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ABSTRACT: In this paper, we consider the robust stabilization problem for linear systems subjected to time-varying
uncertainties within the framework of nest algebra. For four types of plant perturbations, we obtain some new sufficient
conditions or necessary and sufficient conditions for robust stabilization without using coprime factorization. We also
give some examples to show the validity of our new results.
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INTRODUCTION

Stability is a basic and important concept in sys-
tems theory. It has been discussed in many frame-
works1–4. For linear time-varying (LTV) systems,
robust stability5, asymptotic stability6, 7, and simul-
taneous stability8, 9 have been studied. In particular,
the robust stability of a standard feedback config-
uration with plant L and compensator C has been
studied in several different frameworks1, 2, 4. It is
concerned with the problem of designing a con-
troller10, 11 that simultaneously stabilizes all plants
for some set. Robust stability has been widely used
in engineering.

Since the development of H∞ control theory in
the nineties, a lot of insights have been obtained
by considering its time-varying analogue on an
appropriate complex Hilbert space of input-output
signals. In the context of operator theory, the set
of stable and causal LTV systems is represented by
a nest algebra4, 12. The control theory for infinite-
dimensional LTV systems was developed based on
the nest algebra approach. Currently, there have
been many methods to study the closed loop sta-
bility of causal LTV systems in the framework of
nest algebra. These methods are based on graph
theory, coprime factorization theory, and gap metric
theory4. Recently, some new results have been

obtained in the framework of nest algebra: for
example, the stability analysis in Refs. 13–16, and
the simultaneous stabilization in Refs. 8, 9, 17, 18.
Within the framework of nest algebra, the robust
stability problem has been considered mainly in the
coprime-factor perturbation case13, 17, 19, 20, but the
necessary and sufficient conditions have not been
considered. Furthermore, the computation of the
coprime factorization has not been well studied for
a general LTV system in the framework of nest alge-
bra. Hence, the design of new robust (simultaneous,
internal, strong) stabilization criteria in the form of
fewer coprime factorizations needs further study.

In the paper, we will use the definition of closed
loop stability to discuss robust stability. We focus
on four types of time-varying perturbations for LTV
systems2. Without using coprime factorization,
we only consider the system L and controller C
themselves. We obtain some sufficient conditions or
necessary and sufficient conditions for robust stabi-
lization. In particular, when the controller is stable,
we obtain the necessary and sufficient conditions
for robust stabilization. Furthermore, the controller
designing problem and the simultaneous stabiliza-
tion problem can be solved by using the necessary
and sufficient conditions. Our method is clearly
different to that of the robust stabilization using
coprime-factor uncertainty17, 19, 21. The method is
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original and the results are new. To the best of our
knowledge, there are no corresponding results in
the literature for robust stability in the framework
of nest algebra.

PRELIMINARIES

Let H be a complex infinite-dimensional se-
quence space with the standard Euclidean norm
‖x‖2 =

∑∞
i=0|x i |2 <∞, where x = (x0, x1, x2, . . .) ∈

H , x i ∈ C. Clearly, H is a separable Hilbert space
with the standard inner product (x , y) =

∑∞
i=0 x i ȳi ,

where ȳi is the conjugation of yi .
A linear operator T : D(T ) ⊂ H → H

is bounded with norm ‖T‖ if its domain
D(T ) := {u ∈ H : Tu ∈ H } = H and
‖T‖ = supx∈D(T ),‖x‖¶1‖T x‖ < ∞. Let B(H )
denote the set of all bounded linear operators
on H . For T ∈ B(H ), RanT denotes the range
{T x : x ∈ H } of T and KerT denotes the kernel
{x ∈H : T x = 0} of T .

Let He = {(x0, x1, x2, . . .) : x i ∈ C} denote the
extended space ofH . For each n ¾ 0, the standard
truncation projection Pn onH andHe is defined by

Pn(x0, x1, . . . , xn, xn+1, . . .) = (x0, x1, . . . , xn, 0, 0, . . .),

with P−1 = 0, P∞ = I . Pn sets all outputs after time
n to zero, so the projection sequence {Pn}∞n=−1 is
crucial to the physical notion of causality for linear
systems.

