On a generalization of transformation semigroups that preserve equivalences

Nares Sawatraksa*, Chaiwat Namnak

Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000 Thailand

*Corresponding author, e-mail: naress58@nu.ac.th

Received 25 Jan 2017 Accepted 27 Apr 2018

ABSTRACT: Let T(X) be the full transformation semigroup on a nonempty set *X*. For an equivalence relation σ on *X*, Pei introduced and studied the subsemigroup of T(X) defined by $T(X, \sigma) = \{\alpha \in T(X) : \forall x, y \in X, (x, y) \in \sigma \text{ implies } (x\alpha, y\alpha) \in \sigma\}$, which is called a transformation semigroup preserving the equivalence σ . In this paper, for two equivalence relations σ , ρ with $\rho \subseteq \sigma$ on a nonempty set *X*, we introduce the subsemigroup $T(X, \sigma, \rho) = \{\alpha \in T(X) : \forall x, y \in X, (x, y) \in \sigma \text{ implies } (x\alpha, y\alpha) \in \rho\}$ of T(X) which generalizes the notation of the subsemigroup $T(X, \sigma)$ of T(X). A necessary and sufficient condition under which $T(X, \sigma, \rho)$ is a *BQ*-semigroup (a semigroup whose biideals and quasi-ideals coincide) is given. We also prove that $T(X, \sigma)$ of T(X) can be embedded into a semigroup of $T(Y, Z) = \{\alpha \in T(Y) : Y\alpha \subseteq Z\}$ for some sets *Y* and *Z* with $Z \subseteq Y$.

KEYWORDS: bi-ideals, quasi-ideals, BQ-semigroup

MSC2010: 20M20

INTRODUCTION

For a nonempty set *X*, let T(X) be the full transformations semigroup on *X*, i.e., T(X) is the semigroup under composition of all mappings $\alpha : X \to X$. Miller and Doss¹ proved that T(X) is a regular semigroup and described its Green's relations. It is well known that every semigroup is isomorphic to a subsemigroup of some full transformation semigroups. Hence in order to study structure of semigroups, it suffices to consider in subsemigroups of T(X).

Let σ be an equivalence relation on a nonempty set *X*. Pei² has studied a family of subsemigroups of *T*(*X*) determined by σ , namely,

$$T(X,\sigma) = \{ \alpha \in T(X) : \forall x, y \in X, (x, y) \in \sigma \\ \text{implies } (x\alpha, y\alpha) \in \sigma \}.$$

It is clear that if $\sigma \in \{I_X, X \times X\}$, where I_X is the identity relation on X, then $T(X, \sigma) = T(X)$. He discussed regularity of elements and Green's relations for $T(X, \sigma)$. Mendes-Gonçalves and Sullivan³ introduced a subsemigroup of T(X) defined by

$$E(X,\sigma) = \{ \alpha \in T(X) : \forall x, y \in X, (x, y) \in \sigma \\ \text{implies } x\alpha = y\alpha \}$$

and call it the semigroup of transformations restricted by an equivalence σ . Observe that $E(X, \sigma)$ is a subsemigroup of $T(X, \sigma)$. They also characterized Green's relations on the largest regular subsemigroup of $E(X, \sigma)$ and showed that if $|X| \ge 2$ and $\sigma \ne I_X$, then $E(X, \sigma)$ is not isomorphic to T(Z) for any set *Z*.

Let σ and ρ be equivalence relations on a set X with $\rho \subseteq \sigma$. We define a generalization of $T(X, \sigma)$ as follows:

$$T(X,\sigma,\rho) = \{ \alpha \in T(X) : \forall x, y \in X, (x,y) \in \sigma \\ \text{implies } (x\alpha, y\alpha) \in \rho \}.$$

It is easy to see that $T(X, \sigma, \rho)$ is a subsemigroup of T(X). Notice that the identity mapping need not be in $T(X, \sigma, \rho)$. If $\sigma = I_X$ or $\rho = X \times X$, then $T(X, \sigma, \rho)$ contains the identity mapping on X. And if $\rho = I_X$, then $T(X, \sigma, \rho)$ is a right ideal of T(X).

The relationships between the semigroups $T(X, \sigma, \rho)$ and $E(X, \sigma)$, $T(X, \sigma)$ and T(X) are now described.

Proposition 1 The following statements hold.

