithm 1, we
first give the following two lemmas, which lay a
basis for further discussion.

Lemma 1 The iterate (µ;ν)k+1 generated by iterative
scheme (6) is a solution of the following strictly
quadratic programming

min
(µ;ν)∈R2n

+

f̃ (u, v) (7)

where

f̃ (u, v) = [(µ;ν)− (µ;ν)k]>(M(µ;ν)− p)

+
γ

2
‖(µ;ν)− (µ;ν)k‖2

+[(µ;ν)− (µ;ν)k]>N[(µ;ν)− (µ;ν)k]

where N defined in Algorithm 1.

Proof : To make the work more concise, we intro-
duce the notation ξ = (µ;ν),ξk = (µ;ν)k,ξk+1 =
(µ;ν)k+1. By a manipulation, we have

ξk+1 = argmin
ξ∈R2n

+

n

‖ξ− q‖2
(M+ γ2 I+N)

o

= argmin
ξ∈R2n

+

n

‖ξ− q‖2
(M+ γ2 I+N)− q>

�

M +
γ

2
I +N

�

q
o

= argmin
ξ∈R2n

+

§

‖ξ− q‖2
(M+ γ2 I+N)− q>

�

M +
γ

2
I +N

�

q

+ p>ξk +
1
2
γ(ξk)>ξk +(ξk)>Nξk

ª

= argmin
ξ∈R2n

+

§

(ξ−ξk)>(Mξ− p)+
1
2
γ‖ξ−ξk‖2

+(ξ−ξk)>N(ξ−ξk)
ª

, (8)

where q = 1
2 (M +

γ
2 I +N)−1((M + γI + 2N)ξk + p).

Then, the desired result follows. 2

Lemma 2 If the vector (µ;ν)∗ is a solution of (4) and
λM

max 6= 0, then we have

〈M(µ;ν)− p, (µ;ν)− (µ;ν)∗〉

¾
1
λM

max

‖M((µ;ν)− (µ;ν)∗)‖2,

for all (µ;ν) ∈ R2n
+ .

Proof : For the ease of description, we introduce the
notation ξ= (µ;ν),ξ∗ = (µ;ν)∗. Since the matrix M
is positive semi-definite, there exists an orthogonal
matrix P such that

PM P> = diag(λ1, · · · ,λs, ~0),

with λi > 0 (i = 1, 2, . . . , s). Setting ζ = P(ξ− ξ∗)
and by a direct manipulation, we have

〈(Mξ− p)− (Mξ∗− p), ξ−ξ∗〉

= (ξ−ξ∗)>M(ξ−ξ∗)

= (ξ−ξ∗)>P>diag(λ1, · · · ,λs, ~0)P(ξ−ξ∗)

¾
1
λM

max

(λ2
1ζ

2
1+ · · ·+λ

2
s ζ

2
s )

=
1
λM

max

(ξ−ξ∗)>P>diag(λ2
1, · · · ,λ2

s , ~0)P(ξ−ξ∗)

=
1
λM

max

‖M(ξ−ξ∗)‖2 (9)

Since ξ∗ is a solution of (4), one has

〈Mξ∗− p,ξ−ξ∗〉¾ 0 ∀ξ ∈ R2n
+ .
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This and (9) imply the conclusion of this lemma
immediately. 2

Remark 2 Algorithm 1 is a descent method in the
sense that the generated sequence {(µ;ν)k} satisfies
f ((µ;ν)k+1) ¶ f ((µ;ν)k), where f (·) is the objec-
tive function of (3). In fact, from (5), the matrix
M + γ

2 I + N is positive definite. Then (µ;ν)k+1 is
the unique solution of (7). In addition, since the
quadratic programming (7) is strictly convex, it can
be equivalently reformulated as the following linear
variational inequality problem:

¬

2(M +
1
2
γI +N)((µ;ν)k+1− (µ;ν)k)

+M(µ;ν)k − p, (µ;ν)− (µ;ν)k+1
¶

¾ 0, (10)

for all (µ;ν) ∈ R2n
+ . From (3), we have

f ((µ;ν)k+1)− f ((µ;ν)k)

=
1
2

�

((µ;ν)k+1)>M(µ;ν)k+1−2p>(µ;ν)k+1+ y> y
�

−
1
2

�

((µ;ν)k)>M(µ;ν)k −2p>(µ;ν)k + y> y
�

=
1
2
((µ;ν)k+1− (µ;ν)k)>M((µ;ν)k+1− (µ;ν)k)