A linear transformation L on He is causal if
Pn L = Pn LPn for all−1¶ n¶∞. A linear system on
He is a causal linear transformation onHe, which is
continuous with respect to the resolution topology.
A linear system L is stable if its restriction toH is a
bounded operator4.

Clearly, the set of linear systems on He is an
algebra with respect to standard addition and mul-
tiplication. We denote this algebra by L . It is
easy to check that any element in L is an infinite-
dimensional lower triangular matrix with respect to
the standard basis. The set of stable linear systems
on He, denoted by S , is a weakly closed algebra
containing the identity. S is a nest algebra in the
operator theory literature. An important subalge-
bra of L is the algebra T of time-invariant linear
systems. This algebra consists of the lower matrices
that are Toeplitz (although not necessarily bounded
operators). We have T ∩S = H∞.

A nest is a chain N of closed subspaces of a
Hilbert space H containing {0} and H , which is
closed under intersection and closed span. The nest

algebra determined by N is

T (N ) = {T ∈B(H ) : T N ⊆ N , ∀N ∈ N }.

In the following, we consider the LTV systems
in discrete time. The standard way of describing
such a system is by using the time-varying difference
equations

xk+1 = ak xk + bkuk,

x0 = 0,

yk = dk xk + ekuk,

where u = (u0, u1, u2, . . .)T , x = (x0, x1, x2, . . .)T ,
y = (y0, y1, y2, . . .)T ∈ He, and {ak}, {bk}, {dk},
{ek} are sequences of matrices of appropriate di-
mensions. Hence the above system L can be easily
computed from the equations and is given by

L =













e0
d1 b0 e1

d2a1 b0 d2 b1 e2
d3a2a1 b0 d3a2 b1 d3 b2 e3

...
...

... · · ·
. . .













.

Clearly, the system L is an infinite-dimensional
lower triangular matrix.

For L, C ∈ L , we consider the standard feed-
back configuration (Fig. 1) with plant L and com-
pensator C , where the closed loop system equation
is

�

u1
u2

��

I C
L −I

��

e1
e2

�

.

The system {L, C} is well posed if
�

I C
L −I

�

is invertible. Its inverse is given by the transfer
matrix

H(L, C) =
�

(I + C L)−1 C(I + LC)−1

L(I + C L)−1 −(I + LC)−1

�

.

L

C
2u

1u 1y

2e2y

1e

_

_

Fig. 1 The standard feedback configuration.
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Let D(L) = {u ∈H : Lu ∈H } and D(C) = {u ∈H :
Cu ∈H }. Then

�

I C
L −I

�

can be regarded as a linear transformation from
D(L)⊕D(C) intoH ⊕H .

Definition 1 [Ref. 4] The closed loop system {L, C}
is stable if all the entries of H(L, C) are stable
systems on H . The plant L is stabilizable if there
exists C ∈L such that the closed loop system {L, C}
is stable. The plant L is strongly stabilizable if C ∈S .

The notion of robustness can be described as fol-
lows.

Definition 2 [Ref. 2] Suppose that the system L
belongs to a set P . A controller C provides robust
stability if it provides internal stability for every
plant in P .

In this paper, we mainly focus on the following four
types of plant perturbations:

A(L0) = {L : L = L0+∆};
M(L0) = {L : L = (I +∆)L0};

D1(L0) = {L : L = L0(I +∆L0)
−1};

D2(L0) = {L : L = L0(I +∆)
−1},

where L0 is a given system and ∆ is some perturba-
tion set.

Next, we state some plant perturbations when
∆∈S . Suppose r is a constant, the class of additive
perturbations of L0 is denoted by A(L0, r):

A(L0, r) = {L : L = L0+∆,‖∆‖< r}.

Similarly, the class of the other perturbations of L0
is denoted by

M(L0, r) = {L : L = (I +∆)L0,‖∆‖< r};

D1(L0, r) = {L : L = L0(I +∆L0)
−1,‖∆‖< r};

D2(L0, r) = {L : L = L0(I +∆)
−1,‖∆‖< r}.

