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ABSTRACT: A place-labelled Petri net (pPN) controlled grammar is a context-free grammar equipped with a Petri net
and a function which maps places of the net to the productions of the grammar. The language consists of all terminal
strings that can be obtained by simultaneously applying the rules of multisets which are the images of the sets of the
input places of transitions in a successful occurrence sequence of the Petri net. In this paper, we study the generative
power and structural properties of pPN-controlled grammars. We show that pPN-controlled grammars have the same
generative power as matrix grammars. Moreover, we prove that for each pPN-controlled grammar, we can construct
an equivalent place-labelled ordinary net controlled grammar.
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INTRODUCTION

Petri nets1, ‘dynamic’ bipartite directed graphs with
two sets of nodes called places and transitions,
provide an elegant and powerful mathematical for-
malism for modelling concurrent systems and their
behaviour. Since Petri nets successfully describe
and analyse the flow of information and the con-
trol of action in such systems, they can be very
suitable tools for studying the properties of for-
mal languages. If Petri nets are initially used as
language generating/accepting tools2–8, in recent
studies, they have been widely applied as regulation
mechanisms for grammar systems9, automata10–15,
and grammars16–30.

A Petri net controlled grammar is, in general,
a context-free grammar equipped with a (place/
transition) Petri net and a function which maps
transitions of the net to productions of the grammar.
Then the language consists of all terminal strings
that can be obtained by applying the sequence of
productions which is the image of an occurrence
sequence of the Petri net under the function. Several
variants of Petri net controlled grammars have been
introduced and investigated:

Refs. 18, 23 introduce k-Petri net controlled

grammars and study their properties including gen-
erative power, closure properties, infinite hierar-
chies, etc.

Refs. 19, 21 consider a generalization of regu-
larly controlled grammars: instead of a finite au-
tomaton, a Petri net is associated with a context-free
grammar and it is required that the sequence of ap-
plied rules corresponds to an occurrence sequence
of the Petri net, i.e., to sequences of transitions
which can be fired in succession.

Refs. 20, 22 investigate grammars controlled by
the structural subclasses of Petri nets, namely, state
machines, marked graphs, causal nets, free-choice
nets, asymmetric choice nets and ordinary nets. It
is proven that the family of languages generated by
(arbitrary) Petri net controlled grammars coincide
with the family of languages generated by grammars
controlled by free-choice nets.

Refs. 24, 25 continue the research on Petri net
controlled grammars by restricting to (context-free,
extended, or arbitrary) Petri nets with place capac-
ities. A Petri net with place capacity regulates the
defining grammar by permitting only those deriva-
tions where the number of each non-terminal in
each sentential form is bounded by its capacity. It is
shown that several families of languages generated
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by grammars controlled by extended Petri nets with
place capacities coincide with the family of matrix
languages of finite index.

In all above-mentioned variants of Petri net
controlled grammars, the production rules of a core
grammar are associated only with transitions of a
control Petri net. Thus it is also interesting to
consider the place labelling strategies with Petri
net controlled grammars. Theoretically, it would
complete the node labelling cases, i.e., we study the
cases where the production rules are associated with
places of a Petri net, not only with its transitions.
Moreover, the place labelling makes it possible to
consider parallel application of production rules
in Petri net controlled grammars, which allows to
develop formal language based models for synchro-
nized/parallel discrete event systems.

Informally, a place-labelled Petri net controlled
grammar (pPN-controlled grammar) is a context-
free grammar with a Petri net and a function which
maps places of the net to productions of the gram-
mar. The language consists of all terminal strings
that can be obtained by parallelly applying of the
rules of multisets which are the images of the sets
of the input places of transitions in a successful
occurrence sequence of the Petri net. In this paper,
we study the effect of the place labelling strategies
to the computational power, establish the lower and
upper bounds for the families of languages gener-
ated by pPN-controlled grammars, and investigate
their structural properties.

PRELIMINARIES

We assume that the reader is familiar with the basic
concepts of formal language theory and Petri nets.
In this section we only recall some notions, notation
and results directly related to the current work. For
more details see Refs. 2, 3, 31, 32.

Grammars

Let Σ be an alphabet. A string over Σ is a sequence
of symbols from the alphabet. The empty string
is denoted by λ which has no symbols. The set
of all strings over the alphabet Σ is denoted by
Σ∗. A subset L of Σ∗ is called a language. If w =
w1w2w3 for some w1, w2, w3 ∈ Σ∗, then w2 is called
a substring of w. The length of a string w is denoted
by |w|, and the number of occurrences of a symbol
a in a string w by |w|a.

A multiset over an alphabet Σ is a mapping π :
Σ→ N. The alphabet Σ is called the basic set of a
multiset π and the elements of Σ is called the basic
elements of a multiset π. A multiset π over Σ =

{a1, a2, . . . an} is denoted by

π= [a1, . . . , a1
︸ ︷︷ ︸

π(a1)

, a2, . . . , a2
︸ ︷︷ ︸

π(a2)

, . . . , an, . . . , an
︸ ︷︷ ︸

π(an)

].

