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ABSTRACT: This paper is concerned with the long-time dynamics of some 3D generalized non-autonomous Navier-
Stokes equations in a bounded domain governing the motion of fluid flow which comes from a monograph by
Ladyzhenskaya. Under some assumptions on the external force and initial data, we prove the existence and structure
of uniform attractors for the continuous process.
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INTRODUCTION

The objective of this paper is to study the uniform
attractor of the 3D incompressible modified Navier-
Stokes equations,

ut − (ν0+ν1‖u‖2)∆u+(u ·∇)u+∇p = σ(t, x),
∇·u= 0,

u |∂Ω = 0,

u(x ,τ) = u0(x),















(1)
defined in a bounded domain Ω ⊂ R3, with the
smooth boundary ∂Ω, where u is the velocity field
with components ui = ui(t, x), i = 1,2, 3, and p =
p(t, x) is the pressure. The assumption of nonlinear
viscosity ν= ν0+ν1‖u‖2, where ν0, ν1 > 0 and was
proposed in Ref. 1. If the viscosity ν(t)> 0 becomes
a constant, (1) reduces to the well-known classical
3D Navier-Stokes equations.

The classical Navier-Stokes equations (ν is a
constant) are an important part of the theory for
fluid mechanics1–5. A comprehensive description
of the theory of the Navier-Stokes equations can be
found in Refs. 6–8.

For the variable viscosity problem (1), the back-
ground of this model and some existence results
can be founded in Ref. 1. The uniqueness of this
problem was investigated by Ref. 9 with N < 3 spa-
tial dimensions. This equation was also considered
in Ref. 10, where the existence of weak solutions
was obtained for N ¶ 4 and uniqueness for N ¶ 3,
and the well-posedness of (1) in a non-cylindrical

domain11. For the pullback dynamics of system (1)
and its modified form, see Refs. 12, 13. However, as
far as we know, there is no result about the forward
dynamics of this model with some non-autonomous
external forces. We shall use the energy equation
method to deal with the uniformly asymptotic com-
pactness of continuous processes with respect to the
special external force (which is called a symbol) for
achieving the existence of uniform attractors.

After introducing the notation and some pre-
liminaries, the well-posedness of problem (1) will
be shown. We then gives the theory of uniform
attractors and the main results.

NOTATION AND PRELIMINARIES

Throughout this paper, the Hausdorff distance in X
from one set B1 to another B2 is defined as

distX (B1, B2) = sup
b1∈B1

inf
b2∈B2

‖b1− b2‖X .

Setting E := {u | u ∈ (C∞0 (Ω))
3, divu = 0}, H is

the closure of E with (L2(Ω))3 topology, and V is
the closure of E in (H1(Ω))3 topology. |·| and (·, ·)
denote the norm and inner product of H. Here,

(u, v) =
3
∑

j=1

∫

Ω

u j(x)v j(x)dx , ∀u, v ∈ H.

‖·‖ and ((·, ·)) denote the norm and inner product in
V . Here,

((u, v)) =
3
∑

i, j=1

∫

Ω

∂ u j

∂ x i

∂ v j

∂ x i
dx , ∀u, v ∈ V.
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Clearly, V ,→ H ≡ H ′ ,→ V ′, H ′ and V ′ are the dual
spaces of H and V , respectively, where the injection
is dense and continuous. ‖·‖∗ denotes the norm of
V ′, and 〈·〉 is the dual product between V and V ′.

Let P be the Helmholtz-Leray orthogonal projec-
tion operator from (L2(Ω))3 onto H. We define A :=
−P∆ as the Stokes operator with domain D(A) =
(H2(Ω))3∩ (H1

0(Ω))
3 and λ is the first eigenvalue of

A, then the operator A : V → V ′ has the property
〈Au, v〉 = ((u, v)) for all u, v ∈ V which is an iso-
morphism from V into V ′, and {λ j}∞j=1 for 0< λ1 ¶
λ2 ¶ · · · are eigenvalues of A corresponding to the
eigenfunctions {ω j}∞j=1, i.e., Aω j = λ jω j .

We define the bilinear operator and trilinear
operator as6, 14

B(u, v) := P((u ·∇)v), ∀u, v ∈ E, (2)

b(u, v, w) = (B(u, v), w) =
3
∑

i, j=1

∫

Ω

ui

∂ v j

∂ x i
w j dx , (3)

which satisfy

b(u, v, v) = 0, b(u, v, w) = −b(u, w, v),
∀u, v, w ∈ V,

|b(u, v, w)|¶ C |u|1/2‖u‖1/2
V ‖v‖V |w|1/2‖w‖

1/2
V ,

∀u, v, w ∈ V.

