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ABSTRACT: Based on the nonmonotone line search technique proposed by Gu and Mo a nonmonotone trust region
algorithm is proposed for solving unconstrained nonlinear optimization problems. The new algorithm is resets the ratio
ρk for evaluating whether the trial step dk is acceptable. The global and superlinear convergence of the algorithm are
proved under suitable conditions. Numerical results show that the new algorithm is effective.
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INTRODUCTION

We consider the unconstrained nonlinear optimiza-
tion problem

min
x∈Rn

f (x), (1)

where f : Rn → R is a continuously differentiable
nonlinear function. The line search method and
trust region method are the two principal methods
for solving (1). The line search method produces
a sequence x0, x1, . . ., where xk+1 is generated
from the current approximate solution xk, and the
specific direction dk and a step size αk > 0 by the
rule xk+1 = xk + αkdk. The trust region methods
obtain a trial step dk by solving the quadric program
subproblem

min
d∈Rn

φk(d) = gT
k d +

1
2

dTBkd s.t. ‖d‖ ¶∆k, (2)

where gk =∇ f (xk), Bk ∈Rn×n is a symmetric matrix
which is either the exact Hessian matrix of f at xk or
an approximation for it, ∆k > 0 is the trust region
radius, and ‖·‖ denotes the Euclidean norm. The
traditional trust region methods evaluate the trial
step dk by the ratio

ρk =
f (xk)− f (xk + dk)
φk(0)−φk(dk)

. (3)

The trial step dk is accepted whenever ρk is greater
than a positive constant µ. Then we can set the new

point xk+1 = xk + dk and enlarge the trust region
radius. Otherwise, the traditional trust region meth-
ods resolve the subproblem (2) by reducing the trust
region radius until an acceptable step is found. Solv-
ing the region subproblems may lead us to solve one
or more quadric program problems and increase the
total cost of computation for large scale problems.
Compared with line search techniques, new trust
region methods have a strong convergence property,
and a much lower computational cost than the
traditional trust region methods1. Some theoretical
and numerical results of these trust region methods
with line search are also interesting. However, all
these methods enforce a monotonic decrease in the
objective function values at each iteration and this
may slow the convergence rate in the minimiza-
tion process2. To overcome the shortcomings, the
earliest nonmonotone line search framework was
developed by Grippo et al3 for Newton’s method.
In their approach, parameters λ1, λ2, σ and β are
introduced, where 0 < λ1 < λ2, β , σ ∈ (0, 1) and
αk = ᾱkσ

hk , where ᾱk ∈ (λ1,λ2) is the trial step and
hk is the smallest nonnegative integer such that

f (xk + dk)¶ max
0¶ j¶mk

f (xk− j)+βαk∇ f (xk)
Tdk, (4)

the memory variable mk is a nondecreasing integer
by setting

mk =

¨

0, k = 0,

0< mk ¶min{mk−1+1, M}, k > 0,
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where M is a prefixed nonnegative integer. From
then on, studies in nonlinear optimization have paid
great attentions to it4, 5. Deng et al2 made some
changes in the common ratio (3) by resetting the
rule as follows:

ρ̂k =
max0¶ j¶mk

f (xk− j)− f (xk + dk)

φk(0)−φk(dk)
. (5)

The ratio (5) which assesses the agreement between
the quadratic model and the objective function in
trust region methods is the most common non-
monotone ratio. Some researchers showed that
the nonmonotone method can improve both the
possibility of finding the global optimum and the
rate of convergence when a monotone scheme is
forced to creep along the bottom of a narrow curved
valley6, 7.

Although the nonmonotone technique (4) has
many advantages, Zhang and Hager8 proposed a
new nonmonotone line search algorithm, which had
the same general form as the scheme of Grippo et al3

except that their ‘max’ was replaced by an average
of function values. The nonmonotone line search
found a step length β to satisfy the inequality

f (xk +βdk)¶ Ck +δβ∇ f (xk)
Tdk, (6)

where

Ck =

¨

f (xk), k = 0,

(ηk−1Qk−1Ck−1+ f (xk))/Qk, k ¾ 1,
(7)

and

Qk =

¨

1, k = 0,

ηk−1Qk−1+1, k ¾ 1,
(8)

ηk−1 ∈ [ηmin,ηmax], where ηmin ∈ [0,1) and ηmax ∈
[ηmin, 1] are two chosen parameters. Numerical
results showed that the new nonmonotone method
can improve the efficiency of the nonmonotone trust
region methods.