We also ‘abuse’ the set-membership notation by
using it for multisets to write, for example, a ∈
[a, a, a, b] and c /∈ [a, a, a, b]. The set of all mul-
tisets over Σ is denoted by Σ⊕.

A context-free grammar is a quadruple G =
(V,Σ, S, R), where V and Σ are disjoint finite sets
of non-terminal and terminal symbols, respectively,
S ∈ V is the start symbol and a finite set R ⊆ V ×
(V∪Σ)∗ is a set of (production) rules. Usually, a rule
(A, x) is written as A→ x . A rule of the form A→ λ is
called an erasing rule. A string x ∈ (V ∪Σ)∗ directly
derives a string y ∈ (V ∪Σ)∗, written as x ⇒ y , if
and only if there is a rule r = (A,α)∈ R such that x =
x1Ax2 and y = x1αx2. The reflexive and transitive
closure of ⇒ is denoted by ⇒∗. A derivation using
the sequence of rules π = r1r2 · · · rn is denoted by
π
=⇒ or

r1 r2···rn====⇒. The language generated by G is
defined by L(G) = {w ∈ Σ∗ | S⇒∗ w}.

A matrix grammar is a quadruple
G = (V,Σ, S, M), where V , Σ, S are defined as
for a context-free grammar and M is a finite
set of matrices, which are finite strings over a
set of context-free rules (or finite sequences of
context-free rules). The language generated by G is
L(G) = {w ∈ Σ∗ | S

π
=⇒ w,π ∈ M∗}. The families of

languages generated by matrix grammars without
erasing rules and by matrix grammars with erasing
rules are denoted by MAT and MATλ, respectively.

Theorem 1 (Ref. 33)

CF ⊂MAT ⊂ CS, MAT ⊆MATλ ⊂ RE,

where CF, CS and RE denote the families of context-
free, context-sensitive and recursively enumerable lan-
guages, respectively.

Petri nets

A Petri net (PN) is a construct N = (P, T, F,φ) where
P and T are disjoint finite sets of places and transi-
tions, respectively, F ⊆ (P×T )∪(T × P) is the set of
directed arcs, φ : F → N is a weight function.

A Petri net can be represented by a bipartite
directed graph with the node set P∪T where places
are drawn as circles, transitions as boxes and arcs as
arrows. The arrow representing an arc (x , y) ∈ F is
labelled with φ(x , y); if φ(x , y) = 1, then the label
is omitted.
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An ordinary net (ON) is a Petri net N =
(P, T, F,φ) where φ(x , y) = 1 for all (x , y) ∈ F .
We omit φ from the definition of an ordinary net,
written as N = (P, T, F).

A mapping µ : P → N0 is called a marking. For
each place p ∈ P, µ(p) gives the number of tokens
in p. Graphically, tokens are drawn as small solid
dots inside circles. The sets ◦x = {y | (y, x) ∈ F}
and x◦ = {y | (x , y) ∈ F} are called pre- and post-
sets of x ∈ P∪ T , respectively. For X ⊆ P∪ T , define
◦X =
⋃

x∈X
◦x and X ◦ =
⋃

x∈X x◦. For t ∈ T and
p ∈ P, the elements of ◦ t ◦p are called input places
(transitions) and the elements of t◦ p◦ are called
output places (transitions) of t p.

A sequence of places and transitions ρ =
x1 x2 · · · xn is called a path if and only if no place
or transition except x1 and xn appears more than
once, and x i+1 ∈ x◦i for all 1¶ i ¶ n−1.

A transition t ∈ T is enabled by marking µ if and
only if µ(p)¾φ(p, t) for all p ∈◦ t. In this case t can
occur(fire). Its occurrence transforms the marking
µ into the marking µ′ defined for each place p ∈ P
by µ′(p) = µ(p)−φ(p, t)+φ(t, p). We write µ

t
−→µ′

to indicate that the firing of t in µ leads to µ′. A
marking µ is called terminal if in which no transition
is enabled. A finite sequence t1 t2 · · · tk ∈ T ∗, is
called an occurrence sequence enabled at a marking
µ and finished at a marking µ′ if there are markings
µ1,µ2, . . . ,µk−1 such that

µ
t1−→µ1

t2−→ . . .
tk−1−−→µk−1

tk−→µ′.

In short this sequence can be written as µ
t1 t2···tk−−−−→µ′

or µ
ν
−→µ′, where ν = t1 t2 · · · tk. For each 1 ¶ i ¶

k, marking µi is called reachable from marking µ.
R(N ,µ) denotes the set of all reachable markings
from a marking µ.

A marked Petri net is a system N = (P, T, F,φ, ι)
where (P, T, F,φ) is a Petri net, ι is the initial mark-
ing.

A Petri net with final markings is a construct
N = (P, T, F,φ, ι, M) where (P, T, F,φ, ι) is a marked
Petri net and M ⊆R(N , ι) is a set of markings which
are called final markings. An occurrence sequence
ν of transitions is called successful for M if it is
enabled at the initial marking ι and finished at a
final marking τ of M . If M is understood from the
context, we say that ν is a successful occurrence
sequence.