THE GLOBAL EXISTENCE OF SOLUTIONS

The operator A : V → V ′ is defined by Au =
−ν1‖u‖2∆u and

〈Au, v〉= ν1‖u‖2〈−∆u, v〉

= ν1‖u‖2((u, v)), ∀u, v ∈ V. (4)

Noting that A maps the bounded sets in V to
bounded sets in V ′, we have

‖A‖V ′ = sup
‖v‖=1, v∈V

|〈Au, v〉|

= sup
‖v‖=1, v∈V

ν1‖u‖2|a(u, v)| ¶ ν1‖u‖3.

We call the function u(t, x) ∈ L∞(τ, T ; H) ∩
L4(τ, T ; V ) a weak solution of (1) if

d
dt
(u(t), v)+ (ν0+ν1‖u(t)‖2)((u(t), v))

+ b(u, u, v) = 〈g(t, x), v〉, u(τ) = u0, τ ∈ R,

for v ∈ V in distributed sense.
Based on the above definition and notation, (1)

can be rewritten as an equivalent abstract functional
equation:

ut +ν0Au+Au+ B(u, u) = f (t, x), ∇·u= 0. (5)

The existence, uniqueness and regularity of
a global solution for (5) can be derived by the
Galerkin approximation method and some energy
estimates. Here we omit the details; the technique
can be found in Refs. 9, 10.

Theorem 1 (a) Assume the external force f (t, x) ∈
L4/3

loc (R, V ′) and initial data u0 ∈ H. Then the system
(5) has a unique weak solution

u(x , t) ∈ L∞(τ, T ; H)∩ L4(τ, T ; V )

in dimension N ¶ 3. (b) Furthermore, since the
solution has continuous dependence on the initial data
and (du/dt) ∈ L2(τ, T ; V ′), from the Aubin-Lions
Lemma, we derive that u(t, x) ∈ C(τ, T ; H) which
generates a continuous process U(t,τ) : H → H.

THE THEORY OF UNIFORM ATTRACTORS

We firstly recall some theory of uniform attrac-
tors15, 16. Let X be a Banach space with a spatial
variable. The space Lp

loc(R; X ) denotes all functions
with spatial values in a Banach space X and time
variable locally p-power integrable in the Bochner
sense with the norm

∫ t2

t1
‖·‖p

X ds <∞ for any time
interval [t1, t2] ⊆ R. We choose Σ = H (σ0) as a
symbol space of the system,

H (σ0) = {σ0(·+h) | h ∈ R+}
E

for every fixed σ0 ∈ E . Let {T (·)} be the translation
semigroup (also the shift operator) defined on Σ
(the symbol space): T (·)σ(s) =σ(s+·) and the sym-
bol space is invariant in the sense T (·)Σ = Σ. The
space L2

b(R; X ) denotes the union of all translation
bounded functions satisfying

‖σ‖2
L2

b(R;X ) = sup
t∈R

∫ t+1

t

‖σ(s)‖2
X ds <∞,

for σ ∈ L2
b(R; X ). We say σ ∈ L2

loc(R; X ) is trans-
lation compact in L2

loc(R; X ) if H (σ) is compact in
L2

loc(R; X ) which is denoted by L2
c (R; X ). L2,w

c (R; X )
is the weak translation compact space. We define
the normal functional space L2

n(R; X ) as there exists
a η > 0, such that for any ε > 0

L2
n(R; X ) =
§

φ ∈ L2
loc(R; X ) : sup

t∈R

∫ t+η

t

‖φ(s)‖2
X ds¶ ε
ª

.

Remark 1 If we choose σ0 ∈ L2
loc(R; X ) and fixed,

then for every σ ∈H (σ0), we have

‖σ‖2
L2

b(R;X ) ¶ C‖σ0‖2
L2

b(R;X ),

L2
c (R; X ) ⊂ L2

n(R; X ) ⊂ L2
b(R; X ) ⊂ L2

loc(R; X ).
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Denoting the phase space of global solutions as
E, we can define {Uσ(t,τ)} : E→ E as evolutionary
processes if

Uσ(t, s)Uσ(s,τ) = Uσ(t,τ), ∀t ¾ s ¾ τ, τ ∈ R,

Uσ(τ,τ) = Id (identity), ∀τ ∈ R

for any function σ ∈ Σ, Σ ⊂ E . Furthermore,
we assume that the family of processes {Uσ(t,τ)}
satisfies the translation identity for invariance

