
R ESEARCH  ARTICLE

doi: 10.2306/scienceasia1513-1874.2018.44.034
ScienceAsia 44 (2018): 34–39

A prediction-correction primal-dual hybrid gradient
method for convex programming with linear
constraints
Pibin Binga, Jialei Suia, Min Sunb,c,∗

a Institute of Electric Power, North China University of Water Resources and Electric Power, Zhengzhou,
450045, China

b School of Mathematics and Statistics, Zaozhuang University, Shandong, 277160, China
c School of Management, Qufu Normal University, Shandong, 276826, China

∗Corresponding author, e-mail: ziyouxiaodou@163.com
Received 10 Jul 2017

Accepted 25 Nov 2017

ABSTRACT: In recent years, the primal-dual hybrid gradient (PDHG) method has been widely used. However,
the original PDHG method may diverge without additional conditions. Here we propose a convergent prediction-
correction PDHG (PD-PDHG) method for canonical convex programming with linear constraints. The most important
characteristic of the PD-PDHG method is that it adopts a new descent direction in the correction step, which does not
converge to zero in general. Convergence of the new method is proved under mild assumptions. Finally, its efficiency
is verified by compressive sensing.
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INTRODUCTION

Let θ (x) : Rn → R be a convex (not necessarily
smooth) function, A ∈ Rm×n, and b ∈ Rm. We con-
sider the following canonical convex programming
problem with linear constraints:

min{θ (x) | Ax = b (or ¾ b), x ∈ X}, (1)

where X ⊆ Rn is a closed convex set. Throughout,
we assume that the solution set of (1) is nonempty,
and the setX is simple in the sense that the orthog-
onal projection onto it has a closed-form expression
or is simple enough to compute numerically (e.g.,
the nonnegative orthant, spheroidal or box areas).
Problem (1) is the mathematical expression of many
problems arising from signal processing, machine
learning, wireless networking, and so on1, 2. For ex-
ample, it includes the following basis pursuit model
of compressive sensing as a special case:

min
x
θ (x) = ‖x‖1 s.t. Ax = b, (2)

where A ∈ Rm×n(m<<n) is the sensing matrix, b ∈
Rm is the observed signal, and the `1-norm of the
vector x is defined as ‖x‖1 =

∑n
i=1|x i |.

If Ax = b in (1), we set Λ = Rm; otherwise,
we set Λ = Rm

+ . By introducing the Lagrangian

multiplier λ ∈ Λ to the linear constraints of (1) we
obtain its Lagrangian function,

L (x ,λ) = θ (x)−〈λ, Ax − b〉.

To solve (1), two benchmark solvers are the aug-
mented Lagrangian multiplier (ALM) method3 and
the primal-dual hybrid gradient (PDHG) method4.
The x-related subproblem in the ALM method is
often difficult to solve exactly, and some inner itera-
tion is usually needed to obtain an inexact solution5.
However, the x-related subproblem in the PDHG
method has a closed-form solution if the convex set
X in (1) equals Rn, and the proximal operator of
the objective function θ (x) of (1), defined by
�

In+
1
r
∂ θ

�−1

(a) := arg min
n

θ (x)+
r
2
‖x − a‖2

o

,

has a closed-form solution (e.g., θ (x) = ‖x‖1 or
‖x‖ 5–8). This is exactly the case in many contempo-
rary applications. More specifically, set w = (x ,λ),
and for given wk = (x k,λk), the iterative scheme of
the PDHG method reads as

x k+1 = arg min
x∈X

n

L (x ,λk)+
r
2
‖x − x k‖2

o

,

λk+1 = arg max
λ∈Λ

n

L (x k+1,λ)−
s
2
‖λ−λk‖2

o

,
(3)
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where the two parameters r, s > 0. The numerical
results in Ref. 4 indicate that the PDHG method is an
effective approach for total variation image restora-
tion. However, He9 demonstrated via a counterex-
ample that the PDHG method could diverge without
additional conditions. He10 proposed a prediction-
correction version of the PDHG method, whose
prediction is just the iterative scheme (3) except that
it sets the output wk+1 = (x k+1,λk+1) of (3) as w̃k =
( x̃ k, λ̃k), and in the correction the new iterative wk+1