DEFINITIONS AND EXAMPLES

In this section, we define a place-labelled Petri net
controlled grammar, a derivation step, a successful

derivation and the language of a place-labelled Petri
net controlled grammar.

Definition 1 A place-labelled Petri net controlled
grammar (pPN-controlled grammar) is a 7-tuple
G = (V,Σ, R, S, N ,β , M) where (V,Σ, R, S) is
a context-free grammar, N = (P, T, F,φ, ι) is a
(marked) Petri net, β : P → R ∪ {λ} is a place-
labelling function and M is a set of final markings.

Let A ⊆ P. We use the notation β(A) and β−λ(A)
to denote the multisets [β(p) | p ∈ A] and [β(p) |
p ∈ A,β(p) 6= λ], respectively.

Definition 2 x ∈ (V ∪Σ)∗ directly derives y ∈ (V ∪
Σ)∗ with a multiset π = [Ai1 → αi1 , . . . , Aik → αik] ⊆
R⊕, written as x

π
=⇒ y , if and only if

x = x1Ai1 x2Ai2 · · · xkAik xk+1,

y = x1αi1 x2αi2 · · · xkαik xk+1,

where x j ∈ (V ∪Σ)∗, 1¶ j ¶ k+1, and π= β−λ(◦ t)
for some t ∈ T enabled at a marking µ ∈ R(N , ι).

Definition 3 A derivation

S
π1
=⇒ w1

π2
=⇒ w2

π3
=⇒ ·· ·

πn
=⇒ wn = w ∈ Σ∗, (1)

where πi ⊆ R⊕, 1 ¶ i ¶ n, is called successful if and
only if πi = β−λ(◦ t i) for some t i ∈ T , 1¶ i ¶ n, and
t1 t2 · · · tn ∈ T ∗ is a successful occurrence sequence
in N . For short, (1) can be written as S

π1π2···πn=====⇒ w.

Definition 4 The language generated by pPN-
controlled grammar G consists of all strings w ∈ Σ∗
such that there is a successful derivation S

π1π2···πn=====⇒
w in G.

With respect to different labelling strategies
and the definition of final marking sets, we can
define various variants of place-labelled Petri net
controlled grammars. In this work, we define the
following variants.

Definition 5 A pPN-controlled grammar G = (V,Σ,
S, R, N ,β , M) is called free, denoted by f , if a differ-
ent label is associated with each place, and no place
is labelled with the empty string; λ-free, denoted by
−λ, if no place is labelled with the empty string; or
arbitrary, denoted by λ, if no restriction is posed on
the labelling function β .

Definition 6 A pPN-controlled grammar G = (V,Σ,
S, R, N ,β , M) is called r-type if M is the set of all
reachable markings from the initial marking i, M =
R(N , ι), or called t-type if M ⊆ R(N , ι) is a finite
set.
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•
r0

r4

r5

r6

r1

r2

r3

1

Fig. 1 Petri net N1.

We use the notation (x , y)-pPN-controlled
grammar when x ∈ { f ,−λ,λ} shows the type of a
labelling function and y ∈ {r, t} shows the type of a
set of final markings. We denote by pPN(x , y) and
pPNλ(x , y) the families of languages generated by
(x , y)-pPN-controlled grammars without and with
erasing rules, respectively, where x ∈ { f ,−λ,λ}
and y ∈ {r, t}. We also use bracket notation
pPN[λ](x , y), x ∈ { f ,−λ,λ}, y ∈ {r, t} in order to
say that a statement holds, in cases with and without
erasing rules.

Example 1 Let

G1 = ({S, A, B, C}, {a, b, c}, S, R, N1,β , M)

be a pPN-controlled grammar where R consists of
the following productions

r0 : S→ ABC , r1 : A→ aA, r2 : A→ bB,

r3 : AC → cC , r4 : A→ a, r5 : B→ b, r6 : C → c,

Fig. 1 illustrates the Petri net N1, the place-labelling
function β , and M is defined as {(0,0, 0,0, 0,0, 0)}.
Clearly,

L(G1) = {an bncn | n¾ 1} ∈ pPN( f , t).

Example 2 Let G2 be a pPN-controlled grammar
with the rules

r0 : S→ AB, r1 : A→ aA, r2 : B→ aB,

r3 : A→ bA, r4 : B→ bB, r5 : A→ λ, r6 : B→ λ

Fig. 2 illustrates the Petri net N2 and the transition-
labelling function β with respect to G2. It can be
seen that

L(G2) = {ww | w ∈ {a, b}∗} ∈ pPN(λ, t).

•
r0

λ

r1 r2 r3 r4

r5

r6

1

Fig. 2 Petri net N2.

LOWER AND UPPER BOUNDS

The following inclusions immediately follow from
the definitions of place-labelled Petri net controlled
grammars.

Lemma 1 For x ∈ { f ,−λ,λ} and y ∈ {r, t},

pPN(x , y) ⊆ pPNλ(x , y).