In particular, for an additive perturbation, when
L0 has a right coprime factorization N0D−1

0 , it is
reduced to the coprime-factor perturbation. Let
S(N0, D0, r) denote the class of coprime-factor per-
turbations. It consists of all plants L satisfying L =
N D−1, where









�

N −N0
D− D0

�









< r.

SUFFICIENCY OF ROBUST STABILIZATION

In this section, for the plant with different pertur-
bations, we give some sufficient conditions for their
stability.

Theorem 1 Suppose {L0, C} is stable, ∆ ∈ S , and
‖∆‖ < r. Then for the plant with a different pertur-
bation, we have the following results.
(i) If

‖C(I + L0C)−1‖¶
1
r

, (1)

then C stabilizes all L in A(L0, r).
(ii) If ‖L0C(I + L0C)−1‖ ¶ 1/r then C stabilizes all

L in M(L0, r).
(iii) If ‖L0(I +C L0)−1‖¶ 1/r then C stabilizes all L

in D1(L0, r).
(iv) If ‖(I +C L0)−1‖¶ 1/r then C stabilizes all L in

D2(L0, r).

Proof : (i) Suppose ‖C(I + L0C)−1‖ ¶ 1/r, for ar-
bitrary L in A(L0, r). We have ∆ = L − L0. Let
F = C(I+ L0C)−1. By (1) and the fact that ‖∆‖< r,
we have ‖∆‖‖F‖ < 1. Then I +∆F and I + F∆ are
both invertible in S . By the fact that

I + LC = I +(∆+ L0)C

= [I +∆C(I + L0C)−1](I + L0C)
= (I +∆F)(I + L0C),

and I + L0C is invertible in S since C stabilizes L0,
we obtain that I + LC is invertible in S . Let

H(L, C) =
�

H11 H12
H21 H22

�

.

Then

H11 = (I + LC)−1

= (I + L0C)−1(I +∆F)−1 ∈ S ;

H12 = C(I + LC)−1

= C(I + L0C)−1(I +∆F)−1 ∈ S ;

H21 = L(I + C L)−1

= (∆+ L0)(I + C L0)
−1[I + C∆(I + C L0)

−1]−1

=∆(I + C L0)
−1[I + C∆(I + C L0)

−1]−1

+ L0(I + C L0)
−1[I + C∆(I + C L0)

−1]−1.

As I+∆F = I+∆C(I+ L0C)−1 = I+∆(I+C L0)−1C
is invertible in S , and by the fact that I + AB is
invertible inS if and only if I+BA is invertible inS ,
we have that I + C∆(I + C L0)−1 is invertible in S .

www.scienceasia.org

http://www.scienceasia.org/2018.html
www.scienceasia.org


ScienceAsia 44 (2018) 49

Since ∆ ∈ S , (I +C L0)−1 ∈ S and L0(I +C L0)−1 ∈
S , we have H21 ∈ S and

H22 = (I + C L)−1 = (I + F∆)−1(I + C L0)
−1 ∈ S ,

then C stabilizes all L in A(L0, r).
(ii) For L in M(L0, r), we have L = (I +∆)L0,

where∆∈S and ‖∆‖< r. Let G = L0C(I+L0C)−1.
We have ‖G‖¶ 1/r. By the small gain theorem, we
have that I +∆G is invertible. Since

I + LC = I +(I +∆)L0C

= [I +∆L0C(I + L0C)−1](I + L0C)
= (I +∆G)(I + L0C),

we obtain that I + LC is invertible in S . The rest of
the proof is similar to that of (i).

The proofs of (iii) and (iv) are similar to that of
(i). 2

Remark 1 We remark that all the results are ob-
tained without using any coprime factorization of
the system L0 and controller C . Currently, since it is
still open how to compute the coprime factorization
of a general LTV system in the framework of nest
algebra, the design of new robust (simultaneous,
internal, strong) stabilization criteria in the form
of fewer coprime factorizations is one of the hot
research subjects in robust control theory in the
framework of nest algebra. Hence our work has
some contributions from this point of view.