is generated by

wk+1 = wk −γαk M(wk − w̃k), (4)

where γ ∈ (0,2), αk is a judiciously chosen step
length, and M is a predefined matrix. Although
this method is convergent, the descent direction
−M(wk−w̃k) in its correction step converges to zero
when the sequence {wk} tends to the solution w∗,
which often slows down its convergence speed (see
the numerical results of this work).

In this work, to deal with the above issue, we
propose a new prediction-correction PDHG (PC-
PDGH) method for (1). Our motivation can be
summarized as follows. The monotone variational
inequality problem denoted by VIP(F,U ) is to find
u∗ ∈ U such that

(u−u∗)T F(u∗)¾ 0, ∀u ∈ U , (5)

whereU ⊆Rn is a nonempty closed convex set, and
F(u) : Rn→ Rn is a monotone mapping. He9–11 has
proposed a geminate ascent direction

d1(u
k, ũk) =















(uk − ũk), F(u) is the gradient

of a certain function,

(uk − ũk)−βk[F(uk)− F(ũk)],
otherwise,

d2(ũ
k) = βk F(ũk),

where βk > 0 and ũk = PU [uk−βk F(uk)]. Many nu-
merical results in Ref. 11 indicate that d2(ũk) often
performs better than d1(uk, ũk). The reasons maybe:
(i) {d1(uk, ũk)} eventually converges to zero, while
{d2(ũk)} converges to d2(u∗), which is not equal
to zero in general (and numerical results given in
Ref. 12 indicate that such directions usually perform
worse than the directions that do not converge to
zero); (2) the tight lower bound of the expression
‖uk − u∗‖2 − ‖uk+1 − u∗‖2 generated by d2(ũk) is
usually larger than that of d1(uk, ũk) in general10.

In Ref. 10, He developed an open problem: how
does one extend the above geminate ascent direc-
tions to convex optimization? Clearly, from (4),

the method of Ref. 10 adopts a descent direction
similar to −d1(uk, ũk). Hence to answer this open
problem, we only need to see if we can design a
numerical method for (1) such that d2(ũk) is an
ascent direction at the current iterate uk. In this
paper, we shall answer the above open problem. In
fact, we design a PC-PDHG method for problem (1)
which adopts −d2(ũk) with d2(ũk) ∈ ∂ F(ũk) as the
descent direction in the correction step.

PRELIMINARIES

In this section, we review some basic concepts, and
give the relevant properties for further analysis.
Problem (1) is then characterized as a structured
variational inequality problem.

If G ∈ Rn×n is a symmetric positive definite
matrix, we denote by ‖x‖G =

p
xTGx the G-norm of

the vector x . Let F : Rn =⇒ Rn be a multifunction.
Then F is said to be monotone on Rn if

(x − y)T(ξ−ζ)¾ 0, ∀ξ ∈ F(x), ∀ζ ∈ F(y).

Let ∂ f (x) denote the subdifferential of a nonsmooth
function f (·) at x which is multifunction and is
defined by

∂ f (x) = {ξ | f (y)− f (x)¾ 〈ξ, y − x〉, ∀y ∈ Rn}.

It is well known that ∂ f (x) is a monotone multi-
function for any convex function f (x) 13, that is,

(x − y)T(ξ−ζ)¾ 0, ∀ξ ∈ ∂ f (x), ∀ζ ∈ ∂ f (y).
(6)

Let C ⊂ Rn. Then we use NC (x) to denote the
normal cone of C at z ∈ C , which is defined by

NC (x) = {v ∈ Rn : vT(y − x)¶ 0, ∀y ∈ C}.

Set W = X ×Λ. Let PW (·) denote the orthogonal
projection mapping from Rn+m onto W , i.e.,

PW (v) = argmin{|v−w| | w ∈W}.