Further, we discuss the upper bound for the families
of languages generated by pPN-controlled gram-
mars.

Lemma 2 For y ∈ {r, t},

pPN[λ](−λ, y) ⊆MATλ.

Proof : Let G = (V,Σ, S, R, N ,β , M) be an (−λ, y)-
pPN-controlled grammar (with or without erasing
rules) and N = (P, T, F,φ, ι) where y ∈ {r, t}. Let
P = {p1, p2, . . ., ps} and T∅ = {t ∈ T | ◦ t = ∅}.
Suppose T−T∅ = {t1, t2, . . . , tn}. We define the sets
of new non-terminals as

P̄ = {p̄ | p ∈ P} V̄ = {Ā | A∈ V}

and the homomorphism h : (V ∪Σ)∗→ (V̄ ∪Σ∗) as

h(a) = a, ∀a ∈ Σ h(A) = Ā, ∀A∈ V.

Consider t ∈ T − T∅, and let ◦ t = {pi1 , pi2 , . . . , pik}.
We assume that β(pi j

) = Ai j
→ αi j

∈ R, 1 ¶ j ¶ k.
Let

h(αi1αi2 · · ·αik) = x1B̄1 x2B̄2 · · · x l B̄l x l+1,
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where x i ∈ Σ∗, 1¶ i ¶ l +1 and B̄ j ∈ V̄ , 1¶ j ¶ l.
We associate the following sequences of rules

with each transition t ∈ T − T∅,

δt,λ : p̄i1 → λ, . . . , p̄i1 → λ
︸ ︷︷ ︸

φ(pi1
,t)

, . . . , p̄ik → λ, . . . , p̄ik → λ
︸ ︷︷ ︸

φ(pik
,t)

δt,h : Ai1 → h(αi1), Ai2 → h(αi2), . . . , Aik → h(αik)

δt,B : B̄1→ B1, B̄2→ B2, . . . , B̄l → Bl ,

and define the matrix

mt = (δt,λ,δt,h,δt,B,δt,X ) (2)

with

δt,X : X → p̄|φ(t,p1)|
1 · p̄|φ(t,p2)|

2 · · · p̄|φ(t,ps)|
s · X ,

where X is a new non-terminal. We also add the
starting matrix

m0 =
�

S′→ S ·
∏

p∈P

p̄|ι(p)| · X
�

, (3)

where S′ is the new start symbol. According to types
of the sets of final markings, we consider two cases
of erasing rules.

Case y = r, for each p ∈ P,

mp,λ = (p̄→ λ) mX ,λ = (X → λ). (4)

Case y = t, for each µ ∈ M ,

mµ,λ = (µ(p1), . . . ,µ(ps), X → λ), (5)

where µ(pi) = p̄i → λ, . . . , p̄i → λ for i = 1,2, . . . , s.
We consider the matrix grammar G′ = (V ′,Σ, S′, M),
where V ′ = {S′, X }∪ P̄ ∪ V̄ ∪V and M consists of all
matrices (2) and (3) and matrices (4) for case y = r
or matrix (5) for case y = t. Let

D : S
π1
=⇒ w1

π2
=⇒ w2 · · ·

πd
=⇒ wd = w ∈ Σ∗

be a derivation in G. Then t1 t2 · · · td , where
β(◦ t i) = πi , 1 ¶ i ¶ d, is a successful occurrence
sequence in N . We construct the derivation D′ in the
grammar G′ simulating the derivation D as follows;
we start the derivation D′ by applying the matrix (3)
and obtain

D′ : S′
m0
==⇒ S
∏

p∈P

p̄|ι(p)|X .

Then, for each transition t i in the successful occur-
rence sequence t1 t2 · · · td , we choose the matrix mt i

in D′, 1¶ i ¶ d,

D′ : S′
m0
==⇒ S
∏

p∈P

p̄|ι(p)|X
mt1
==⇒ w1z1

mt2
==⇒ w2z2X · · ·

· · ·
mtd
==⇒ wdzd X = wzd X ,

where zi ∈ P̄∗, 1¶ i ¶ d.
The rules δt i ,h and δt i ,B, 1¶ i ¶ d, simulate the

rules in the multisetπi , whereas the homomorphism
h controls that all rules in δt i ,h are applied only to
wi−1, 2¶ i ¶ d.

By construction, the rules δt i ,λ and δt i ,X simu-
late the numbers of tokens consumed and produced
in the occurrence of transition t i . The number
of occurrences of each p̄ ∈ P̄ in string zi is the
same as the number of tokens in place p ∈ P after
the occurrence of t i . Moreover, the number of
occurrences of p̄ ∈ P̄ in string zd and the number
of tokens in place p ∈ P in a final marking µ ∈ M
are the same.

Further, to erase zd and X , we use the matrices
(4) or (5) depending on y ∈ {r, t}. Thus L(G′) ⊆
L(G). Using the similar arguments in backward
manner, one can show that the inverse inclusion also
holds. 2

With slight modification of the arguments of the
proof of the lemma above, we can also show that

Lemma 3 For y ∈ {r, t},

pPN[λ](λ, y) ⊆MATλ.