Uσ(t)(t +h,τ+h) = UT (h)σ(t)(t,τ),
∀σ ∈ Σ, t ¾ τ, τ, s ∈ R. (6)

We define the skew product flow as S(t) =
(Uσ(t,τ), T (t)) ∈ E ×Σ, i.e.,

S(t)(u(s),σ(s)) = (Uσ(s)(t, 0)u(s), T (t)σ(s))
= (u(t + s),σ(t + s))

for every (u(s)σ(s)) ∈ E ×Σ.

Remark 2 If the family of processes satisfies the
translation identity (6) and it is (E × Σ,Σ)-
continuous, then the skew product flow is a semi-
group.

Theorem 2 (Ref. 15) Assume that (i) Σ is the sym-
bol space and it is invariant under the continuous
translation semigroup {T (h)} defined above; (ii) the
family of processes {Uσ(t,τ)}, σ ∈ Σ acting on the
phase space E which satisfies the translation iden-
tity (6) is uniformly asymptotically compact and
(E ×Σ, E)-continuous; (iii) there exists a uniformly
bounded absorbing set B with respect to every symbol
σ ∈ Σ.

Let Π1 and Π2 be two projectors from E×Σ onto
E and Σ, respectively: Π1(u,σ) = u and Π2(u,σ) =
σ. Then the skew product flow possesses a global
attractorA .

A curve u(s), s ∈ R is called the complete trajec-
tory for the process {U(t,τ)} if U(t,τ)u(τ) = u(t)
for all t ¾ τ, τ ∈ R. The kernel K of the process
{U(t,τ)} is defined as all bounded complete tra-
jectories: K = {u(·) | u(·) are complete trajectories
and ‖u(·)‖E ¶ C}. The kernel section K (s) = {u(s) |
u(·) ∈K } is the kernel at time t = s.

Theorem 3 (Ref. 15) The compact global attractor
has the structure A =

⋃

σ∈ΣKσ(τ)× {σ} which is
(a) strictly invariant (S(t)A =A ) and (b) satisfies
Π1A =AΣ =
⋃

σ∈ΣKσ(τ) is the uniform attractor
for {Uσ(t,τ)}, Π2A =Σ, whereKσ(τ) is the section
at t = τ of the kernel Kσ for the process {Uσ(t,τ)}
with symbol σ ∈ Σ.

THE UNIFORM ATTRACTOR FOR 3D
NAVIER-STOKES EQUATIONS WITH VARIABLE
VISCOSITY

Symbol space

We denote E1 = L2
loc(R; (L2(Ω))2) as the 2-power

locally integrable functional space, and define

Ê1 = L2
b(R; (L2(Ω))2), Ē1 = L2

c (R; (L2(Ω))2),

Ẽ1 = L2
n(R; (L2(Ω))2)

as translation bounded, translation compact, and
normal functional spaces, respectively.

Choosing an arbitrary function σ0 ∈ Ē1, Ê1, or
Ẽ1, then we can define the symbol space H (σ0)
which is called the hull of σ0 by

Σ̄=H (σ0) = [σ0(t +h) = T (h)σ0(t) | h ∈ R+]E1
,

(7)
where [ ·]E1

denotes the closure in the strong topol-
ogy of E1, and T (·) denotes the translation semi-
group.

Proposition 1 (Ref. 15) For every fixed function
σ0(·) and σ(·) belonging to its corresponding symbol
space, we have ‖σ‖2

L2
b(R;L2(Ω))

¶ C‖σ0‖2
L2

b(R;L2(Ω))
.

The skew product flow and its global attractors

The problem (1) possesses a unique global weak
solution in H. Thus for any symbol σ(·) ∈ Σ0 and
uτ ∈ H, the unique solution generates the process
Uσ(·)(t,τ) : H → H as

Uσ(·)(t,τ)uτ = u(t,τ; uτ) ∈ H (8)

which satisfies the translation identity.
Choosing the fixed symbol space Σ which can

be any one of Ē1, Ê1 or Ẽ1, we can derive the skew
product flow S(t) = (U f (·)(t,τ), T (·)) in phase space
H ×Σ.

The uniformly absorbing set

Lemma 1 (Ref. 15) For every τ ∈ R, any nonnega-
tive locally summable function φ on Rτ and for every
β > 0, we have
∫ t

τ

φ(s)e−β(t−s) ds ¶
1

1− e−β
sup
θ¾τ

∫ θ+1

θ

φ(s)ds,

for all t ¾ τ.