+ 〈M(µ;ν)k − p, (µ;ν)k+1− (µ;ν)k〉

¶
1
2
((µ;ν)k+1− (µ;ν)k)>M((µ;ν)k+1− (µ;ν)k)

−
¬

2(M +
1
2
γI +N)((µ;ν)k+1− (µ;ν)k),

(µ;ν)k+1− (µ;ν)k〉

= ((µ;ν)k+1− (µ;ν)k)>
�1

2
M −2(M +

1
2
γI +N)

�

× ((µ;ν)k+1− (µ;ν)k)

= −((µ;ν)k+1− (µ;ν)k)>
�3

2
M +γI +N

�

× ((µ;ν)k+1− (µ;ν)k)
¶ 0,

where the first inequality follows from (10) with
(µ;ν) = (µ;ν)k, and the second inequality holds
since the matrix 3

2 M+γI+N is positive definite (see
(5)).

Remark 3 The linear variational inequality prob-
lem (10) can be written as the following compact
form:
¬

M(µ;ν)k+1− p+(M +γI +2N)

× ((µ;ν)k+1− (µ;ν)k), (µ;ν)− (µ;ν)k+1
¶

¾ 0,

for all (µ;ν) ∈ R2n
+ . Therefore, Algorithm 1 can be

viewed as a customized proximal point algorithm
for (1), and the matrix associated with the proximal
regularization term is M+γI+2N , which is positive
definite. Furthermore, the above inequality and (4)
indicate that the stopping criterion of Algorithm 1 is
reasonable. That is, the vector (µ;ν)k is a solution of
(4) if ‖(µ;ν)k+1−(µ;ν)k‖= 0, so the ensuing vector
x k with x k = µk − νk is a solution of QPρ, where
(µk,νk) = (µ,ν)k.

In the following, the tolerance ε in Algorithm 1
is set to zero. Based on Lemmas 1 and 2, we get the
global convergence of Algorithm 1 as follows.

Theorem 1 Suppose that the assumption (5) holds.
Then, the sequence {(µ;ν)k} generated by Algorithm
1 terminates at a solution of (2) in a finite number of
steps or converges globally to a solution of (2).

Proof : The proof is divided into two cases.
For the ease of description, let ξ = (µ;ν),ξk =
(µ;ν)k,ξk+1 = (µ;ν)k+1,ξ∗ = (µ;ν)∗, ξ̂= (µ̂; ν̂).

Case 1 {ξk} is a finite sequence. Then, for
sufficiently large k, we have ξk+1 = ξk. Combining
this with (10), we have

〈Mξk − p,ξ−ξk〉¾ 0 for all ξ ∈ R2n
+ . (11)

Thus, ξk is a solution of (4), i.e., the sequence {ξk}
terminates at a solution of (2) in a finite number of
steps.

Case 2 {ξk} is an infinite sequence, i.e. ξk+1 6=
ξk for all k. SetM γ = M + 1

2γ+N and

Ψ(ξ) = (ξ−ξ∗)>M γ(ξ−ξ∗)
+ 〈Mξ∗− p,ξ−ξ∗〉, (12)

where ξ∗ is a solution of (2). Combining this with
(4) and using (5), it is easy to deduce

Ψ(ξ)¾ (ξ−ξ∗)>M γ(ξ−ξ∗)

¾
�

1
2
γ+λN

min

�

‖ξ−ξ∗‖2 ¾ 0. (13)

In this following, we are going to study the mono-
tonicity property of the sequence

�

Ψ(ξk)
	

. By the
definition of Ψ(ξ), we have

Ψ(ξk)−Ψ(ξk+1)

= (ξk −ξ∗)>M γ(ξ
k −ξ∗)+ 〈Mξ∗− p,ξk −ξ∗〉

− (ξk+1−ξ∗)>M γ(ξ
k+1−ξ∗)
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−〈Mξ∗− p,ξk+1−ξ∗〉