- (i) $E(X,\sigma) \subseteq T(X,\sigma,\rho) \subseteq T(X,\sigma)$.
- (ii) $T(X, \sigma, \rho) = E(X, \sigma)$ if and only if $\rho = I_X$.
- (iii) $T(X,\sigma,\rho) = T(X,\sigma)$ if and only if $\sigma = \rho$.
- (iv) $T(X, \sigma, \rho) = T(X)$ if and only if $\sigma = I_X$ or $\rho = X \times X$.

A subsemigroup Q of a semigroup S is called a quasi-ideal of S if $SQ \cap QS \subseteq Q$, and by a bi*ideal* of *S* we mean a subsemigroup *B* of *S* such that $BSB \subseteq B$. Quasi-ideals are a generalization of left ideals and right ideals and bi-ideals are a generalization of quasi-ideals. A *BQ-semigroup* is a semigroup *S* whose bi-ideals and quasi-ideals co-incide. It is known that regular semigroups⁴, left (or right) simple semigroups⁵, and left (or right) 0-simple semigroups⁵ are *BQ*-semigroups.

For a nonempty subset *A* of a semigroup *S*, $(A)_q$ and $(A)_b$ denote, respectively, the quasi-ideal and the bi-ideal of *S* generated by *A*, that is, $(A)_q$ is the intersection of all quasi-ideals of *S* containing *A* and $(A)_b$ is the intersection of all bi-ideals of *S* containing *A* ⁶.

Proposition 2 (Ref. 7) For a nonempty subset A of a semigroup S,

$$(A)_{q} = A \cup (SA \cap AS), \ (A)_{b} = A \cup A^{2} \cup ASA.$$

Calais⁸ gave a characterization of the *BQ*-semigroups as follows.

Proposition 3 (Ref. 8) A semigroup S is a BQsemigroup if and only if $(x, y)_b = (x, y)_q$ for all x, $y \in S$.

Let *Y* be a fixed nonempty subset of *X*. Symons⁹ considered the subsemigroup of T(X) defined by

$$T(X,Y) = \{ \alpha \in T(X) : X \alpha \subseteq Y \}$$

and described all the automorphisms of this semigroup. Furthermore, he determined when the two semigroups of this type are isomorphic. Nenthein et al¹⁰ characterized regular elements of T(X,Y)and determined the numbers of regular elements in T(X,Y) for a finite set *X*. It was also proved that T(X,Y) is a *BQ*-semigroup¹¹. Sanwong and Sommanee¹² described T(X,Y) to be regular and determined Green's relations on T(X,Y). They also obtained a class of maximal inverse subsemigroups of T(X,Y).

In this paper, we first prove that $T(X, \sigma, \rho)$ is a *BQ*-semigroup in terms of equivalence relations. Secondly, we show that the semigroup $T(X, \sigma, \rho)$ can be embeddable in T(Y, Z) for some sets Y, Zwith $Z \subseteq Y$ and prove that if $\sigma = I_X$ or $\rho = X \times X$, then $T(X, \sigma, \rho) \cong T(Y, Z)$ for some sets Y, Z with $Z \subseteq Y$.

In the remainder of this paper, let σ and ρ be equivalence relations on a set *X* such that $\rho \subseteq \sigma$.

MAIN RESULTS

Firstly, we characterize when $T(X, \sigma, \rho)$ is a *BQ*-semigroup in terms of equivalences. The following lemmas are needed.

Lemma 1 Let $\alpha \in T(X)$. Then $\alpha \in T(X, \sigma, \rho)$ if and only if for each $A \in X/\sigma$ there exists $B \in X/\rho$ such that $A\alpha \subseteq B$.

Proof: Suppose that $\alpha \in T(X, \sigma, \rho)$. Let $A \in X/\sigma$ and $a \in A$. Then there exists $B \in X/\rho$ such that $a\alpha \in$ B. Let $y \in A\alpha$. Then $x\alpha = y$ for some $x \in A$. Since $(a, x) \in \sigma$ and $\alpha \in T(X, \sigma, \rho)$, we have $(a\alpha, y) =$ $(a\alpha, x\alpha) \in \rho$. This means that $y \in B$. Hence $A\alpha \subseteq B$.