Lemma 2 Assume f ∈ Σ ⊂ L2
b(R; H), uτ ∈ H. Then

there exists a time

T0 = τ+
1
λ1ν0

ln
� |uτ|2

4
λ1ν0
+ 4
λ2

1ν
2
0

‖ f0‖2
L2

b(R;H)

�
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such that for any t ¾ T0, the process U(t,τ) possesses
a bounded uniformly (w.r.t. f ∈ Σ) absorbing set B
in H, where B= {u ∈ H : |u|¶ C‖ f0‖L2

b(R;H)
.
= R0} is

a bounded set in H which attracts all bounded subsets
in H, where R2

0 = (8/λ1ν0)(1+1/λ1ν0)‖ f0‖2
L2

b(R;H)
.

Proof : Taking the inner product of (1) with u, we
derive the energy equation

d
dt
|u(t)|2+2ν0‖u(t)‖2+2ν1‖u(t)‖4 = 2〈 f (t), u(t)〉,

(9)
and thus

d
dt
|u(t)|2+λ1ν0|u(t)|2 ¶

| f (t)|2

ν0λ1
.

From the Gronwall inequality, one can easily deduce

|u(t)|2 ¶ |uτ|2 e−λ1ν0(t−τ)

+4e−λ1ν0 t

∫ t

τ

eλ1ν0ξ

ν0λ1
| f (ξ)|2 dξ. (10)

By Lemma 1, we derive

|u(t)|2

¶ |uτ|2 e−λ1ν0(t−τ)

+
4
λ1ν0

∫ t

τ

eλ1ν0(ξ−t)‖ f (ξ)‖2 dξ

¶ |uτ|2 e−λ1ν0(t−τ)+
4
λ1ν0

�

∫ t

t−1

| f (s)|2 ds

+ e−λ1ν0

∫ t−1

t−2

‖ f (s)‖2 ds

+ e−2λ1ν0

∫ t−2

t−3

| f (s)|2 ds+ · · ·
�

¶ |uτ|2 e−λ1ν0(t−τ)

+
4
λ1ν0

�

1+ e−λ1ν0 + e−2λ1ν0 + · · ·
�

×‖ f (s)‖2
L2

b(R;H)

¶ |uτ|2 e−λ1ν0(t−τ)

+
4
λ1ν0

�

1+
1
λ1ν0

�

‖ f (s)‖2
L2

b(R;H)

¶ |uτ|2 e−λ1ν0(t−τ)

+
4
λ1ν0

�

1+
1
λ1ν0

�

‖ f0‖2
L2

b(R;H),

and choosing

|uτ|2 e−λ1ν0(t−τ) ¶
4
λ1ν0

�

1+
1
λ1ν0

�

‖ f0‖2
L2

b(R;H),

we deduce that there exists a time
T0 = τ + (1/λ1ν0) ln((|uτ|2/((4/λ1ν0) +
4/λ2

1ν
2
0))‖ f0‖2

L2
b(R;H)

), such that for t ¾ T0, the

bounded set B = {u : |u|2 ¶ R2
0} is a uniformly

(w.r.t. f ∈ Σ) absorbing set for the process
{U f (t,τ)} in H, where

R2
0 =

8
λ1ν0

�

1+
1
λ1ν0

�

‖ f0‖2
L2

b(R;H), t ∈ R.

2

The continuity of skew product flow

From the Aubin-Lions compact argument and defini-
tion of symbol spaces, we can derive the continuity
of process and skew product flow.

Lemma 3 For any f ∈ Σ = H ( f0), the family of
processes {U f (t,τ)} defined on H, corresponding to
our problem is (H ×Σ, H) continuous.

Proof : This is true by the property of a global
solution which is continuous. 2

Lemma 4 Let {un
τ} be a sequence in H converging to

uτ ∈ H in H-topology and { f n} ⊂ Σ be a sequence
converging to f ∈ Σ. Then for any fixed τ ∈ R, it
yields
(i) U f n(·,τ)un

τ→ U f (·,τ)uτ weakly in H.
(ii) U f n(t,τ)un

τ* U f (t,τ)uτ weakly in L2(τ, T ; V ).
(iii) U f n(t,τ)un

τ * U f (t,τ)uτ weakly in
L4(τ, T ; V ).