The orthogonal projection mapping PW (·) has the
following nice property:

‖PW (v)−w‖2 ¶ ‖v−w‖2−‖v−PW (v)‖2, ∀w ∈W .
(7)

Let H = {x : Ax = b}. Throughout this paper,
we make the following assumption.
(A1) The pair {H ,X} has the strong conical hull

intersection property. That is, for any z ∈ H ∩
X , NH∩X = NH (z)+NX (z) 14, 15.
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Now let us characterize problem (1) as a struc-
tured variational inequality problem. Set

F(w) =
�

∂ θ (x)−ATλ
Ax − b

�

. (8)

Then under Assumption A1, the vector x∗ is a so-
lution of problem (1) iff there exists λ∗ ∈ Rm such
that w∗ = (x∗,λ∗) is a solution of the structured
variational inequality problem VIP(F,W ). That is,
there exists ξ∗ ∈ ∂ θ (x∗) such that15

�

x − x∗

λ−λ∗
�T �

ξ∗−ATλ∗

Ax∗− b

�

¾ 0, ∀
�

x
λ

�

∈W . (9)

The solution set of VIP(F,W ) is denoted by W ∗,
which is nonempty since the solution set of problem
(1) is nonempty. From the convexity of θ (x), the
multifunction F(w) is clearly monotone in the sense
of (6).

THE PC-PDHG METHOD AND ITS GLOBAL
CONVERGENCE

In this section, we shall present a convergent PDHG
method which we will call the PC-PDHG method
for solving problem (1) and prove its global con-
vergence under Assumption A1. At each iteration,
the PC-PDHG method is composed of two steps:
the prediction step and the correction step. In
the prediction step, the PC-PDHG method firstly
generates a trial iterate w̃k via the iterative scheme
(10). In the contraction step, the new iterate wk+1

is generated along the descent direction

d2(w̃
k) =

�

ξ̃k −ATλ̃k

Ax̃ k − b

�

(10)

with ξ̃k ∈ ∂ θ ( x̃ k). Then d2(w̃k) ∈ ∂ F(w̃k). The
iterative scheme of the PC-PDHG method for solving
problem (1) is as follows.

Algorithm 1 (PC-PDHG method)
Step 1: Initialization. Select four constants: r > 0,

s > 0 with rs > ‖ATA‖/4, and γ ∈ (0, 2), ε >
0. Choose an initial point w0 = (x0,λ0) ∈ W
arbitrarily, and set k = 0.

Step 2: Prediction step. Compute the trial iterate
w̃k = ( x̃ k, λ̃k) via

x̃ k = argmin
x∈X

n

L (x ,λk)+
r
2
‖x − x k‖2

o

,

λ̃k = argmax
λ∈Λ

n

L ( x̃ k,λ)−
s
2
‖λ−λk‖2

o

.
(11)

Step 3: Stopping condition. If ‖wk − w̃k‖ ¶ ε then
stop.

Step 4: Correction step. Set

wk+1 = PW [w
k −γαkd2(w̃

k)], (12)

where

αk =
‖wk − w̃k‖2

(Q+QT)/2

‖Q(wk − w̃k)‖2
, Q =

�

r In AT

0 sIm

�

.

Set k = k+1. Go to Step 1.

Remark 1 When rs > ‖ATA‖/4, the matrix Q +QT

is positive definite. Note that from the definition of
the step length αk, we have

αk ¾
λmin(

1
2 [Q+QT])

‖QTQ‖
.
= α > 0, (13)

which shows that the step length sequence {αk} has
a positive lower bound uniformly.

The following lemma indicates that the stopping
criterion of Algorithm 1 is reasonable, and its proof
is motivated by the corresponding results in Ref. 9.

Lemma 1 The sequences {wk} and {w̃k} generated by
Algorithm 1 satisfy

(w− w̃k)Td2(w̃
k)¾ (w− w̃k)TQ(wk− w̃k), ∀w ∈W .