= (ξk)>M γ ξ
k − (ξ∗)>M γ ξ

∗−2〈M γ ξ
∗,ξk −ξ∗〉

− (ξk+1)>M γ ξ
k+1+(ξ∗)>M γ ξ

∗

+2〈M γ ξ
∗,ξk+1−ξ∗〉+ 〈Mξ∗− p,ξk −ξk+1〉

= (ξk)>M γ ξ
k − (ξk+1)>M γ ξ

k+1

+2〈M γ ξ
∗,ξk+1−ξk〉+ 〈Mξ∗− p,ξk −ξk+1〉

= (ξk)>M γ ξ
k − (ξk+1)>M γ ξ

k+1

−2〈M γ ξ
k+1,ξk −ξk+1〉+ 〈Mξ∗− p,ξk −ξk+1〉

+2〈M γ(ξ
k+1−ξ∗),ξk −ξk+1〉

= (ξk −ξk+1)>M γ(ξ
k −ξk+1)

+2〈M γ(ξ
k+1−ξk),ξ∗−ξk+1〉

+ 〈Mξ∗− p,ξk −ξk+1〉. (14)

Using (10) with ξ= ξ∗, one has

〈2M γ(ξ
k+1−ξk),ξ∗−ξk+1〉

¾ −〈Mξk − p,ξ∗−ξk+1〉.

Combining this with (14), we obtain

Ψ(ξk)−Ψ(ξk+1)

¾ (ξk −ξk+1)>M γ(ξ
k −ξk+1)

−〈Mξk − p,ξ∗−ξk+1〉+ 〈Mξ∗− p,ξk −ξk+1〉

= (ξk −ξk+1)>M γ(ξ
k −ξk+1)

+ 〈Mξk − p,ξk −ξ∗〉− 〈Mξk − p,ξk −ξk+1〉

+ 〈Mξ∗− p,ξk −ξk+1〉. (15)

From Lemma 2 with ξ= ξk, we have

〈Mξk − p, ξk −ξ∗〉¾
1
λM

max

‖M(ξk −ξ∗)‖2.

Combining this with (15), one has

Ψ(ξk)−Ψ(ξk+1)

¾ (ξk −ξk+1)>M γ(ξ
k −ξk+1)

+
1
λM

max

‖M(ξk −ξ∗)‖2−〈M(ξk −ξ∗),ξk −ξk+1〉.

(16)

By (16), combining (13) with the Cauchy-Schwartz
inequality, one has

Ψ(ξk)−Ψ(ξk+1)

¾
�

1
2
γ+λN

min

�

‖ξk −ξk+1‖2+
1
λM

max

‖M(ξk −ξ∗)‖2

−‖M(ξk −ξ∗)‖‖ξk −ξk+1‖

¾
�

1
2
γ+λN

min

�

‖ξk −ξk+1‖2+
1
λM

max

‖M(ξk −ξ∗)‖2

−
1
λM

max

‖M(ξk −ξ∗)‖2−
1
4
λM

max‖ξ
k −ξk+1‖2

=
�

1
2
γ+λN

min

�

‖ξk −ξk+1‖2−
1
4
λM

max‖ξ
k −ξk+1‖2

=
1
2

�

γ+2λN
min−

1
2
λM

max

�

‖ξk −ξk+1‖2. (17)

From (5), one has γ+2λN
min−

1
2λ

M
max > 0. Combining

this with (17), we have Ψ(ξk)−Ψ(ξk+1)> 0, which
together with (13) implies that the nonnegative
sequence {Ψ(ξk)} is strictly decreasing. Thus it is
convergent. Then, one has Ψ(ξk)−Ψ(ξk+1)→ 0 as
k→∞. This and (17) imply

lim
k→∞

‖ξk −ξk+1‖= 0. (18)

In addition, the sequence {Ψ(ξk)} is bounded since
it is convergent. Combining this with (13), we have
that the sequence {ξk} is also bounded. Let {ξki} be
a convergent subsequence of {ξk}, and set

lim
ki→∞

ξki = ξ̂. (19)

Combining this with (18), we obtain

lim
ki→∞

‖ξki+1− ξ̂‖

¶ lim
ki→∞

‖ξki+1−ξki‖+ lim
ki→∞

‖ξki − ξ̂‖= 0.

This and (10) imply

〈M ξ̂− p,ξ− ξ̂〉¾ 0 for all ξ ∈ R2n
+ .