Conversely, suppose that for each $A \in X/\sigma$, there exists $B \in X/\rho$ such that $A\alpha \subseteq B$. Let $x, y \in X$ be such that $(x, y) \in \sigma$. Then $x, y \in A$ for some $A \in X/\sigma$. By assumption, there exists $B \in X/\rho$ such that $x\alpha, y\alpha \in A\alpha \subseteq B$. It follows that $(x\alpha, y\alpha) \in \rho$. Hence $\alpha \in T(X, \sigma, \rho)$, as required.

Lemma 2 (Ref. 11) Every bi-ideal of a regular semigroup is a BQ-semigroup.

As was mentioned, if $\rho = I_X$, then $T(X, \sigma, \rho)$ is a right ideal of T(X). Hence $T(X, \sigma, \rho)$ is a biideal of T(X) if $\rho = I_X$. From Lemma 2 we have the following result.

Corollary 1 If $\rho = I_X$, then $T(X, \sigma, \rho)$ is a BQ-semigroup.

Proposition 4 Let $\alpha \in T(X, \sigma, \rho)$. If for each $A \in X/\sigma$ there exists $B \in X/\sigma$ such that $A \cap X \alpha \subseteq B\alpha$, then $(\alpha)_{\rm b} = (\alpha)_{\rm a}$.

Proof: Suppose that for each $A \in X/\sigma$, there exists $B \in X/\sigma$ such that $A \cap X\alpha \subseteq B\alpha$. Let $\beta \in (\alpha)_q$. If $\beta = \alpha$, then $\beta \in (\alpha)_b$. Assume that $\beta \neq \alpha$. Then $\beta = \alpha\gamma = \lambda\alpha$ for some γ , $\lambda \in T(X, \sigma, \rho)$. Let $A \in X/\sigma$ be such that $A \cap X\alpha \neq \emptyset$. Then $A \cap X\alpha \subseteq B_A$ for some fixed $B_A \in X/\sigma$. For each $y \in A \cap X\alpha$, we choose and fix $a_y \in B_A$ such that $a_y\alpha = y$. For fixed $b_A \in B_A$ and define $\mu_A : A \to X$ by

$$\mu_{A} = \begin{cases} a_{x}\lambda, & x \in X\alpha, \\ b_{A}\lambda, & \text{otherwise.} \end{cases}$$

Let $\mu: X \to X$ be defined by

х

$$\mu|_{A} = \begin{cases} \mu_{A}, & A \cap X \alpha \neq \emptyset, \\ c_{A}, & \text{otherwise} \end{cases}$$

for all $A \in X/\sigma$ and c_A is a constant map from A into X. Since X/σ is a partition of X, μ is well-defined.

For each $A \in X/\sigma$ with $A \cap X\alpha \neq \emptyset$, by Lemma 1 we have that $A\mu_A \subseteq B_A\lambda \subseteq C$ for some $C \in X/\rho$. It follows from Lemma 1 that $\mu \in T(X, \sigma, \rho)$. Let $x \in$ *X*. Then $x\alpha \in A$ for some $A \in X/\sigma$. Since $\beta = \alpha\gamma =$ $\lambda\alpha$, we deduce that

$$x \alpha \mu \alpha = x \alpha \mu_A \alpha = a_{x\alpha} \lambda \alpha = a_{x\alpha} \alpha \gamma = x \alpha \gamma = x \beta.$$

This means that $\beta = \alpha \mu \alpha$ and so $\beta \in (\alpha)_b$. Hence $(\alpha)_q \subseteq (\alpha)_b$. We conclude that $(\alpha)_q = (\alpha)_b$. \Box

As a consequence of Proposition 4, the following result follows readily.

Corollary 2 If $\sigma = X \times X$, then $(\alpha)_b = (\alpha)_q$ for all $\alpha \in T(X, \sigma, \rho)$.

The following theorem characterizes when $T(X, \sigma, \rho)$ is a *BQ*-semigroup.

Theorem 1 $T(X, \sigma, \rho)$ is a BQ-semigroup if and only if $\sigma = X \times X$ or $\sigma = I_X$ or $\rho = X \times X$ or $\rho = I_X$.