Observe that Ck+1 is a convex combination of
Ck and f (xk+1). Since C0 = f (x0), we see that
Ck is a convex combination of the function values
f (x0), f (x1), . . . , f (xk). From (7), the degree of
nonmonotonicity and (8) depend on the choice ηk.
If ηk = 0 for each k, then the line search is the
usual Armijo line search. If ηk = 1 for each k, then
Ck = Ak, where

Ak =
1

k+1

k
∑

i=0

fi , fi = f (x i),

is the average function value. However, it becomes
an encumbrance to update ηk and Qk at each k

in practice. Recently Gu and Mo9 developed an
algorithm that combines a new nonmonotone tech-
nique and trust region method for unconstrained
optimization problems. The new nonmonotone line
search is as follows:

f (xk +βdk)¶ Dk +δβ∇ f (xk)
Tdk, (9)

where the parameter η ∈ (0, 1) or a variable ηk and

Dk =

¨

f (xk), k = 0,

ηDk−1+(1−η) f (xk), k ¾ 1,
(10)

is a simple convex combination of the previous Dk−1
and fk.

In this paper, we develop an algorithm which
resets the ratio ρk in the trust region method for un-
constrained optimization problems. The algorithm
does not restrict one to having a monotonic decrease
in the objective function values at each iteration.
Under suitable assumptions, we establish the global
and superlinear convergence of the new algorithm.
Numerical experiments show that our algorithm is
quite effective.

NEW NONMONOTONE TRUST REGION
ALGORITHM

For convenience, we denote f (xk) by fk and g(xk)
by gk, where g(xk) ∈ Rn is the gradient of f evalu-
ated at xk. The trial step dk is obtained by solving
(2) at each iteration. We solve (2) such that ‖dk‖¶
∆k and

φk(0)−φk(dk)¾ τ‖gk‖min{∆k,‖gk‖/‖Bk‖}, (11)

where τ ∈ (0,1) is a constant. Clearly if Bk is a
symmetric and positive definite diagonal matrix, we
can obtain the solution dk easily. More precisely,
if ‖B−1

k gk‖ ¶ ∆k, then dk = −B−1
k gk is the optimal

solution of (2); otherwise, if ‖B−1
k gk‖ > ∆k, we

choose the optimal solution

dk = −
∆k

‖B−1
k gk‖

B−1
k gk.

To decide whether the obtained trial step dk will be
accepted or not, and how to adjust the new trust
region radius, we compute the ratio ρk between the
actual reduction, Dk− f (xk+dk), and the predicted
reduction, φk(0)−φk(dk), as follows:

ρk =
Dk − f (xk + dk)
φk(0)−φk(dk)

, (12)

where Dk is computed from (10). If ρk ¾ µ, where
µ ∈ (0, 1) is a constant, we accept the trial step dk,
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set xk+1 = xk+dk and enlarge the trust region radius
∆k. Otherwise we set xk+1 = xk, reduce the trust
region radius, and re-solve (2).

We now propose the following new nonmono-
tone trust region algorithm.

Algorithm 1
Step 1: Choose parameters η ∈ (0,1), µ ∈ (0, 1),
∆0 > 0, 0 < c1 < 1 < c2. Given an arbitrary
point x0 ∈ Rn and a symmetric matrix B0 ∈
Rn×n. Set k := 0.

Step 2: Compute gk. If ‖gk‖ = 0, stop. Otherwise,
go to Step 2.

Step 3: Compute an approximate solution dk so
that ‖dk‖¶∆k and (11) is satisfied.

Step 4: Compute Dk by (10), and ρk by (12).
Step 5: Set

xk+1 =

¨

xk + dk, ρk ¾ µ,

xk, otherwise.
(13)

Step 6: Compute ∆k+1 as

∆k+1 =

�

c1‖dk‖ i f ρk < µ,
c2‖dk‖ i f ρk ¾ µ. (14)

Step 7: Update Bk. Set k := k+1 and go to Step 2.