(14)

Proof : By the first-order optimality condition for the
two subproblems of (11), there exists a vector ξ̃k ∈
θ ( x̃ k) such that

(x − x̃ k)T{ξ̃k −ATλk + r( x̃ k − x k)}¾ 0, ∀x ∈ X ,
(15)

and

(λ− λ̃k)T{(Ax̃ k − b)+ s(λ̃k −λk)}¾ 0, ∀λ ∈ Λ.
(16)

Then, adding (15) and (16), and by a simple manip-
ulation for all w ∈W , we obtain
�

x − x̃ k

λ− λ̃k

�T �
ξ̃k −ATλ̃k

Ax̃ k − b

�

¾ (w− w̃k)TQ(wk − w̃k),

which is just the assertion (14) by the definition of
d2(w̃k) in (10). 2

Remark 2 If ‖wk− w̃k‖= 0 then from (14) we have
�

x − x̃ k

λ− λ̃k

�T �
ξ̃k −ATλ̃k

Ax̃ k − b

�

¾ 0, ∀w ∈W ,

which together with (9) implies that w̃k is a solution
of VIP(F,W ), i.e., x̃ k is a solution of (1). Hence the
stopping criterion of Algorithm 1 is reasonable.
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The following lemma gives that d2(w̃k) is a
descent direction of the merit function 1

2‖w−w∗‖2,
where w∗ ∈W ∗ is an unknown solution.

Lemma 2 Let {wk} and {w̃k} be the two sequences
generated by Algorithm 1. Then we have

(w−w∗)Td2(w̃
k)¾ (w−w̃k)TQ(wk−w̃k), ∀w ∈W .

(17)

Proof : Set

d2(w
∗) =

�

ξ∗−ATλ∗

Ax∗− b

�

with ξ∗ ∈ θ (x∗). Then d2(w∗) ∈ ∂ F(w∗). From the
monotonicity of the multifunction F(w), we have
(w̃k −w∗)T(d2(w̃k)− d2(w∗))¾ 0, i.e.,

(w̃k −w∗)Td2(w̃
k)¾ (w̃k −w∗)Td2(w

∗)¾ 0,

where the second inequality follows from w̃k ∈ W ,
w∗ ∈W ∗. Then adding the above inequality to (14),
we obtain the assertion (17). 2

Remark 3 Setting w= wk in (17), we have

(wk−w∗)Td2(w̃
k)¾ (wk−w̃k)TQ(wk−w̃k), ∀w∈W ,

i.e., ∀w ∈W ,

(wk −w∗)Td2(w̃
k)¾ (wk − w̃k)T

Q+QT

2
(wk − w̃k),

Hence the above inequality indicate that −d2(w̃k) is
a descent direction at the iterate wk.

The following theorem indicates that Algo-
rithm 1 is a contraction method.

Theorem 1 For the sequence {wk} generated by Al-
gorithm 1, we have

‖wk+1−w∗‖2 ¶ ‖wk −w∗‖2− c0‖wk − w̃k‖2
(Q+QT)/2,

(18)
where c0 = αγ(2−γ)> 0.

Proof : Since w∗ ∈ W ∗, it follows from (7) and (12)
that

‖wk+1−w∗‖2

¶ ‖wk −γαkd2(w̃
k)−w∗‖2

−‖wk −γαkd2(w̃
k)−wk+1‖2

= ‖wk −w∗‖2−2γαk(w
k+1−w∗)Td2(w̃

k)

−‖wk −wk+1‖2. (19)

Setting w= wk+1 ∈W in (17), we obtain

(wk+1−w∗)Td2(w̃
k)¾ (wk+1− w̃k)TQ(wk − w̃k).