Next we give an example to explain the efficiency of
Theorem 1(i).

Example 1 Take r = 4
3 and consider the following

systems:

L0 =



















1
2 2
3 3 3
...

...
...

. . .
n n n · · · n
...

...
... · · · · · ·

. . .



















,

C =























1
−1 1

2
0 − 1

2
1
3

0 0 − 1
3

1
4

...
... · · ·

. . .
. . .

0 0 · · · · · · − 1
n−1

1
n

...
... · · · · · · · · ·

. . .
. . .























.

Clearly C stabilizes L0. Note that

C(I + L0C)−1

=























1
2
− 1

2
1
4

0 − 1
4

1
6

0 0 − 1
6

1
8

...
... · · ·

. . .
. . .

0 0 0 · · · − 1
2(n−1)

1
2n

...
...

... · · · · · ·
. . .

. . .























.

It is obvious that ‖C(I + L0C)−1‖ = 1
2 < 1/r. For

∆ ∈ S , take ‖∆‖= 1< r. Choose

∆=













1
δ21 1
δ31 δ32 1
δ41 δ42 δ43 1

...
...

...
...

. . .













where |δi j | < 1, i > j. Using Theorem 1(i), we
obtain that C stabilizes L0+∆.

In the end of the section, we give an example to
explain that the condition ‖C(I + L0C)−1‖ ¶ 1/r is
not necessary for C to stabilize all L in A(L0, r) in
Theorem 1(i).

Example 2 Take r = 1
3 . We consider the following

systems:

L0 =



















1
4 0 0 0 · · · · · ·
1
4

1
4 0 0 · · · · · ·

1
8·32 0 1

4 0 · · · · · ·
...

...
...

. . . · · · · · ·
1

8·n2 0 0 · · · 1
4 · · ·

...
...

... · · · · · ·
. . .



















,

C =























0 0 0 0 · · ·
4 0 0 0 · · ·
2
32 0 0 0 · · ·
2
42 0 0 0 · · ·
...

...
...

... · · ·
2
n2 0 0 0 · · ·
...

...
...

...
. . .























.

Clearly C stabilizes L0. For∆∈S , take ‖∆‖= 1
5 < r
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and choose

∆=













1
5
δ21

1
5

δ31 δ32
1
5

δ41 δ42 δ43
1
5

...
...

...
...

. . .













where |δi j |<
1
5 , i > j. Clearly C also stabilizes L0+

∆. However, we have

C(I + L0C)−1 =























0 0 0 0 · · ·
4 0 0 0 · · ·
2
32 0 0 0 · · ·
2
42 0 0 0 · · ·
...

...
...

... · · ·
2
n2 0 0 0 · · ·
...

...
...

...
. . .























and ‖C(I + L0C)−1‖= 4> 1/r.

STRONGLY ROBUST STABILIZATION

Lemma 1 Suppose C ∈ S . Then {L, C} is stable if
and only if L(I + C L)−1 ∈ S .

Proof : Only if: it can be obtained by the stability
definition of {L, C}. If: suppose L(I + C L)−1 ∈ S ,
and let

H(L, C) =
�

H11 H12
H21 H22.

�

Then

H21 = L(I + C L)−1 ∈ S ,

H11 = (I + C L)−1 = I − C(I + LC)−1 L

= I − C L(I + C L)−1 = I − CH21 ∈ S ,

H12 = C(I + LC)−1 = (I + C L)−1C = H11C ∈ S ,

H22 = −(I + LC)−1 = L(I + C L)−1C − I

= H21C − I ∈ S .

Hence H(L, C) ∈ M(S ), that is, {L, C} is stable. 2
In Lemma 1, a necessary and sufficient condition for
the strong stabilization is given. When the plant L
has the right coprime factorization N M−1, Lemma 1
reduces to Theorem 6.6.3 in Ref. 4. Similarly, we
have the following result when the plant is stable.