GLOBAL CONVERGENCE

In this section, we discuss the global convergence
of Algorithm 1. Suppose an infinite sequence of
iterations {xk} is obtained from Algorithm 1. Some
common assumptions are as follows:
(A1) The level set Ω0 = {x ∈ Rn | f (x) ¶ f (x0)} is

bounded.
(A2) The gradient function of g(x) is Lipschitz con-

tinuous in Ω0.
(A3) The matrix sequence {Bk} is uniformly

bounded.
For simplicity, we define two index sets as fol-

lows:

I = {k | ρk ¾ µ}, J = {k | ρk < µ}.

Lemma 1 Suppose that the sequence {xk} is gener-
ated by Algorithm 1. Then the following inequality
holds for all k:

fk+1 ¶ Dk+1 ¶ Dk. (15)

Proof : Firstly we prove that (15) holds for all k ∈ I ,
i.e.,

fk+1 ¶ Dk+1 ¶ Dk ∀k ∈ I . (16)

For k ∈ I , according to ρk ¾ µ, (11) and (12), we
know that

fk+1 ¶ Dk −µτ‖gk‖min{∆k,‖gk‖/‖Bk‖}. (17)

From (10) and (17), we obtain

Dk+1 = ηDk +(1−η) f (xk+1)
¶ ηDk +(1−η)Dk

−µτ‖gk‖min{∆k,‖gk‖/‖Bk‖}
= Dk −µτ‖gk‖min{∆k,‖gk‖/‖Bk‖}. (18)

By (10), if η 6= 0, we have

Dk+1− Dk =
(1−η)( fk+1− Dk+1)

η
, (19)

and if η= 0, we have

Dk+1 = fk+1. (20)

Combining (18)–(20), it follows that (16) holds.
Secondly, we prove that (15) holds for all k ∈ J .

From Step 4 of Algorithm 1, we obtain xk+1 = xk
and fk+1 = fk for all k ∈ J . First we prove that fk+1 ¶
Dk+1. We consider two cases, respectively.
(i) If k − 1 ∈ I . According to (16), we have fk ¶

Dk. Following from (10) and fk+1 = fk, we can
deduce that

Dk+1 = ηDk +(1−η) fk+1

¾ η fk+1+(1−η) fk+1 = fk+1. (21)

(ii) If k−1 ∈ J . In this case, we define an index set
F = {i | 1< i ¶ k, k−i ∈ I}. IfF =∅, by Step 4
of Algorithm 1 we obtain f0 = fk− j = fk+1, j = 0,
1, . . . , k−1. From (10) we obtain

Dk+1 = Dk = fk+1. (22)

We now suppose thatF 6=∅. Let s=min{i : i ∈
F}. Then we have

fk+1 = fk = fk− j , j = 0,1, . . . , s−1. (23)

By (10) we have

Dk = ηDk−1+(1−η) fk, k ¾ 1. (24)

Using (24) repeatedly we obtain

ηDk +(1−η) fk+1 = η
s Dk−s+1

+
s−2
∑

i=0

ηi+1(1−η) fk−i +(1−η) fk+1. (25)
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According to the definition ofF , s and (16), we
have k− s ∈ I and Dk−s+1 ¾ fk−s+1. Combining
(23) and (25) we deduce that

ηDk +(1−η) fk+1

¾ ηs fk−s+1+
s−2
∑

i=0

ηi+1(1−η) fk−i +(1−η) fk+1

=
�

ηs +
s−2
∑

i=0

ηi+1(1−η)+ (1−η)
�

fk+1

= fk+1. (26)

Hence it follows from (10) and (26) that

Dk+1 = ηDk +(1−η) fk+1 ¾ fk+1. (27)

By (21), (22) and (27), we conclude that

fk+1 ¶ Dk+1, ∀k ∈ J . (28)

If η 6= 0, by (19) and (28) we obtain that fk+1 ¶
Dk+1 ¶ Dk. If η = 0, then, by (10) and k ∈ J , we
obtain Dk+1 = fk+1 = fk. Combining k− 1 ∈ J and
(28), we obtain that fk ¶ Dk. Thus (15) holds for all
k ∈ J . 2

Lemma 2 Suppose that A1 holds. Then the sequence
{xk} generated by Algorithm 1 is contained in the level
set Ω0.

Proof : From Lemma 1, A1 and D0 = f0, we can easily
obtain the assertion. 2

For convenience, we say an iteration point is
successful if xk+1 = xk + dk, and unsuccessful if
xk+1 = xk.