Next, we show that every matrix language can
be generated by ( f , t)- and ( f , r)-pPN-controlled
grammars.

Lemma 4 For y ∈ {r, t},

MAT[λ] ⊆ pPN[λ]( f , y).

Proof : Let G = (V,Σ, S, M) be a matrix gram-
mar with M = {m1, m2, . . . , mn}, where mi =
(ri1, ri2, . . . , riki

), 1¶ i ¶ n.
We construct an ( f , t)-pPN-controlled grammar

G′ = (V ∪ {S0},Σ, R∪ {S0 → S}, S0, N ,β , M), where
the Petri net N = (P, T, F,φ, ι), the place-labelling
function β : P→ R∪{S0→ S} and the final marking
set M are defined as follows.

The sets of places, transitions, and arcs;

P = {p0}∪ {pi j | 1¶ i ¶ n, 1¶ j ¶ ki},
T = {t0i | 1¶ i ¶ n}∪ {t i j | 1¶ i ¶ n, 1¶ j ¶ ki},
F = {(p0, t0i), (t0i , pi1), (piki

, t iki
), (t iki

, p0) | 1¶ i ¶ n}
∪ {(pi j , t i j), (t i j , pi, j+1) | 1¶ i ¶ n, 1¶ j ¶ ki −1}.
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The weight function, φ(x , y) = 1 for all (x , y) ∈ F .
The initial marking, ι(p0) = 1 and ι(p) = 0 for all p ∈
P −{p0}. The transition-labelling function, β(p0) =
S0 → S and β(pi j) = ri j , 1 ¶ i ¶ n, 1 ¶ j ¶ ki . The
final marking set, M =R(N , ι).

Remark 1 By definition of the Petri net N , it is not
difficult to see that R(N , ι) is a finite set. Thus the
cases y = r and y = t coincide.

Let

w1

ri1
=⇒ w2

ri2
=⇒ ·· ·

riki
==⇒ wk, (6)

where mi = (ri1, ri2, . . . , riki
) ∈ M , be derivation

steps of a successful derivation S
∗
=⇒ w ∈ Σ∗ in G.

Then

w1

[ri1]
==⇒ w2

[ri2]
==⇒ ·· ·

[riki
]

===⇒ wk,

simulated by (6) and t0i t i1 t i2 · · · t iki
, is a subse-

quence of a successful occurrence sequence ν ∈
R(N , ι). Thus L(G) ⊆ L(G′). The inclusion L(G′) ⊆
L(G) can also be shown by backtracking the argu-
ments above. 2
From the lemmas above, the theorem follows.

Theorem 2 For x ∈ { f ,−λ,λ} and y ∈ {r, t},

MAT ⊆ pPN(x , y) ⊆MATλ, pPNλ(x , y) =MATλ.

THE EFFECT OF LABELLING STRATEGIES

In this section, we study the labelling effect to the
computational power of pPN-controlled grammars.
The following lemma follows immediately from the
definition of the languages determined by labelling
functions.

Lemma 5 For y ∈ {r, t},

pPN[λ]( f , y) ⊆ pPN[λ](−λ, y) ⊆ pPN[λ](λ, y).

Further, we prove that the reverse inclusions also
hold.

Lemma 6 For y ∈ {r, t},

pPN[λ](−λ, y) ⊆ pPN[λ]( f , y).

Proof : Let G = (V,Σ, R, S, N ,β , M) be a (−λ, y)-
pPN-controlled grammar (with or without erasing
rules), where N = (P, T, F,φ, ι).

Let R= {ri : Ai → αi | 1¶ i ¶ n},

P+ = {p ∈ P | (p, t) ∈ F}, P− = {p ∈ P | (p, t) /∈ F}.

We set the following sets of places, transitions and
arcs,

P̄ = {cp,t , c′p,t | (p, t) ∈ F},

T̄ = {dp,t , d ′p,t | (p, t) ∈ F},

F̄ = {(p, dp,t), (dp,t , cp,t)(cp,t , d ′p,t), (d
′
p,t , c′p,t), (c

′
p,t , t)

| (p, t) ∈ F}.

We also introduce the new non-terminals and pro-
ductions for each pair (p, t) ∈ F ,

V̄ = {Ap, Ap,t | (p, t) ∈ F},
R̄= {A→ Ap, Ap → Ap,t , Ap,t → α

| (p, t) ∈ F, β(p) = A→ α ∈ R Ap,t ∈ V̄}.

We define the weight function φ̄ : F̄ → N as

φ̄(p, dp,t) = φ̄(dp,t , cp,t) = φ̄(cp,t , d ′p,t)

= φ̄(d ′p,t , c′p,t) = φ̄(c
′
p,t , t) = φ(p, t),

where (p, t) ∈ F .
Using the sets and function defined above,

we construct an ( f , y)-place-labelled Petri net con-
trolled grammar G′ = (V ′,Σ, R′, S, N ′,β ′, M ′) with

V ′ = V ∪ V̄ ,

R′ = (R−{A→ α ∈ R | β(p) = A→ α, (p, t) ∈ F})∪ R̄.