Proof: Suppose that $\sigma, \rho \notin \{X \times X, I_X\}$. Since $\rho \neq I_X$, there exist distinct elements $a, b \in X$ such that $(a, b) \in \rho$. It follows from $\rho \subseteq \sigma$ that $a, b \in A$ for some $A \in X/\sigma$. Since $\sigma \neq X \times X$, there is $B \in X/\sigma$ such that $A \neq B$. Let $c \in B$. Define $\alpha, \beta, \gamma : X \to X$ by

$$x\alpha = \begin{cases} a, & x \in A, \\ b, & \text{otherwise,} \end{cases}$$
$$x\beta = \begin{cases} a, & x = b, \\ b, & \text{otherwise,} \end{cases}$$
$$x\gamma = \begin{cases} c, & x \in A, \\ b, & \text{otherwise.} \end{cases}$$

Clearly, $\alpha, \gamma \in T(X, \sigma, \rho)$. Since $(a, b) \in \rho, \beta \in$ $T(X, \sigma, \rho)$. We will show that $\alpha\beta = \gamma\alpha$. Let $x \in X$. If $x \in A$, then $x\alpha\beta = a\beta = b = c\alpha = x\gamma\alpha$. If $x \notin A$, then $x\alpha\beta = b\beta = a = b\alpha = x\gamma\alpha$. This means that $\alpha\beta = \gamma\alpha \in (\alpha)_q$. Suppose that $(\alpha)_q = (\alpha)_b$. Since $a\alpha\beta = a\beta = b \neq a = a\alpha$ and $a\alpha\beta = b \neq a = a\alpha =$ $a\alpha\alpha$, it follows that $\alpha\beta\neq\alpha$ and $\alpha\beta\neq\alpha^2$. Since $(\alpha)_{q} = (\alpha)_{b} = \{\alpha, \alpha^{2}\} \cup \alpha T(X, \sigma, \rho)\alpha$, there exists $\mu \in T(X, \sigma, \rho)$ such that $\alpha \beta = \alpha \mu \alpha$. Hence b = $a\alpha\beta = a\alpha\mu\alpha = a\mu\alpha$ and $a = c\alpha\beta = c\alpha\mu\alpha = b\mu\alpha$. It follows that $a\mu \in (a\mu\alpha)\alpha^{-1} = b\alpha^{-1}$ and $b\mu \in$ $(b\mu\alpha)\alpha^{-1} = a\alpha^{-1}$. Since $\mu \in T(X, \sigma, \rho)$ and $(a, b) \in$ $\rho \subseteq \sigma$, we deduce that $(a\mu, b\mu) \in \rho$. Then there is $C \in X/\rho$ such that $a\mu$, $b\mu \in C$. Thus $C \cap a\alpha^{-1} \neq \emptyset$ and $C \cap b\alpha^{-1} \neq \emptyset$. Hence $a, b \in C\alpha$. This is a contradiction. Hence $(\alpha)_q \neq (\alpha)_b$. By Proposition 3, we conclude that $T(X, \sigma, \rho)$ is not a *BQ*-semigroup. Conversely, assume that the converse conditions hold. If $\sigma = I_X$ or $\rho = X \times X$, then by Proposition 1, we have $T(X, \sigma, \rho) = T(X)$ is a regular semigroup. Thus $T(X, \sigma, \rho)$ is a *BQ*-semigroup. If $\rho = I_X$, then $T(X, \sigma, \rho)$ is a *BQ*-semigroup by Corollary 1.

Suppose that $\sigma = X \times X$. Let α , $\beta \in T(X, \sigma, \rho)$. If $\alpha = \beta$, then by Corollary 2 we have $(\alpha)_{\rm b} = (\alpha)_{\rm q}$. Assume that $\alpha \neq \beta$. Let $\gamma \in (\alpha, \beta)_{\rm q}$. We consider four cases as follows.

Case 1: $\gamma \in \alpha T(X, \sigma, \rho) \cap T(X, \sigma, \rho)\alpha$. Then by Proposition 2, we have $\gamma \in (\alpha)_q$. Since $\sigma = X \times X$, $\gamma \in (\alpha)_q = (\alpha)_b$ by Corollary 2. By minimality of $(\alpha)_b$, we deduce that $\gamma \in (\alpha, \beta)_b$.

Case 2: $\gamma \in \beta T(X, \sigma, \rho) \cap T(X, \sigma, \rho)\beta$. Then $\gamma \in (\beta)_q$. Since $\sigma = X \times X$, $\gamma \in (\beta)_q = (\beta)_b$ by Corollary 2. It follows that $\gamma \in (\alpha, \beta)_b$.