Lemma 2 Suppose L ∈ S . Then {L, C} is stable if
and only if C(I + LC)−1 ∈ S .

Next, we focus on the strongly robust stabilization
of four different plant perturbations in Theorem 2,
which is the main conclusion in the paper.

Theorem 2 Suppose C ∈ S stabilizes L0, and ∆ ∈
S . We have the following results.
(i) C stabilizes L ∈ A(L0) if and only if I +∆(I +

C L0)−1C is invertible in S .
(ii) C stabilizes L ∈ M(L0) if and only if I+∆L0(I+

C L0)−1C is invertible in S .
(iii) C stabilizes L ∈ D1(L0) if and only if I+∆L0(I+

C L0)−1 is invertible in S .
(iv) C stabilizes L ∈ D2(L0) if and only if I +∆(I +

C L0)−1 is invertible in S .

Proof : (i) As I +∆(I + C L0)−1C is invertible if and
only if I+C∆(I+C L0)−1 is invertible, we only need
to prove that I + C∆(I + C L0)−1 is invertible in S .
Let T = I + C∆(I + C L0)−1. Then

T = (I + C L0+ C∆)(I + C L0)
−1

= [I + C(L0+∆)](I + C L0)
−1. (2)

By Lemma 1, the controller C stabilizes L0 +∆ if
and only if (L0 +∆)[I + C(L0 +∆)]−1 ∈ S , that is,
(L0+∆)(I+C L0)−1[I+C∆(I+C L0)−1]−1 ∈S . Only
if: suppose C stabilizes L0 +∆. Then H11 = [I +
C(L0+∆)]−1 ∈ S . By the fact that

H21 = (L0+∆)[I + C(L0+∆)]
−1

= L0[I + C(L0+∆)]
−1+∆[I + C(L0+∆)]

−1 ∈ S ,

and ∆ ∈ S , [I +C(L0+∆)]−1 ∈ S , we have L0[I +
C(L0 +∆)]−1 ∈ S . By using (2), we obtain that T
is invertible in S , and its inverse is given by T−1 =
(I + C L0)[I + C(L0+∆)]−1 ∈ S .

If: suppose T is invertible in S , that is, I +
C∆(I + C L0)−1 is invertible in S . We have

(L0+∆)[I + C(L0+∆)]
−1

= L0(I + C L0)
−1[I + C∆(I + C L0)

−1]−1

+∆(I + C L0)
−1[I + C∆(I + C L0)

−1]−1

= L0(I + C L0)
−1T−1+∆(I + C L0)

−1T−1 ∈ S .

Hence C stabilizes all L in A(L0).
(ii) The result can be obtained by replacing ∆

in (i) with ∆L0.
(iii) Let G = I +∆L0(I + C L0)−1. Then

G = (I + C L0+∆L0)(I + C L0)
−1

= [I +(C +∆)L0](I + C L0)
−1. (3)

By Lemma 1, the controller C stabilizes L0(I +
∆L0)−1 if and only if L0(I + ∆L0)−1[I + C L0(I +
∆L0)−1]−1 ∈ S , that is, L0[I + (C +∆)L0]−1 ∈ S .
Only if: suppose C stabilizes L0(I +∆L0)−1. Then
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H11 = [I +C L0(I +∆L0)−1]−1 ∈ S . By the fact that

H11 = {[(I +∆L0)+ C L0](I +∆L0)
−1}−1

= (I +∆L0)[I +(C +∆)L0]
−1

= [I +(C +∆)L0]
−1+∆L0[I +(C +∆)L0]

−1,

∆ ∈ S , and L0[I +(C +∆)L0]−1 ∈ S , we have [I +
(C +∆)L0]−1 ∈ S . By using (3), we obtain that G
is invertible in S , and its inverse is given by G−1 =
(I + C L0)[I +(C +∆)L0]−1 ∈ S .

If: suppose G is invertible in S . By (3), we
know that I + (C +∆)L0 is invertible in S . Note
that

L0[I +(C +∆)L0]
−1

= L0[(I + C L0)+∆L0]
−1

= L0(I + C L0)
−1[I +∆L0(I + C L0)

−1]−1

= L0(I + C L0)
−1G−1 ∈ S .