The set components of the Petri net N ′ =
(P ′, T ′, F ′,φ′, ι′) are defined as follows.

The sets of places, transitions, and arcs,

P ′ = P ∪ P̄, T ′ = T ∪ T̄ , F ′ = (F −{(p, t)} ∈ F)∪ F̄ .

The weight function φ′ : F ′→ N,

φ′(x , y) =

¨

φ(x , y), (x , y) ∈ F −{(p, t) ∈ F},
φ̄(x , y), (x , y) ∈ F̄ .

The initial marking ι′ : P ′→ N0,

ι′(p) =

¨

ι(p), p ∈ P,
0, p ∈ P̄.

The place-labelling function β ′ : P ′→ R′,

β ′(p) =

¨

β(p), p ∈ P−,

A→ Ap, p ∈ P+,

and for each cp,t and c′p,t in P̄,

β ′(cp,t) = Ap → Ap,t , β
′(c′p,t) = Ap,t → α,
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where β(p) = A→ α ∈ R. If y = r, then the final
marking set M ′ is defined as M ′ =R(N ′, ι′), and if
y = t, then for every µ ∈ M , we set νµ ∈ M ′, where

νµ(p) =

¨

µ(p), p ∈ P,
0, p ∈ P̄.

Let us now consider a successful derivation in G,

S
E1
=⇒ w1

E2
=⇒ w2

E3
=⇒ ·· ·

En
=⇒ wn = w ∈ Σ∗, (7)

where Ei = [ri1 , ri2 , . . ., riki
]⊆ R⊕, ri j

: Ai j
→ αi j

, with
β(pi j

) = ri j
, pi j
∈ P, 1¶ i ¶ n, 1¶ j ¶ ki . Let

P ′i = {pi j
| 1¶ j ¶ ki} ⊆ ◦ t i

for some t i ∈ T , 1 ¶ i ¶ n (t i and t j , 1 ¶ i 6= j ¶ n
are not necessarily distinct). Hence, by definition,

ι
t1 t2···tn−−−−−→µ, µ ∈ M , (8)

is the successful occurrence of transitions in N .
Then, by definition of the set R′ of the rules, each
derivation step wi−1

Ei=⇒ wi , 1 ¶ i ¶ n, where w0 =
S, in (7) can be simulated with the following se-
quence of the derivation steps in the grammar G′,

wi−1

(A→Ai1
)·(A→Ai2

)···(A→Aiki
)

===============⇒ w′i−1

(Ai1
→Ai1,ti

)·(Ai2
→Ai2,ti

)···(Aiki
→Aiki

,ti
)

=====================⇒ w′′i−1

(Ai1,ti
→αi1

)·(Ai2,ti
→αi2

)···(Aiki
,ti
→αiki

)

=====================⇒ wi . (9)

Correspondingly, by construction of the Petri net N ′,
each transition t i , 1¶ i ¶ n, in (8) is extended with
the occurrence sequence

di1,t i
di2,t i
· · · diki

,t i
· d ′i1,t i

d ′i2,t i
· · · d ′iki

,t i
t i , (10)

where

◦di j ,t i
= pi j

, d◦i j ,t i
=◦ d ′i j ,t i

= {ci j ,t i
}, d ′◦i j ,t i

= {c′i j ,t i
} ⊆ t i ,

for all 1¶ i ¶ n, 1¶ j ¶ ki . Thus L(G) ⊆ L(G′).
Consider some successful derivation

S⇒∗ w, w ∈ Σ∗ (11)

in the grammar G′ with

ι′
··· t ···
−−−−→µ, µ ∈ M ′, (12)

where t ∈ T . By construction of N ′, in order to
enable the transition t, the transition d ′p,t ∈

◦c′p,t ,

for each c′p,t ∈
◦ t and the transition dp,t ∈ ◦cp,t ,

for each cp,t ∈ ◦(◦ t) must be fired. Thus if ◦ t =
{c′p1,t , c′p2,t , . . . , c′pk ,t}, then (12) will contain all the
transitions

dp1,t , dp2,t , . . . , dpk ,t , d ′p1,t , d ′p2,t , . . . , d ′pk ,t . (13)

Accordingly, (11) contains the rules

Ai → Api
, Api
→ Api ,t , Api ,t → αi , (14)

where β(pi) = Ai → αi , 1 ¶ i ¶ k. Without loss of
generality, we can rearrange the order of the occur-
rence of the transitions in (13) and correspondingly,
the order of the application of the rules in (14), and
as the result, we construct the occurrence steps and
the derivation steps similar to (10) and (9), respec-
tively. Thus the transitions (13) can be replaced
with t in the grammar G and the rules (14) can be
replaced with the rules Ai → αi , 1 ¶ i ¶ k, which
results in L(G′) ⊆ L(G). 2

Lemma 7 For y ∈ {r, t},

pPN[λ](λ, y) ⊆ pPNλ(−λ, y).