Substituting the above inequality into the right-
hand side of (19), we have

‖wk+1−w∗‖2

¶ ‖wk −w∗‖2−2γαk(w
k+1

− w̃k)TQ(wk − w̃k)−‖wk −wk+1‖2

= ‖wk −w∗‖2−2γαk(w
k − w̃k)TQ(wk − w̃k)

+γ2α2
k‖Q(w

k − w̃k)‖2

−‖wk −wk+1+γαkQ(wk − w̃k)‖2

¶ ‖wk −w∗‖2−2γαk(w
k − w̃k)TQ(wk − w̃k)

+γ2α2
k‖Q(w

k − w̃k)‖2

= ‖wk −w∗‖2−γ(2−γ)αk‖wk − w̃k‖2
(Q+QT)/2

¶ ‖wk −w∗‖2−γ(2−γ)α‖wk − w̃k‖2
(Q+QT)/2,

where the last inequality comes from (13). 2

Theorem 2 The sequence {wk} generated by Algo-
rithm 1 converges to a solution in W ∗ globally.

Proof : From (18) and c0 > 0, the sequence {wk}
satisfies the strictly contractive property. That is

‖wk+1−w∗‖2 ¶ ‖wk −w∗‖2.

Hence {‖wk − w∗‖2} is a descent sequence with
lower bound. Thus it is convergent and therefore
bounded, and so the sequence {wk} is also bounded.
Thus it has at least one cluster point, say ŵ, and
there is a subsequence {wkj} such that

lim
j→∞

wkj = ŵ. (20)

On the other hand, from (18) again, we obtain

∞
∑

k=0

‖wk − w̃k‖2
(Q+QT)/2 ¶

1
c0
‖w0−w∗‖2,

which together with the positive definiteness of the
matrix 1

2 (Q+QT) implies that

lim
k→∞
‖wk − w̃k‖= 0. (21)

This and (20) show that

lim
j→∞

w̃kj = ŵ. (22)

Then, taking the limit along the subsequence {wkj}
in (14), and by (21) and (22), we have

(w− ŵ)Td2(ŵ)¾ 0, ∀w ∈W .
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This together with ŵ ∈W (W is a closed convex set
and wk ∈W , ∀k) shows that ŵ ∈W ∗. That is, ŵ is a
solution of VIP(F,W ). Then the global convergence
of {wk} is obvious from (18). 2

NUMERICAL RESULTS

In this section, we apply Algorithm 1 to some appli-
cations of (1) and report the numerical results. All
the codes were written using MATLAB R2010a and
were conducted on a ThinkPad notebook with 2 GB
of memory.

Example 1 The following simple problem is the
counterexample to show the divergence of the
PDHG method9: min x s.t. x = 1, x ¾ 0. Clearly, the
single feasible solution x = 1 is also its optimal so-
lution. Furthermore, (x∗,λ∗) = (1, 1) is the unique
saddle point of its Lagrangian function.

We now use Algorithm 1 to solve Example 1,
and we set r = s = 1, γ = 1.5. The initial point is
w0 = (0, 0). We see from Fig. 1 that Algorithm 1 is
convergent in this case.

Example 2 Consider (2) with a nonsmooth objec-
tive function θ (x) = ‖x‖1, whose Lagrangian func-
tion is L (x ,λ) = ‖x‖1 − λT(Ax − b). Now, let us
elaborate on how to derive the closed-form solutions
for the subproblems resulting from Algorithm 1.

For given wk = (x k,λk), produce the predictor
w̃k = ( x̃ k, λ̃k) by using (11) and obtain the following
iterative scheme:

x̃ k = argmin
x∈Rn

n

L (x ,λk)+
r
2
‖x − x k‖2

o

,

λ̃k = λk −
1
s
(Ax̃ k − b),

2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

1.5

2

Iteration

y

x

Fig. 1 Iterates generated by Algorithm 1 for Example 1.

and the first subproblem is equivalent to

x̃ k = arg min
x∈Rn

§

‖x‖1+
r
2
‖x −

1
r
(ATλk + r x k)‖2

ª

,

which has a closed-from solution,

x̃ k = shrink1,2(a
k, 1/r)

.
= sgn(ak)·max{0, |ak|−1/r},

where ak = (ATλk+r x k)/r, and all the computation
is componentwise. Then, with the updated w̃k, the
new iterate wk+1 = (x k+1,λk+1) is generated by

x k+1 = x k −γαk(ξ̃
k −ATλ̃k),

λk+1 = λk −γαk(Ax̃ k − b),

where

ξ̃k ∈ ∂ (‖ x̃ k‖1) =

¨

sgn( x̃ k), x̃ k 6= 0,

{z : −1¶ z ¶ 1}, x̃ k = 0.