Thus, ξ̂ is a solution of (2). Replacing ξ∗ in Ψ(ξ)
(see (12)) by ξ̂, and the resultant expression is
denoted by Ψ̂(ξ). That is,

Ψ̂(ξ) = (ξ− ξ̂)>M γ(ξ− ξ̂)+ 〈M ξ̂− p,ξ− ξ̂〉. (20)

From (20), we have
�γ

2
+λN

min

�

‖ξ− ξ̂‖2 ¶ Ψ̂(ξ)

¶
�

λM
max+

1
2
γ+λN

max

�

‖ξ− ξ̂‖2

+ ‖M ξ̂+ p‖‖ξ− ξ̂‖. (21)

By the same procedure to prove the convergence
of the sequence {Ψ(ξk)}, we can prove that the
sequence {Ψ̂(ξk)} is also convergent. Setting ξ =
ξki in (21), we get Ψ̂(ξki )→ 0 (ki →∞) by (19).
Thus, we have Ψ̂(ξk)→ 0 (k→∞). By (21) again,
we have that the sequence {ξk} converges globally
to ξ̂, and the assertion of this theorem is proved. 2
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Theorem 2 The sequence {x k} generated by Algo-
rithm 1 terminates in a finite number of steps or
converges globally to a solution of (1), where x k =
µk −νk, (µk;νk) = (µ;ν)k.

Proof : If the sequence {(µ;ν)k} terminates in a finite
number of steps, the last iterate (µ;ν)k is a solution
of (2). Thus the vector x k with x k = µk − νk is a
solution of (1).

In the following analysis, we assume that the
sequence {(µ;ν)k} is an infinite sequence. From
Theorem 1, we have

lim
k→∞

(µ;ν)k = (µ̂; ν̂). (22)

Set x̂ = µ̂− ν̂, and a direct computation yields that

‖x k − x̂‖= ‖(µk −νk)− (µ̂− ν̂)‖

¶ ‖(µk − µ̂)‖+ ‖(νk − ν̂)‖

¶ ‖(µk − µ̂)‖1+ ‖(νk − ν̂)‖1

= ‖(µk − µ̂;νk − ν̂)‖1

¶
p

2n‖(µk − µ̂;νk − ν̂)‖ → 0 (23)

as k→∞, where the second and third inequalities
follow from the fact that

‖x‖¶ ‖x‖1 ¶
p

n‖x‖ for all x ∈ Rn.

Thus, the sequence {x k} converges globally to a
solution of (1). The proof is completed. 2

From (6), the computation ofM−1
γ

4
= (M+ γ2 I+

N)−1 is time consuming if n is large. In order to
remove it, we can set N = 2τI2n − M in (6), and
some simple manipulations yield that

(µ;ν)k+1

=
1
2

¦

M−1
γ [(M +γI +2N)(µ;ν)k + p]

©

+

=
1
2

¦
�

M +
γ

2
I +[2τI −M]

�−1
[(M +γI

+2[2τI −M])(µ;ν)k + p]
©

+

=
1
2

§

�γ

2
+2τ

�−1
[((γ+4τ)I −M)(µ;ν)k + p]

ª

+

=
§�

I −
1

2σ
M
�

(µ;ν)k +
1

2σ
p
ª

+
, (24)

where σ = 1
2γ+2τ.

Combining (24) with Algorithm 1, we get the
following inverse matrix-free PPA.

Algorithm 2

Step 1. Choose the parameters ε > 0,τ > 0 and
γ > 0 satisfying

γ >max
§

−4τ+
5
2
λM

max,−2τ+λM
max

ª

. (25)

Select a randomly generated initial point
(µ;ν)0 ∈ R2n, and set k = 0.

Step 2. Compute the new iterate (µ;ν)k+1 by

(µ;ν)k+1 =
§

(I −
1

2σ
M)(µ;ν)k +

1
2σ

p
ª

+
,

(26) 402

where σ defined in (24);

Step 3. If ‖(µ;ν)k+1 − (µ;ν)k‖ ¶ ε, stop; Other-
wise, go to Step 2 with k

Í
= k+1.

Theorem 3 Suppose that the assumption (25) holds.
Then, the sequence {(µ;ν)k} generated by Algorithm
2 and the corresponding sequence {x k} terminate in
a finite number of steps or converges globally to a
solution of (2) and (1), respectively, where x k = µk−
νk and (µk;νk) = (µ;ν)k.