Lemma 3 (Ref. 10) Suppose that A2 and A3 hold,
the sequence {xk} is generated by Algorithm 1, and
the following inequality holds for all k:

‖gk‖¾ ε, (29)

where ε ∈ (0, 1) is a constant. Then for each k,
there is a nonnegative integer m such that xk+m+1 is
a successful iteration point.

Based on the above lemmas, we establish the global
convergence of Algorithm 1.

Theorem 1 Suppose that A1–A3 hold. Then the
sequence {xk} generated by Algorithm 1 satisfies

lim inf
k→∞

‖gk‖= 0. (30)

Proof : By contradiction, we suppose that there
exists a constant ε ∈ (0,1) such that the following
inequality holds for all k:

‖gk‖¾ ε. (31)

Firstly, we prove that

lim
k→∞, k∈I

∆k = 0. (32)

From the proof of Lemma 3 in Ref. 10, we know that
I is an infinite set. If k ∈ I , then by (18) and (31),
we obtain

Dk+1 ¶ Dk −µτε(1−η)min{∆k,ε/‖Bk‖}. (33)

From Lemma 1, we know that {Dk} is nonincreasing
and fk+1 ¶ Dk+1 for all k ¾ 0. By A1, Lemma 2 and
the continuity of f , we know that the sequence { fk}
is bounded below, and {Dk} is convergent. By taking
limits as k→∞ and k ∈ I in (33), we have

lim
k→∞, k∈I

min{∆k,ε/‖Bk‖}= 0. (34)

By A3 and (34) we see that (32) holds.
Next, we prove that

lim
k→∞

∆k = 0. (35)

(i) If J is a finite set, then (32) holds, which implies
that (35) holds.

(ii) If J is an infinite set, we define F1 = {ik | k =
0, 1, . . .} which is a subset of J satisfying

i1 =min{ j | j ∈ J},

and

ik+1 =min{ j ∈ J | j−1 ∈ I , j−1> ik}, ∀k¾ 1.

According to Lemma 3, we know that F1 is an
infinite set. For k ¾ 1, by the definition of ik
we know that ik − 1 ∈ I . According to Step5 of
Algorithm 1, we have

∆ik ¶ c2∆ik−1. (36)

The definition of ik+1 implies that there exists at
least one integer l such that

ik + l < ik+1−1, ik + l ∈ J . (37)

Let lk be the maximum integer satisfying (37).
It follows from Step 5 of Algorithm 1 that

∆ik+l ¾∆ik+l+1, l = 0,1, . . . , lk, (38)
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and

∆ik+l ¶∆ik+l+1, l = lk+1, lk+2, . . . , ik+1−ik−1.

From (32), we see that ∆ik−1 → 0 as k →∞.
This fact combined with (36) and (38) implies
that

lim
k→∞, k∈J

∆k = 0. (39)

Hence, it follows from (32) and (39) that (35)
holds.
We now prove the theorem. From the Taylor

expansion of f (x), A2, ‖dk‖ ¶ ∆k, and (35), we
obtain
�

� fk − f (xk + dk)− (φk(0)−φk(dk))
�

�

=

�

�

�

�

1
2

dT
k Bkdk −

∫ 1

0

[g(xk +ξdk)− gk]
Tdk dξ

�

�

�

�

¶ O(∆2
k‖Bk‖)+ o(∆k). (40)

By (11), (31) and (40), it follows that

�

�

�

�

fk − f (xk + dk)
φk(0)−φk(dk)

−1

�

�

�

�

¶
O(∆2

k‖Bk‖)+ o(∆k)

τεmin{∆k,ε/‖Bk‖}
.

Combining the above inequality, (35) and A3, we
deduce that

lim
k→∞

fk − f (xk + dk)
φk(0)−φk(dk)

= 1. (41)

It follows from (12) and (15) that

ρk =
Dk − f (xk + dk)
φk(0)−φk(dk)

¾
fk − f (xk + dk)
φk(0)−φk(dk)

. (42)

Thus for k large enough, according to µ ∈ (0, 1),
(41) and (42), we have that

ρk ¾ µ.