Hence C stabilizes all L in D1(L0).
(iv) By Lemma 1, the controller C stabilizes

L0(I +∆)−1 if and only if L0(I +∆)−1[I + C L0(I +
∆)−1]−1 ∈ S . Since

L0(I +∆)
−1[I + C L0(I +∆)

−1]−1

= L0(I + C L0+∆)
−1

= L0(I + C L0)
−1[I +∆(I + C L0)

−1]−1,

we have L0(I+C L0+∆)−1 ∈S and L0(I+C L0)−1[I+
∆(I + C L0)−1]−1 ∈ S . If: let R = I +∆(I + C L0)−1.
Then R−1 ∈ S . Since C ∈ S stabilizes L0, we have
L0(I + C L0)−1 ∈ S . Thus

L0(I +∆)
−1[I + C L0(I +∆)

−1]−1

= L0(I + C L0)
−1[I +∆(I + C L0)

−1]−1

= L0(I + C L0)
−1R−1 ∈ S .

Then C stabilizes all L in D2(L0). Only if: suppose
C ∈ S stabilizes L0(I +∆)−1. We have U = [I +
C L0(I +∆)−1]−1 ∈ S . Notice that

U = (I +∆)(I + C L0+∆)
−1.

We have (I + C L0 +∆)−1 = (I +∆)−1U ∈ S . Then
R= I +∆(I + C L0)−1 = (I + C L0+∆)(I + C L0)−1 is
invertible and

R−1 = [I +∆(I + C L0)
−1]−1

= (I + C L0)(I + C L0+∆)
−1

= (I + C L0+∆)
−1+ C L0(I + C L0+∆)

−1 ∈ S .

2

Remark 2 In Theorem 2, the strongly robust stabi-
lization is reduced to the invertibility of an operator.
The results are also obtained without using any
coprime factorization of the plant and the controller.
Hence our method is effective as it is difficult or
impossible to obtain a right coprime factorization in
the time-varying case15. However, the results are
invalid for C ∈ L .

Remark 3 In Theorem 2, some necessary and suf-
ficient conditions are obtained for strongly robust
stabilization. In particular, the same controller C ∈
S stabilizes both the plant L0 and L. In some
sense, it can be seen as a simultaneous stabilization
problem. We do not need any factorization of the
plant and controller in practice. So it is efficient and
applicable.

Replacing the invertibility with the norm condition,
we have the following corollary which is similar to
Theorem 1.

Corollary 1 Suppose C ∈ S stabilizes L0, and ∆ ∈
S .
(i) If ‖∆‖ < 1/‖(I + C L0)−1C‖, then C stabilizes all

L in A(L0).
(ii) If ‖∆‖ < 1/‖L0(I + C L0)−1C‖, then C stabilizes

all L in M(L0).
(iii) If ‖∆‖ < 1/‖L0(I + C L0)−1‖, then C stabilizes

all L in D1(L0).
(iv) If ‖∆‖ < 1/‖(I + C L0)−1‖, then C stabilizes all

L in D2(L0).

We now give two examples to demonstrate the
validity of Theorem 2.

Example 3 Consider the following systems:

L0 =













2
−4 2
8 −4 2
−16 8 −4 2

...
...

...
. . .

. . .













∈ L ,

∆=









δ11
δ21 δ22
δ31 δ32 δ33

...
...

. . .
. . .









∈ S .
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Choose

C =



















1
4
−1 1

4
0 −1 1

4
...

...
. . .

. . .
0 0 · · · −1 1

4
...

... · · · · · ·
. . .

. . .



















∈ S .

Clearly, C stabilizes L0. We have

(I + C L0)
−1 =













2
3
4
3

2
3

0 4
3

2
3

0 0 4
3

2
3

...
... · · ·

. . .
. . .













,

(I + C L0)
−1C =













1
6
− 1

3
1
6

− 4
3 − 1

3
1
6

0 − 4
3 − 1

3
1
6

...
...