Proof : Let un(t) = U f n(t,τ)un
τ and u(t) = U f (t,τ)uτ

for t ¾ τ. From the existence of a global weak
solution, we deduce that

{un}n is bounded in L∞([τ,∞); H)∩ L2(τ, T ; V ),
∀T > τ. (11)

Hence since u′n = f (t) − ν0Aun − Aun + B(un), it
follows that {u′n}n is bounded in L2(τ, T ; V ′) for all
T > 0. Then for all v ∈ V and τ¶ t ¶ t + a ¶ T , by
the Cauchy-Schwarz inequality, we obtain

(un(t + a)−un(t), v) =

∫ t+a

t

〈u′n(s), v〉ds

¶ cT‖v‖a1/2, (12)

where cT > 0 is independent of n. Choosing v =
un(t + a)−un(t) ∈ V for almost every t, we have

|un(t + a)−un(t)|2 ¶ cT a1/2‖un(t + a)−un(t)‖,
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and hence

∫ t+a

t

|un(t + a)−un(t)|2 dt

¶ cT a1/2

∫ t+a

t

‖un(t + a)−un(t)‖dt. (13)

Using (11) and (13) we obtain

∫ t+a

t

|un(t + a)−un(t)|2 dt ¶ c̄T a1/2

for another positive constant c̄T independent of n.
Hence

limsup
a→0

∫ t+a

t

|un(t + a)−un(t)|2 dt = 0, ∀r > 0.

(14)
Then from (11) and by a diagonal process, we can
extract a subsequence {un′}n′ such that

un′ * ũ weakly in L∞([τ,∞); H), as n′→∞,

un′ * ũ weakly in L2
loc([τ,∞); V ), as n′→∞,

and un′ → ũ strongly in L2
loc([τ,∞); H) as n′ →

∞ for all r > 0, for some ũ ∈ L∞([τ,∞); H) ∩
L2

loc([τ,∞); V ). By the uniqueness of solutions, it
yields ũ = u, i.e., {un}n converges to u weakly in
L2

loc([τ,∞); V ). Hence for all v ∈ E, it follows that

(un(t), v)→ (u(t), v), for a.e. t ¾ τ.

Furthermore, from (11) and (12), we see that
{(un(t), v)}n is equibounded and equicontinuous on
[τ, T] for all T > τ. Hence

(un(t), v)→ (u(t), v), for all t ¾ τ. (15)

Since E is dense in H, the lemma holds. By the
energy inequality, we can prove (iii) by a similar
technique. 2

The uniformly asymptotic compactness of a
process

Lemma 5 For any f ∈ Σ, the family of processes
{U f (t,τ)}, f ∈ Σ defined on H to problem (1) is
asymptotically compact in H.

Proof : Let {un
τ} be a bounded sequence in H and

{ f n} in Σ converge to uτ and f , respectively, as n→
∞.

From Lemma 2, we see that for any fixed uτ ∈ H
and τ ∈ R, there exists a time T0 = T0(τ) such that

for all tn ¾ T0, {U f n(tn,τ)un
τ} ⊆B, {U f n(tn,τ)un

τ} is
weakly relatively compact in H and

U f n(tn,τ)un
τ* u weakly in H as n→∞ (16)

for some u ∈ H and convergent subsequence. Simi-
larly, for each T > 0 and tn ¾ T0+ T , we also have

un
T

.
= U f n(tn− T,τ)un

τ* uT weakly in H as n→∞
(17)

for some uT ∈ H.
Noting the property of translation semigroup

{T (t) : t ¾ τ} which satisfies

UT (h) f (t,τ) = U f (t +h,τ+h), ∀h¾ 0, f ∈ Σ,
(18)

then for any tn− T ¾ τ, we derive that

U f n(tn,τ) = U f n(tn, tn− T )U f n(tn− T,τ)

= UT (tn−T ) f n(T, 0)U f n(tn− T,τ). (19)

Denoting f n
T = T (tn− T ) f n, by (18) and (19),

U f n(tn,τ)un
τ = U f n

T
(T, 0)U f n(tn− T,τ)un

τ

= U f n
T
(T, 0)un

T , tn− T ¾ τ. (20)

Since { f n
T } ⊂Σ andΣ is compact in L2

loc(R; H), there
exists a subsequence of { f n

T } (also denoted by { f n
T })

and some fT ∈ Σ such that

f n
T → fT strongly in L2

loc(R; H) as n→∞,∀T > 0.
(21)

By Lemma 4, (16), (17), (20), and (21) we obtain
u= U fT

(T, 0)uT for all T > 0.
In the following, we shall prove the asymptotic

compactness in H via the energy equation method,
i.e., |U f n

T
(tn,τ)un

τ − u| → 0 as n→∞. To achieve
this goal, we need to prove the upper and lower
continuity of the processes

lim inf
n
|U f n(tn,τ)un

τ|= lim inf
n
|U f n

T
(T, 0)un

T |¾ |u|,

(22)

limsup
n
|U f n(tn,τ)un

τ|= lim sup
n
|U f n

T
(T, 0)un

T |¶ |u|.