From Step 5 of Algorithm 1, we know that ∆k+1 ¾
∆k holds for sufficiently large k, which contradicts
(35). 2

LOCAL SUPERLINEAR CONVERGENCE

In this section, we analyse the superlinear con-
vergence of Algorithm 1 under suitable conditions.
First we present the following assumptions.
(A4) f (x) is twice continuously differentiable.
(A5) The matrix Bk is invertible, ‖B−1

k gk‖¶∆k, and
Algorithm 1 chooses the step dk = −B−1

k gk for
all k.

Theorem 2 Suppose that A1, A3, A4, A5 hold. Sup-
pose that the sequence {xk} is generated by Algo-
rithm 1 and converges to a point x∗, where ∇2 f (x∗)
is positive definite and∇2 f (x) is Lipschitz continuous
on a neighbourhood of x∗. If

lim
k→∞

‖(Bk −∇2 f (xk))dk‖
‖dk‖

= 0, (43)

then the sequence {xk} converges to x∗ superlinearly.

Proof : According to A2 and Theorem 1, we know
that there exists a constant L1 > 0 such that

‖g(xk)− g(x∗)‖¶ L1‖xk − x∗‖,

and the sequence {xk} is generated by Algorithm 1
and converges to a point x∗. It follows that

lim
k→∞
‖g(xk)− g(x∗)‖¶ 0.

This implies that

lim
k→∞
‖gk‖= ‖g(x∗)‖= 0. (44)

Then it means that x∗ is a strict local minimizer.
Suppose that Ω = {x | ‖x − x∗‖ ¶∆}, where ∆ > 0
is a sufficiently small constant such that xk ∈ Ω for
all k ¾ k0, where k0 is a positive integer. From A4,
we know that there exist two positive constants m
and M , such that

m‖d‖2 ¶ dT∇2 f (x)d ¶ M‖d‖2, ∀d ∈ Rn, (45)

for all x ∈ Ω. For sufficiently large k > k0, from (2),
it follows that

φk(0)−φk(dk) =
1
2

dT
k (Bk−∇2 f (xk))dk+

1
2

dT
k∇

2 f (xk)dk.

(46)
From A3 we have that dk→ 0 as k→∞. Combining
dk → 0, (43), (45), and (46), we know that

lim
k→∞

φk(0)−φk(dk)
‖dk‖2

¶ M .

This implies that

φk(0)−φk(dk) = O(‖dk‖2). (47)

By the mean-value theorem, it follows that

fk − f (xk + dk)− (φk(0)−φk(dk))

=
1
2

dT
k (∇

2 f (xk)−∇2 f (xk +ξdk))dk

+
1
2

dT
k (Bk −∇2 f (xk))dk,
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where ξ ∈ (0,1). For large enough k, from the
Lipschitz continuity of ∇2 f (x), (43) and dk → 0, it
follows that

fk− f (xk+dk)−(φk(0)−φk(dk)) = o(‖dk‖2). (48)

Combining (47) and (48), we know that
�

�

�

�

fk − f (xk + dk)
φk(0)−φk(dk)

−1

�

�

�

�

=

�

�

�

�

fk − f (xk + dk)−φk(0)+φk(dk)
φk(0)−φk(dk)

−1

�

�

�

�

¶
o(‖dk‖2)
O(‖dk‖2)

. (49)

By (49), we know that (41) holds. Combining (41)
and (42) we know that ρk ¾ µ for sufficiently large
k. Hence Algorithm 1 reduces to the standard quasi-
Newton method when k is sufficiently large and
we can obtain the superlinear convergence result
by using the standard results of the quasi-Newton
method. 2

COMPUTATIONAL EXPERIMENTS

In this section, we provide some preliminary numer-
ical experiments to show the performance of our
proposed algorithm. The new nonmonotone trust
region algorithm is denoted by NNTR from now on.
In Algorithm 1, the parameter η has a wide scope.
If we take η = 0, then we can obtain the usual
trust region methods described in Ref. 2 (denoted
by UTR). We also compare Algorithm 1 with the
nonmonotone trust region (NTR) method proposed
by Mo et al10.

The mentioned algorithms were coded in MAT-
LAB 7.1. All numerical computation were conducted
using an Intel Core 2 Duo CPU 2.20 GHz computer
with 2 GB of RAM. For Algorithm 1 we used∆0 = 2,
µ= 0.25, c1 = 0.25, c2 = 1.25.