Proof : Obviously, Algorithm 1 reduces to Algorithm
2 by setting N = 2τI2n −M . Therefore, in order to
prove this theorem, we only need to ensure that the
condition (5) holds. In fact, by N = 2τI2n −M , we
have λN

min = 2τ− λM
max. Combining this with (25),

we get the condition (5). Hence, the assertion of
this theorem holds by Theorem 1 and Theorem 2.
This completes the proof. 2

NUMERICAL EXPERIMENTS

In this section, we provide some numerical tests
about compressive sensing to show the efficiency of
our proposed method. For comparison, we also give
the numerical results of a conjugate gradient de-
scent (denoted by CGD) method proposed recently
by Xiao and Zhu3. All codes are written by MATLAB

7.10.0 and performed on a Windows 7 PC with an
Pentium(R) Dual-Core CPU T4400, 2.20GHz CPU
and 4GB of memory. In the experiment, we set
ρ = 0.01, n = 211, m = bn/ac, k = bm/bc, and
the measurement matrix A is generated by MATLAB

scripts:

[Q, R]=qr(A',0); A=Q'.

The original signal x̄ is generated by

p=randperm(n);
x(p(1:k))=randn(k,1).
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Fig. 1 The original signal, noisy measurement and recov-
ery signal.

The observed signal is y = Ax̄ + n̄, where n̄ is gen-
erated by a standard Gaussian distribution N(0,1)
and then it is normalized to the norm σ = 0.01 or
0.001. For the two methods, the stopping criterion
is

‖ fk − fk−1‖
‖ fk−1‖

< 10−5,

where fk denotes the objective value of (1) at itera-
tion xk. For Algorithm 2, we setτ= 0.2,γ= 0.01. In
addition, the initial points µ0 = max{0, A> y}, ν0 =
max{0,−A> y}. For CGD, we set ξ = 10,σ = 10−4

and ρ = 0.5 in the line search (2.9) of CGD, and the
initial points µ0 and ν0 are set the same as those in
Algorithm 2 In each test, we calculate the relative
error

Rel. Err=
‖ x̃ − x̄‖
‖ x̄‖

,

where x̃ denotes the recovery signal.
For a = 4, b = 8, the original signal, the mea-

surement and the recovery signal (marked by red
point) by Algorithm 2 and CGD are given in Fig. 1.

Obviously, from the last two subplots in Fig. 1,
all elements in the original signal are circled by the
red points, which indicates that the two methods
can recover the original signal quite well. More
numerical results are given in Tables 1 and 2, in
which, we report the number of iterations, the CPU
time in seconds, the relative error of the Algorithm
2 and CGD for various scenarios of (a, b). Note that
the codes of the two methods are repeatedly run 5
times and the listed results are the averages of the
numerical results.

Table 1 and Table 2 indicate that Algorithm 2 is
always faster than CGD method for all combinations

Table 1 Comparison of Algorithm 2 with CGD for σ =
0.001.

a b Algorithm 2 CGD

Time Iter Rel. Err Time Iter Rel. Err

4 8 2.509 115.60 0.0466 14.702 210.00 0.0549
3 9 1.616 72.60 0.0361 11.154 159.50 0.0324
2 10 1.136 44.80 0.0219 8.475 123.75 0.0220

Table 2 Comparison of Algorithm 2 with CGD for σ =
0.01.

a b Algorithm 2 CGD

Time Iter Rel. Err Time Iter Rel. Err

4 8 2.253 109.80 0.0498 15.884 215.20 0.0500
3 9 1.632 75.20 0.0348 10.005 140.33 0.0350
2 10 1.048 44.60 0.0225 7.675 109.67 0.0222

of σ and (a, b). The reason may be that Algorithm 2
does not to execute any line search at each iteration,
while CGD method has to perform a line search to
find a suitable steplength. In addition, Algorithm
2 always takes smaller number of iteration than
CGD method to achieve the same relative error.
Therefore, Algorithm 2 is an efficient method for
compressive sensing.

CONCLUSIONS

In this paper, we have developed a new proximal
point algorithm for compressive sensing. By choos-
ing some special parameter, the inverse matrix in
the new PPA can be removed, and we get an inverse
matrix-free PPA. Under some standard assumptions,
we have established the global convergence of the
new PPA in detail. Finally, some numerical results
illustrate that the inverse matrix-free PPA is efficient
for the given tests.

According to its limitations, the method pro-
posed in this work has several possible extensions.
First, it could be numerically beneficial to tune the
parameter γ, and thus it is meaningful to investigate
the global convergence of Algorithm 1 with adap-
tively adjusted parameter γ. Second, Algorithm 2
is tailored for the linear variational inequalities (4).
Therefore, how to extend it to nonlinear variational
inequalities is worthy of further research.
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