(23)

The weak convergence for the process ensures that
(22) is true. What we need next is to prove (23)
from the weak and norm convergence of the corre-
sponding sequences.

Taking the inner product of (5) with e2λ1ν0 tu(t)
in H, we derive that

1
2

d
dt

e2λ1ν0 t(u, u)+ν0 e2λ1ν0 t(Au(t), u(t))

+ν1 e2λ1ν0 t(Au, u)

= λ1ν0 e2λ1ν0 t(u, u)+ e2λ1ν0 t( f , u(t)), (24)
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integrating (24) over [τ, t] yields

(u(t), u(t)) = (u(τ), u(τ))e−2λ1ν0 t

+2

∫ t

τ

e−2λ1ν0(t−s)( f (s), u(s))ds

−2

∫ t

τ

ν0 e−2λ1ν0(t−s)(Au(s), u(s))ds

−2

∫ t

τ

ν1 e−2λ1ν0(t−s)(A(s), u(s))ds

+2λ1ν0

∫ t

τ

e−2λ1ν0(t−s)(u(s), u(s))ds, (25)

for all t ¾ τ, τ ∈ R.
Applying (25) to U f n

T
(T, 0)un

T , we derive that

(U f n
T
(T, 0)un

T , U f n
T
(T, 0)un

T ) = (u
n
T , un

T )e
−2λ1ν0 T

+2

∫ T

τ

e−2λ1ν0(T−s)

× ( f n
s (s), U f n

s
(s, 0)un

s )ds

−
�

2

∫ T

τ

ν0 e−2λ1ν0(T−s)

× (AU f n
s
(s, 0)un

s , U f n
s
(s, 0)un

s )ds

+2

∫ T

τ

ν1 e−2λ1ν0(T−s)

× (AU f n
s
(s, 0)un

s , U f n
s
(s, 0)un

s )ds
�

+2λ1ν0

∫ T

τ

e−2λ1ν0(T−s)

× (U f n
s
(s, 0)un

s , U f n
s
(s, 0)un

s )ds

= I1+ I2+ I3+ I4. (26)

From Lemma 2, we deduce that

limsup
n

I1 = lim sup
n
(un

T , un
T )e

−2λ1ν0 T ¶ R2
0 e−2λ1ν0 T .

(27)

By Lemma 4,

U f n
s
(s, 0)un

s * U fs(s, 0)us weakly in H, L2(τ, T ; V ),

∀T > τ. (28)

Hence we deduce from (26) and (28) that

lim
n→∞

I2 = lim
n→∞

2

∫ T

τ

e−2λ1ν0(T−s)( f n
s (s), U f n

s
(s, 0)un

s )ds

= 2

∫ T

τ

e−2λ1ν0(T−s)( fs(s), U fs(s, 0)us)ds (29)

and

lim
n→∞

I4 = lim
n→∞

2λ1ν0

∫ T

τ

e−2λ1ν0(T−s)

× (U f n
s
(s, 0)un

s , U f n
s
(s, 0)un

s )ds

= 2λ1ν0

∫ T

τ

e−2λ1ν0(T−s)

× (U fs(s, 0)us, U fs(s, 0)us)ds. (30)

Next, we want to deal with the third term on
the right-hand side of (26). In fact, since A is a
bounded linear operator from V into V ′, A : V → V ′

is bounded. From Lemma 4 we obtain

limsup
n

�

−2

∫ T

τ

ν0 e−2λ1ν0(T−s)

× (AU f n
s
(s, 0)un

s , U f n
s
(s, 0)un

s )ds
�

= − lim inf
n

�

2

∫ T

τ

ν0 e−2λ1ν0(T−s)

×‖U f n
s
(s, 0)un

s ‖
2 ds
�

¶ −
�

2

∫ T

τ

ν0 e−2λ1ν0(T−s)‖U fs(s, 0)us‖2 ds
�

= −2

∫ T

τ

ν0 e−2λ1ν0(T−s)