In all tests the maximum number of iterations is
300, and the termination condition is ‖gk‖ ¶ 10−6.
In all algorithms, Bk is updated by the following
BFGS formula:

Bk+1 = Bk +
BksksT

k Bk

sT
k Bksk

+
y∗k(y

∗
k)

T

(y∗k)
Tsk

,

where

y∗k =
yT

k sk

|yT
k sk|

yk, sk = xk+1− xk, yk = gk+1− gk.

For each test, we choose the initial matrix B0 = | f0|E,
where E is the unit matrix.

Table 1 Numerical results for Example 1.

Dim NNTR (η= 0.2)
Iter FV TCPU NF NG

32 44 2.54×10−16 0.0559 89 84
64 46 4.99×10−17 0.0891 93 90

128 42 1.64×10−16 0.1874 85 83
256 47 3.01×10−16 0.7310 95 93
512 45 1.65×10−19 3.4084 91 91

Iter = number of iterations; Dim = number of dimen-
sions; FV= final value of f (xk); TCPU= CPU time (s);
number of function evaluations; number of gradient
evaluations

Table 2 Numerical results for Example 2.

Dim NNTR (η= 0.2)
Iter FV TCPU NF NG

32 50 2.60×10−11 0.0617 101 101
64 50 5.44×10−10 0.0766 101 101

128 62 4.86×10−13 0.2241 125 125
256 62 1.43×10−10 0.9593 125 125
512 68 1.24×10−9 5.0646 137 137

Example 1 Extended Rosenbrock function. The
test function is the 21st example of Ref. 11. Let

f (x) =
n/2
∑

i=1

[100(x2i − x2
2i−1)

2+(1− x2i−1)
2].

The minimum of the problem is f (min) = 0. The
standard starting point is x0 = (−1.2, 1, . . . ,−1.2,1).

Example 2 Extended Powell singular function. The
test function is the 22nd example of Ref. 11. Let

f (x) =
n/4
∑

i=1

[(x4i−1+10x4i−2)
2+5(x4i−2− x4i)

2

+(x4i−2−2x4i−1)
2+10(x4i−3− x4i)

4].

The minimum of the problem is fmin =
0. The standard starting point is x0 =
(3,−1,0, 1, . . . , 3,−1, 0,1).

Example 3 Extended Dixon test function. The test
function is problem 4.5 of Ref. 12. Let

f (x) =
n/10
∑

i=1

�

(1− x10i−9)
2+(1− x10i)

2

+
10i−1
∑

j=10i−9

(x2
j − x j+1)

2
�

.
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Table 3 Numerical results for Example 3.

Dim NNTR (η= 0.2)
Iter FV TCPU NF NG

32 80 7.40×10−16 0.0475 161 160
64 85 4.38×10−16 0.1415 171 171

128 106 1.09×10−15 0.3623 213 211
256 114 1.87×10−16 1.8159 229 229
512 130 1.38×10−15 9.9293 261 261

Table 4 Numerical results for Example 4.

Dim NNTR (η= 0.2)
Iter FV TCPU NF NG

32 33 4.38×10−16 0.0182 67 67
64 28 7.47×10−15 0.0724 57 57

128 37 8.04×10−15 0.1233 75 75
256 55 1.01×10−14 0.8374 111 111
512 81 8.00×10−15 5.9847 163 163

The minimum of the problem is f (min) = 0. The
standard starting point is x0 = (−2,−2, . . . ,−2,−2).

Example 4 Broyden tridiagonal function. The test
function is the 30th example of Ref. 11. Let

f (x) =
n
∑

i=1

[(3−2x i)x i − x i−1−2x i+1+1]2.

The minimum of the problem is f (min) = 0. The
standard starting point is x0 = (−1,−1, . . . ,−1,−1).

In tables 1–4 we give some test results about five
large scale unconstrained optimization problems to
show whether the parameter η has an impact on
Algorithm 1. We test the five problems with two
cases. The dimensions of the problems are chosen
from 32–512.

CONCLUSIONS

In this paper, we proposed a new nonmonotone
trust region algorithm based on the nonmonotone
line search proposed by Gu and Mo9. Theoretical
analysis shows that the new algorithm inherits the
global convergence of the traditional trust region
method. Under suitable conditions the superlinear
convergence of the algorithm is proved. Preliminary
numerical experiments indicate that our algorithm
is quite effective for large scale unconstrained opti-
mization problems.
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