Case 3: $\gamma \in \alpha T(X, \sigma, \rho) \cap T(X, \sigma, \rho)\beta$. Then $\gamma = \alpha \alpha' = \beta'\beta$ for some $\alpha', \beta' \in T(X, \sigma, \rho)$. For each $y \in X\alpha$, we choose and fix $a_y \in X$ such that $a_y \alpha = y$. Define $\mu : X \to X$ by

$$x\mu = \begin{cases} a_x \beta', & x \in X\alpha, \\ x\beta', & \text{otherwise.} \end{cases}$$

Since $\sigma = X \times X$ and $\beta' \in T(X, \sigma, \rho)$, we have that $\mu \in T(X, \sigma, \rho)$. Let $x \in X$. Since $\gamma = \alpha \alpha' = \beta' \beta$, we deduce that

$$x \alpha \mu \beta = a_{x\alpha} \beta' \beta = a_{x\alpha} \alpha \alpha' = x \alpha \alpha' = x \gamma.$$

Hence $\gamma = \alpha \mu \beta \in \alpha T(X, \sigma, \rho) \beta \subseteq (\alpha, \beta)_{b}$.

Case 4: $\gamma \in \beta T(X, \sigma, \rho) \cap T(X, \sigma, \rho)\alpha$. Then $\gamma = \alpha' \alpha = \beta \beta'$ for some $\alpha', \beta' \in T(X, \sigma, \rho)$. For each $y \in X\beta$, we choose and fix $a_y \in X$ such that $a_y\beta = y$. Define $\mu: X \to X$ by

$$x\mu = \begin{cases} a_x \alpha', & x \in X\alpha, \\ x\alpha', & \text{otherwise.} \end{cases}$$

Since $X/\sigma = \{X\}$ and $\alpha' \in T(X, \sigma, \rho)$, we deduce that $\mu \in T(X, \sigma, \rho)$. Let $x \in X$. Since $\gamma = \alpha' \alpha = \beta \beta'$, we obtain that

$$x\beta\mu\alpha = a_{x\beta}\alpha'\alpha = a_{x\beta}\beta\beta' = x\beta\beta' = x\gamma.$$

Then $\gamma = \beta \mu \alpha \in \beta T(X, \sigma, \rho) \alpha \subseteq (\alpha, \beta)_{b}$.

We deduce that $(\alpha, \beta)_b = (\alpha, \beta)_q$. It follows from Proposition 3 that $T(X, \sigma, \rho)$ is a *BQ*-semigroup.

Next, we show that the semigroup $T(X, \sigma, \rho)$ can be embeddable in T(Y, Z) for some sets Y, Z with $Z \subseteq Y$.

Theorem 2 $T(X, \sigma, \rho)$ can be embeddable in T(Y, Z) for some sets Y, Z with $Z \subseteq Y$.

ScienceAsia 44 (2018)

Proof: Let $Y = \sigma$ and $Z = \rho$. Then $Z \subseteq Y$. For each $\alpha \in T(X, \sigma, \rho)$, we define $\beta_{\alpha} \in T(Y)$ by

$$(x, y)\beta_{\alpha} = (x\alpha, y\alpha)$$
 for all $(x, y) \in Y$.

Since $\alpha \in T(X, \sigma, \rho)$, it follows that $Y\beta_{\alpha} \subseteq Z$. Hence β_{α} is well defined. Define $\phi : T(X, \sigma, \rho) \to T(Y, Z)$ by

$$\alpha \phi = \beta_{\alpha}$$
 for all $\alpha \in T(X, \sigma, \rho)$.

Let $\alpha_1, \alpha_2 \in T(X, \sigma, \rho)$ be such that $\alpha_1 \phi = \alpha_2 \phi$. Then $\beta_{\alpha_1} = \beta_{\alpha_2}$. If $x \in X$ then $(x, x) \in Y$ and

$$(x\alpha_1, x\alpha_1) = (x, x)\beta_{\alpha_1} = (x, x)\beta_{\alpha_2} = (x\alpha_2, x\alpha_2).$$

Hence $x\alpha_1 = x\alpha_2$ for all $x \in X$ and so $\alpha_1 = \alpha_2$. This shows that ϕ is injective. Next we claim that $\beta_{\alpha_1\alpha_2} = \beta_{\alpha_1}\beta_{\alpha_2}$. If $(x, y) \in Y$ then

$$(x, y)\beta_{\alpha_1\alpha_2} = (x\alpha_1\alpha_2, y\alpha_1\alpha_2)$$
$$= (x\alpha_1, y\alpha_1)\beta_{\alpha_2}$$
$$= (x, y)\beta_{\alpha_1}\beta_{\alpha_2},$$

as required.