Proof : Let G = (V,Σ, R, S, N ,β , M) be a (λ, y)-pPN-
controlled grammar (with or without erasing rules).
Let

Pλ = {p | β(p) = λ}, PS = {p | β(p) = S→ α ∈ R}.

We define (−λ, y)-pPN-controlled grammar

G′ = (V ∪{S0, X }, Σ, S0,

R∪{S0→ SX , X → X , X → λ}, N ′, β ′, M ′),

where N ′ = (P∪{p0, pλ}, T ∪{t0, tλ}, F ′,φ′, ι′) with
the set of arcs

F ′ = F ∪{(p0, t0), (t0, pλ), (pλ, tλ)}
∪ {(t0, p) | β(p) = S→ α ∈ R},

the weight function

φ′(x , y) =







φ(x , y), (x , y) ∈ F,

1, (x , y) ∈ {(p0, t0), (t0, pλ), (pλ, tλ)},
ι(p), (x , y) = (t0, p), p ∈ PS ,

and the initial marking

ι′(x , y) =







1, p = p0,

0, p ∈ PS ,

ι(p), p ∈ P − PS .
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CF

MAT

pPN(f, y) = pPN(−λ, y)

pPN(λ, y)

pPNλ(f, y) = pPNλ(−λ, y) = pPNλ(λ, y) = MATλCS

RE

Fig. 3 The hierarchy of the family of languages generated
by place-labelled Petri net controlled grammars.

The place-labelling function β is modified as

β ′(p) =







β(p), p /∈ Pλ,

X → X , p ∈ Pλ,

X → λ, p = pλ.

Lastly, when y = t, for each final marking µ ∈ M ,
we set νµ ∈ M ′ as

νµ(p) =

¨

µ(p), P,
0, p ∈ {p0, pλ}.

Further, it is not difficult to see that L(G) =
L(G′). 2

The following theorem summarizes the results
obtained above.

Theorem 3

pPN( f , y) = pPN(−λ, y)
⊆ pPN(λ, y)

⊆ pPNλ( f , y)

= pPNλ(−λ, y)

= pPNλ(λ, y).

By combining the results in Theorems 1, 2 and 3, we
obtain the hierarchy of the family of languages gen-
erated by place-labelled Petri net controlled gram-
mars.

Theorem 4 The relations in Fig. 3 hold, where the
lines (arrows) denote inclusions (proper inclusions) of
the lower families into the upper families.

STRUCTURAL PROPERTIES

In this section, we investigate structural properties
of place-labelled Petri net controlled grammars.

A single start place

Definition 7 Let G = (V,Σ, R, S, N ,β , M) with N =
(P, T, F,φ, ι) be an (x , y)-pPN-controlled grammar,
where x ∈ { f ,−λ,λ} and y ∈ {r, t}. We say that N
has a single start place p0 if ι(p0) = 1 and ι(p) = 0
for all p ∈ P −{p0}.

Lemma 8 For every (x , y)-place-labelled PN con-
trolled grammar G = (V,Σ, R, S, N ,β , M) with a Petri
net N = (P, T, F,φ, ι), where x ∈ { f ,−λ,λ} and y ∈
{r, t}, there exists an equivalent (x , y)-pPN-controlled
grammar G′ = (V ′,Σ, R′, S′, N ′,β ′, M ′) such that the
Petri net N ′ = (P ′, T ′, F ′,φ′, ι′) has a single start
place.

Proof : Let G = (V,Σ, S, R, B,β , M) be a (x , y)-pPN-
controlled grammar (with or without erasing rules).
We introduce a new place p0, a new transition t0,
and new arcs

F̄ = {(p0, t0)}∪ {(t0, p) | p ∈ P, ι(p)> 0},

and define the (x , y)-pPN-controlled grammar

G′ = (V ∪{S0},Σ, S0, R∪{S0→ S}, N ′,β ′, M ′)

with the Petri net

N ′ = (P ∪{p0}, T ∪{t0}, F ∪ F̄ ,φ′, ι),

where the weight function φ′ : F ∪ F̄ → N,

φ′(x , y) =

¨

φ(x , y), all (x , y) ∈ F,

ι(p), all (x , y) ∈ F̄ ,

and the initial marking ι′ : P ∪{p0} → {0,1, 2, . . .},

ι′(p) =

¨

1, p = p0,

0, p ∈ P.

Further, the place-labelling function β ′ : P ∪{p0} →
R∪{S0→ S} is defined as

β ′(p) =

¨

S0→ S, p = p0,

β(p), p ∈ P,

and for every µ∈M , we set νµ ∈M ′ with νµ(p0) = 0
and νµ(p) =µ(p) for all p ∈ P. Then it is not difficult
to see that L(G) = L(G′). 2
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Removal of dead places

Definition 8 Let N = (P, T, F,φ, ι) be a marked Petri
net. A place p ∈ P is said to be dead if p◦ =∅.

Lemma 9 For an (x , y)-pPN-controlled grammar
G = (V,Σ, S, R, N ,β , M), x ∈ {λ,−λ, f } and y ∈
{r, t}, there exists an equivalent (x , y)-pPN-controlled
grammar G′ = (V,Σ, S, R, N ′,β ′, M ′), where N ′ is
without dead places.