× (AU fs(s, 0)us, U fs(s, 0)us)ds

and

limsup
n

�

−2

∫ T

τ

ν1 e−2λ1ν0(T−s)

× (AU f n
s
(s, 0)un

s , U f n
s
(s, 0)un

s )ds
�

= − lim inf
n

�

2

∫ T

τ

ν1 e−2λ1ν0(T−s)

×‖U f n
s
(s, 0)un

s ‖
4 ds
�

¶ −2

∫ T

τ

ν1 e−2λ1ν0(T−s)‖U fs(s, 0)us‖4 ds

= −2

∫ T

τ

ν1 e−2λ1ν0(T−s)

× (AU fs(s, 0)us, U fs(s, 0)us)ds.

Hence

limsup
n

I3 = limsup
n

�

−2

∫ T

τ

ν0 e−2λ1ν0(T−s)
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× (AU f n
s
(s, 0)un

s , U f n
s
(s, 0)un

s )ds

−2

∫ T

τ

ν1 e−2λ1ν0(T−s)

× (AU f n
s
(s, 0)un

s , U f n
s
(s, 0)un

s )ds
�

= − lim inf
n

�

2

∫ T

τ

ν0 e−2λ1ν0(T−s)

× (AU f n
s
(s, 0)un

s , U f n
s
(s, 0)un

s )ds

+2

∫ T

τ

ν1 e−2λ1ν0(T−s)

× (AU f n
s
(s, 0)un

s , U f n
s
(s, 0)un

s )ds
�

¶ −
�

2

∫ T

τ

ν0 e−2λ1ν0(T−s)

× (AU fs(s, 0)us, U fs(s, 0)us)ds

+2

∫ T

τ

ν1 e−2λ1ν0(T−s)

× (AU fs(s, 0)us, U fs(s, 0)us)ds
�

.

(31)

Combining (26) and (27)–(30), we conclude that

limsup
n
(U f n

T
(T, 0)un

T , U f n
T
(T, 0)un

T )¶ R2
0 e−2λ1ν0 T

+2

∫ T

τ

e−2λ1ν0(T−s)( fs(s), U fs(s, 0)us)ds

−
�

2

∫ T

τ

ν0 e−2λ1ν0(T−s)(AU fs(s, 0)us, U fs(s, 0)us)ds

+2

∫ T

τ

ν1 e−2λ1ν0(T−s)(AU fs(s, 0)us, U fs(s, 0)us)ds
�

+2λ1ν0

∫ T

τ

e−2λ1ν0(T−s)(U fs(s, 0)us, U fs(s, 0)us)ds.

(32)

By the same technique as above, applying (25) to
u= U fT

(T, 0)uT yields

(U fT
(T, 0)uT , U fT

(T, 0)uT ) = (uT , uT )e
−2λ1ν0 T

+2

∫ T

τ

e−2λ1ν0(T−s)( fs(s), U fs(s, 0)us)ds

−
�

2

∫ T

τ

ν0 e−2λ1ν0(T−s)(AU fs(s, 0)us, U fs(s, 0)us)ds

+2

∫ T

τ

ν1 e−2λ1ν0(T−s)(AU fs(s, 0)us, U fs(s, 0)us)ds
�

+2λ1ν0

∫ T

τ

e−2λ1ν0(T−s)(U fs(T, 0)us, U fs(s, 0)us)ds.

(33)

It follows from (32), (33), and (17) that for any T >
τ,

limsup
n
(U f n

T
(T, 0)un

T , U f n
T
(T, 0)un

T )

¶ (uT , uT )+R2
0 e−2λ1ν0 T − (un

T , un
T )e

−2λ1ν0 T

¶ (U fT
(T, 0)uT , U fT

(T, 0)uT )+R2
0 e−2λ1ν0 T .

Hence letting T tend to∞, we derive that

lim
n→∞
|U f n(tn,τ)un

τ|
2

= lim sup
n,T→∞

|U f n
T
(T, 0)un

T |
2

= lim sup
n,T→∞

(U f n
T
(T, 0)un

T , U f n
T
(T, 0)un

T )

¶ lim
T→∞

(U fT
(T, 0)uT , U fT

(T, 0)uT ) = |u|2.

From (22),

limsup
n,T→∞

|U f n
T
(T, 0)un

T |
2 = lim

n→∞
|U f n(tn,τ)un

τ|
2 = |u|2.