In this experiment, we set the matrix A ∈ Rm×n as
a standard Gaussian matrix. The nonzero entries
of the true signal x∗ are selected at random from
the standard Gaussian: x∗ = (0, 0, . . . , 0) ∈ Rn; p is
generated by randomly permuting all the elements
of the vector (1, 2, . . . , n); then the elements of x∗

whose subscripts are in the set contained by the
first k elements p are reset to satisfy the standard
Gaussian. The observed signal b is generated by
b = Ax∗. We set µ = 0.01, γ = 1.5, r = 400, s =
2.01/r, and the stopping criterion is RelErr= ‖x k−
x∗‖/‖x∗‖¶ 4%, or the number of iterations exceeds
104. The initial point, w0 = (AT b, 0). We set m =
bαnc and k = bβmc with n = 500, 1000, where k is
the number of random nonzero elements contained
in the original signal. For different combinations of
α and β , the numerical results of Algorithm 1, the
ALM method3, and the MPDHG method of Ref. 9
are listed in Table 1. All the results are the average
of 10 runs. For the ALM method, we use the fixed
point method16 to solve its x-related subproblem
at each iteration, and the inner iteration is stopped
when the number of inner iterations exceeds 100.
The step length α of the MPDHG method should
satisfy α ∈ (0,αmax), where

αmax = argmax{α |QT +Q−αMTHM � 0},

where H and M are two matrices defined in Ref. 9.
In this experiment, we use the Armijo line search to
determine αmax. That is, we firstly set α = 1, if the
relationship QT +Q − αMTHM � 0 does not hold,
we reduce halve α until the relationship QT +Q −
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Table 1 Comparison of Algorithm 1 with the ALM and MPDHG methods.

n α β ALM MPDHG Algorithm 1

Time Iter RelErr Time Iter RelErr Time Iter RelErr

500 0.3 0.2 2.3237 235.2 0.0397 6.3648 646.6 0.0396 1.7108 633.3 0.0395
0.2 0.2 3.8273 482.3 0.0396 9.3549 1136.0 0.0397 2.2776 1010.0 0.0398
0.2 0.1 2.1722 233.6 0.0393 2.5012 295.0 0.0391 1.0816 405.1 0.0390

1000 0.3 0.2 12.3329 210.8 0.0394 23.5978 609.3 0.0397 6.6872 580.1 0.0393
0.2 0.2 15.8923 273.6 0.0397 32.2090 960.8 0.0399 8.6373 951.1 0.0396
0.2 0.1 7.8271 198.7 0.0392 10.6081 321.4 0.0390 3.3800 364.7 0.0392

αMTHM � 0 holds. Clearly the procedure is quite
time consuming if m and n are large. However, since
these two terms are invariant at each iteration, we
only need to compute it once before all iterations.

The numerical results given in Table 1 show that
(i) all the tests completed successfully; (ii) Algo-
rithm 1 is faster than the ALM and MPDHG methods
since it always consumes less CPU time to achieve
the prescribed accuracy.

CONCLUSIONS

In this paper, we have proposed a prediction-
correction primal-dual hybrid gradient method for
convex programming with linear constraints, whose
global convergence can be guaranteed under mild
conditions. Two sets of numerical results are given,
which illustrate that the new method performs bet-
ter than some state-of-the-art solvers. In the future,
we will investigate the worst-case O (1/t) conver-
gence rate in an ergodic sense of the new method.
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