Theorem 3 Let $\varphi : S \to T$ be a semigroup isomorphism. If S is a BQ-semigroup, then T is also a BQ-semigroup.

Nenthein and Kemprasit¹¹ proved that T(X, Y) is a *BQ*-semigroup. As a consequence of Theorem 3, the following result follows readily.

Corollary 3 If $T(X, \sigma, \rho) \cong T(Y, Z)$ for some sets Y, Z with $Z \subseteq Y$, then $T(X, \sigma, \rho)$ is a BQ-semigroup.

The following result follows immediately from Corollary 3 and Theorem 1.

Corollary 4 If $T(X, \sigma, \rho) \cong T(Y, Z)$ for some sets Y, Z with $Z \subseteq Y$, then $\sigma = X \times X$ or $\sigma = I_X$ or $\rho = X \times X$ or $\rho = I_X$.

Finally, we give the necessary conditions for the semigroups $T(X, \sigma, \rho)$ and T(Y, Z) to be isomorphic. In what follows, |A| means the cardinality of a set *A*.

Theorem 4 (Ref. 7) $T(X) \cong T(Y)$ if and only if |X| = |Y|.

Proposition 5 If $\sigma = I_X$ or $\rho = X \times X$, then $T(X, \sigma, \rho) \cong T(Y, Z)$ for some sets Y, Z with $Z \subseteq Y$.

Proof: Suppose that $\sigma = I_X$ or $\rho = X \times X$.

Case 1: $\sigma = I_X$. Then $\sigma = \rho$. By Proposition 1, we obtain $T(X, \sigma, \rho) = T(X)$. Let $Y = Z = \sigma$. Then T(Y, Z) = T(Y). Since $\sigma = I_X$ we deduce that |X| = $|I_X| = |\sigma| = |Y|$. This implies that $T(X) \cong T(Y)$ by Theorem 4.

Case 2: $\rho = X \times X$. Then $\sigma = \rho$. Thus $T(X, \sigma, \rho) = T(X)$. Let $Y = Z = I_X$. Then T(Y, Z) = T(Y). Since $Y = I_X$ it follows that $|X| = |I_X| = |Y|$. Hence $T(X) \cong T(Y)$.

Acknowledgements: The authors would like to show gratitude to the Science Achievement Scholarship of Thailand (SAST) for the full scholarship to one of the authors and support in academic activities.

REFERENCES

- 1. Doss C (1995) Certain equivalence relations in transformation semigroups. MSc thesis, Univ of Tennessee, Knoxville.
- 2. Pei H (2005) Regularity and Green's relations for semigroups of transformations that preserve an equivalence. *Comm Algebra* **33**, 109–18.
- 3. Sullivan RP, Mendes-Gonçalves S (2010) Semigroups of transformations restricted by an equivalence. *Cent Eur J Math* **8**, 1120–31.
- Lajos S (1961) Generalized ideals in semigroups. Acta Sci Math 22, 217–22.
- Kapp KM (1969) On bi-ideals and quasi-ideals in semigroups. *Publ Math Debrecen* 16, 179–85.
- 6. Steinfeld O (1978) Quasi-ideals in Rings and Semigroups, Akadémiai Kiadó Budapest.
- Clifford AH, Preston GB (1961) The Algebraic Theory of Semigroups, Vol I, Mathematical Surveys, American Mathematical Society, Rhode Island.
- Calais J (1968) Demigroupes dans lesquels tout biidéal est un quasi-idéal. In: Semigroup Symposium, Smolenice.
- 9. Symons JSV (1975) Some results concerning a transformation semigroup. *J Aust Math Soc* **19**, 413–25.
- Nenthein S, Youngkhong P, Kemprasit Y (2005) Regular elements of some transformation semigroups. *Pure Math Appl* 16, 307–14.
- Nenthein S, Kemprasit Y (2006) On transformation semigroups which are BQ-semigroups. Int J Math Math Sci 2006, 1–10.
- 12. Sanwong J, Sommanee W (2008) Regularity and Green's relations on a semigroup of transformations with restricted range. *Int J Math Math Sci* **2008**, 1–11.