. . .
. . .

. . .













.

Clearly, ‖(I + C L0)−1C‖ = 4
3 . By Corollary 1(i), C

stabilizes all the systems of the form

L0+∆=









2+δ11
−4+δ21 2+δ22
8+δ31 −4+δ32 2+δ33

...
...

. . .
. . .









when ‖∆‖< 1/‖(I+C L0)−1C‖= 3
4 . Since I+∆(I+

C L0)−1C equals









1+ 1
6δ11

1
6δ21−

1
3δ22 1+ 1

6δ22
l31 l32 l33
...

... · · ·
. . .









where

l31 =
1
6δ31−

1
3δ32−

4
3δ33,

l32 =
1
6δ32−

1
3δ33,

l33 = 1+ 1
6δ33,

we obtain that C stabilizes all the systems of the
form L0 +∆ if and only if δnn 6= −6 (n = 1,2, . . .)
by Theorem 2(i).

From Example 3, it is easy to find that Theo-
rem 2(i) is more useful than Corollary 1(i). Actually,

Theorem 2 gives a deep and detailed description for
∆.

We now give an example to demonstrate Theo-
rem 2(iv).

Example 4 Consider the systems

L0 =



























3
3 6
3 6 9
3 6 0 12
3 6 0 0 15
...

...
...

... · · ·
. . .

3 6 0 0 · · · · · · 3n
...

...
...

... · · · · · · · · ·
. . .



























∈ L ,

∆=









δ11
δ21 δ22
δ31 δ32 δ33

...
...

. . .
. . .









∈ S ,

where δii 6= −1 for i = 1, 2, . . . , n. Choose

C =



















1
1

1
3

. . .
1
3

. . .



















∈ S ,

then C stabilizes L0, and we have

(I + C L0)
−1 =

















1
4
− 3

28
1
7

− 1
28×4 − 1

14
1
4

− 1
28×5 − 2

35 0 1
5

− 1
28×6 − 1

21 0 0 1
6

...
...

... · · · · · ·
. . .

















.

Clearly, ‖(I+C L0)−1‖= 1
4 . By using Corollary 1(iv),

we obtain that C stabilizes all the systems of the
form L0(I +∆)−1 equal to





















3
1+δ11

3
1+δ11

6
1+δ22

3
1+δ11

6
1+δ22

9
1+δ33

...
... · · ·

. . .
3

1+δ11

6
1+δ22

0 · · · 3n
1+δnn

...
...

... · · · · · ·
. . .
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when ‖∆‖ < 1/‖(I + C L0)−1‖ = 4. Since I +∆(I +
C L0)−1 equals













1+ 1
4δ11

1
4δ21−

3
28δ22 1+ 1

7δ22
a31 a32 a33
a41 a42 a43 a44
...

...
...

...
. . .













where

a31 =
1
4δ31−

3
28δ32−

1
112δ33,

a32 =
1
7δ32−

1
14δ33,

a33 = 1+ 1
4δ33,

a41 =
1
4δ41−

3
28δ42−

1
112δ43−

1
140δ44,

a42 =
1
7δ42−

1
14δ43−

2
35δ44,

a43 =
1
4δ43,

a44 = 1+ 1
5δ44,

we obtain that C stabilizes all the systems of the
form L0(I +∆)−1 if and only if δ11 6= −4, δ22 6= −7,
δnn 6= −(n+1) (n= 3, 4, . . .) by Theorem 2(iv).

From Example 3 and Example 4, we see that the
controller of a complicated system can be obtained
by studying the controller C of a simple system
L0. Thus the method is effective for designing the
controller of plants having uncertainties.

CONCLUSIONS

In the paper, we mainly consider robust stability for
LTV systems with different perturbations. Within
the framework of nest algebra, by using the def-
inition of closed loop stability, we obtain some
sufficient conditions for robust stabilization. We
also obtain some necessary and sufficient conditions
for strongly robust stabilization. All the results are
obtained without using any coprime factorization.
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