(34)
Combining the norm convergence (34) and weak
convergence (16) we conclude that

lim
n→∞
|U f n

T
(tn,τ)un

τ−u|2 = 0,

which implies the lemma is true. 2

Lemma 6 The family of processes {U f (t,τ)}, f ∈ Σ
defined on H for problem (1) is uniformly (w.r.t. f ∈
Σ) asymptotically compact in H-topology.

Proof : From the theory in Ref. 15, to achieve the
uniformly asymptotic compactness of a process,
what we need is to verify that {U f (t,τ)} possesses
a compact uniformly (w.r.t. f ∈ Σ) attracting set in
H.

For all uniformly bounded absorbing sets B in
H, we can construct the ω-limit set as

ωτ,Σ(B)
.
=
⋂

t¾τ

⋃

f ∈Σ

⋃

s¾t

U f (s,τ)B,

where (·) denotes the closure topology in H. From
the definition of ω-limit set, we see that

u ∈ωτ,Σ(B)⇔∃ sequences {un} ⊂B,

{ f n} ⊂ Σ, {tn} ⊂ [τ,∞), such that

lim
n→∞

tn =∞, U f n(tn,τ)un→ u

weakly in H as n→∞.
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The existence of uniformly an absorbing set im-
plies ωτ,Σ(B) is independent of τ. We claim that
ωτ,Σ(B) is a compact uniformly (w.r.t. f ∈ Σ) at-
tracting set for the process {U f (t,τ)} in H. Combin-
ing the uniformly (w.r.t. f ∈ Σ) absorbing property
(Lemma 2), the asymptotic compactness property of
the process {U f (t,τ)}, f ∈ Σ in H (Lemma 5), we
conclude that ωτ,Σ(B) is a nonempty compact set
in H.

For any bounded subset B ∈ H, we obtain the
following property from Lemma 2:

lim
t→∞

sup
f ∈Σ

distH(U f (t,τ)B,ωτ,Σ(B)) = 0, (35)

which also means that

ωτ,Σ(B) ⊆ωτ,Σ(B). (36)

Hence (35) and (36) imply the uniformly (w.r.t.
f ∈Σ) attracting property ofωτ,Σ(B) in H, and the
uniformly asymptotic compactness of the process
holds. 2

The global and uniform attractors

From Lemmas 2-6, we summarize the properties of
a process as follows: (i) {U f (t,τ)} is continuous in
H; (ii) the process possesses a uniformly absorbing
set in H; (iii) the process is uniformly asymptotically
compact in H with respect to f ∈ Σ. Combining
the proposition of translation semigroup and symbol
spaces, we can show that the skew product flow is
continuous and attracting which satisfies the com-
pact property, so we have the existence of global
and uniform attractors for the skew product flow
and process, respectively, as in the following.

Theorem 4 Let f ∈ Σ be the symbols, u0 ∈ H. Then
the global weak solution for problem (1) generates
a family of processes {U f (t,τ)} ( f ∈ Σ) and skew
product flow S(t) = (U f (t,τ), T (t)) ∈ H × Σ. If
the symbol spaces are chosen as translation compact,
bounded or normal class functional spaces, the skew
product flow possesses a compact global attractor A
in H ×Σ:

A =
⋃

σ∈Σ
Kσ(τ)×{σ},

where Kσ(τ) denotes all bounded complete trajec-
tories under the process and translation semigroup.
Furthermore, let Π1 and Π2 be two projections from
H ×Σ to H and Σ, respectively. Then

Π1A =AΣ =
⋃

σ∈Σ
Kσ(τ)

is the uniform attractor of process in H, and Π1A =
U = Σ is the global attractor of the translation semi-
group (also as shift operator) T (·).

Proof : Based on the continuity of a process
(Lemma 3) and the shift operator, the existence of
a uniformly absorbing set, and the uniform asymp-
totic compactness of a process, by the theory in
Ref. 15, we can prove our result. 2

Further research

For this Ladyzhenskaya model, as an approximation
to the 3D classical incompressible Navier-Stokes
equations, which has some similar properties to the
non-Newtonian fluid model, some further interest-
ing problems can also be considered. (a) If the do-
main is unbounded, does the uniform attractor ex-
ist? (b) For the 2D Navier-Stokes equation, the weak
solution can be regularized to a strong solution with
a periodic boundary, and hence a weak attractor has
more regularity, but what about this Ladyzhenskaya
model? (c) The continuity of the attractor as ν1→ 0
may occur, but in which topology?
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