Proof : Let G = (V,Σ, R, S, N ,β , M) be an (x , y)-
place-labelled Petri net controlled grammar with
N = (P, T, F,φ, ι), where x ∈ { f ,λ,−λ} and y ∈
{r, t}. Let

P∅ = {p ∈ P | p◦ =∅}, F∅ = {(t, p) ∈ F | p◦ =∅}.

We construct an (x , y)-pPN-controlled grammar
G′ = (V,Σ, S, R, N ′,β ′, M ′), where the Petri net N ′

is obtained from the Petri net N by removing its
dead places and the incoming arcs to these places,
N ′ = (P − P∅, T, F − F∅,φ′, ι′), where

φ′(x , y) = φ(x , y)for all (x , y) ∈ F − F∅

and
ι′(p) = ι(p)for all p ∈ P − P∅.

We define the labelling function β ′ : (P−P∅)→ R by
setting

β ′(p) = β(p)for all p ∈ P − P∅.

For every µ ∈ M , we set νµ ∈ M ′ as

νµ(p) = µ(p)for all p ∈ P − P∅.

Let
ι

t1 t2···tn−−−−−→µ, µ ∈ M (15)

be a successful occurrence sequence of transitions
in N . Then, for any place p ∈ ◦ t i , 1 ¶ i ¶ n, we
have p /∈ P∅. Thus (15) is also successful occurrence
sequence in N ′. 2

A reduction to ordinary nets

Here, we show that for each pPN-controlled gram-
mar we can construct an equivalent place-labelled
ordinary net (pON) controlled grammar.

Lemma 10 Let G = (V,Σ, R, S, N ,β , M) with N =
(P, T, F,φ, ι) be an (x , y)-pPN-controlled grammar,
where x ∈ { f ,−λ,λ} and y ∈ {r, t}. Then there
exists an equivalent (λ, y)-place-labelled ordinary net
controlled grammar G′ = (V ′,Σ, R′, S′, N ′,β ′, M ′).

Proof : Let G = (V,Σ, S, R, N ,β , M) with N =
(P, T, F,φ, ι) be an (x , y)-pPN-controlled gram-
mar (with or without erasing rules), where x ∈
{ f ,−λ,λ} and y ∈ {r, t}. We set

P+ =
⋃

(p,t)∈F

{bi
pt | 1¶ i ¶ φ(p, t)},

P− =
⋃

(t,p)∈F

{bi
t p | 1¶ i ¶ φ(t, p)},

T+ =
⋃

(p,t)∈F

{d i
pt | 1¶ i ¶ φ(p, t)},

T− =
⋃

(t,p)∈F

{d i
t p | 1¶ i ¶ φ(t, p)},

and

F+ =
⋃

(p,t)∈F

{(p, d i
pt), (d

i
pt , bi

pt), (b
i
pt , t) | 1¶ i ¶ φ(p, t)},

F− =
⋃

(t,p)∈F

{(t, bi
t p), (b

i
t p, d i

t p), (d
i
t p, p) | 1¶ i ¶ φ(t, p)}.

We define the (λ, y)-pPN-controlled grammar
G′ = (V,Σ, S, R, N ′,β ′, M ′) with the Petri net N =
(P ′, T ′, F ′,φ′, ι′), where the set of places, transi-
tions, and arcs are constructed as

P ′ = P ∪ P+ ∪ P−, T ′ = T ∪ T+ ∪ T−, F ′ = F+ ∪ F−,

the weight functionφ′ : F ′→N is set asφ′(x , y) = 1
for all (x , y) ∈ F ′, and the initial marking is defined
as

ι′(p) =

¨

ι(p), p ∈ P,
0, otherwise.

Further, we set the place-labelling function β ′ :
P ′ → R as β ′(b1

pt) = β(p) for each (p, t) ∈ F and

β ′(p) = λ if p ∈ P ∪ P− ∪
�

P+−{b1
pt | (p, t) ∈ F}
�

,
and define the final markings νµ ∈ M ′ when y = t
as

νµ(p) =

¨

µ(p), p ∈ P,
0, otherwise.

Further, one can easily show that L(G) =
L(G′). 2

CONCLUSIONS

In this paper, we defined place-labelled Petri net
(pPN) controlled grammars, and investigated their
computational power and some structural proper-
ties. We showed the followings. pPN-controlled
grammars have at least the computational power of
matrix grammars without erasing rules and at most
the computational power of matrix grammars with
erasing rules. The labelling strategies do not effect
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to the generative capacities of pPN-controlled gram-
mars with erasing rules. Although free- and lambda-
free-pPN-controlled grammars without erasing rules
have the same computational power, the ‘lambda’
case remains open. The control Petri nets can be
reduced to ‘canonical forms’ without effecting to the
generative capacity of pPN-controlled grammars.

The strictness of the inclusions in Theorem 4
is an interesting topic for future research, since it
may lead to the solution of a classical open problem,
whether MAT ⊂MATλ or not.
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