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ABSTRACT: This paper investigates the sharp edge preservation of B-spline surfaces. A K-nearest neighbour search
incorporating an averaging method is proposed to detect a sharp edge from a set of data points. In this study, the
unknown B-spline control points are determined, followed by the fitting of the sample of data points using a bicubic
B-spline surface. The sample of data points within the sharp edge area are initially marked by the bootstrap method.
Next, a particular set of control points is repeated, while the set of data points is projected onto the constructed bicubic
B-spline surface for the purpose of preserving the sharp edge. The present study is also determines the effect of noise
with different noise levels in preserving the sharp edge. The experimental results demonstrate that the sharp edge in
sample data points is well-preserved using the proposed method which is slightly influenced by the presence of noise.
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INTRODUCTION

Nowadays, the advancement of scanning technolo-
gies allows for better accuracy to be achieved by
providing a dense set of data points during the
scanning process from the real life model. However,
some of the critical parts of the model are unable
to be recovered due to the low number of control
points during the surface reconstruction process.
Moreover, the critical parts tend to occur at the
sharp edge, thus complicating the recovering pro-
cess. The sharp edge can be defined as an edge or
line between two surfaces or a corner which meets
the surfaces. In relation to this, it will be very
useful to identify and detect the particular point
sets, that belong to the sharp edge for the purpose
of recovering the sharp edges.

There are two techniques that can be applied to
extract the sharp edges, namely, polygonal meshes
and point-based method. However, the lack of
information of normal and connectivity of the point
set models has caused the feature detection on point
sets to be difficult compared to the detection on
meshes. However, it is the clear that the aim of this
study is to work directly on the sample of point set
instead of the polygonal meshes because the scan-
ning devices are able to generate a set of data points
that resemble the original surface instead of mesh.

Hence it is necessary to investigate the method used
for feature detection and its preservation.

The detection of sharp features on point sets is
not only crucial to fulfil the quality measurement,
but it is also equally important for reverse engi-
neering with mesh generation, surface reconstruc-
tion, simplification, or segmentation that requires
the sharp edges to be preserved1. There are also
moving least square (MLS) surface reconstruction
methods that seek for sharp edge reconstruction
that is commonly used for noisy data points set.
However, additional steps are required to be taken
because smooth surfaces are generally produced.
Meanwhile, other related works on edge detection
can be seen in Ref. 1. The proposed Gauss map
clustering is believed to be able to overcome the
shortcoming of MLS method. The normal and
connectivity information are not provided, but the
detection of sharp edges is fully automatic and the
algorithm works directly to mark the sharp features
of the point cloud.

The statistical method which is known as the
variance-based feature detection was used2. The
variance values are obtained from the normal esti-
mation conducted on a model, which is then calcu-
lated based on the principal component analysis and
further resampling is performed using the bootstrap
method. The variance values will be able to provide
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an indication on the surface with feature or sharp
edges. It is worth to note that a high variance value
is caused either by the noise or the presence of a
sharp feature. Hence a high variance value indicates
area with sharp edges by assuming that the noise
level is uniform. However, the limitation for this
method is described based on the noise level, where
a high noise level will cause the variance value for
the non-feature area to be high.

In this paper, an algorithm that utilizes the K-
nearest neighbour search by incorporating the aver-
aging method is proposed in order to fit the sample
of data points using the bicubic B-spline surface.
In relation to this, the proposed algorithm tends
to focus on the sharp edge preservation instead of
the surface approximation or interpolation. The
work conducted for the purpose of detecting the
sharp edge using variance-based feature detection
method is further extended and integrated in this
study2. The variance values were determined from
the bootstrap method, which is expected to assist in
marking the part where the feature takes place by
assuming that the sample of data points is uniformly
distributed.

A number of aspects will be briefly introduced
which are the mathematical background of B-spline
surface, K-nearest neighbour search method, and
the continuity. The method applied to fit the sample
data points is the proposed algorithm, while the
process of preserving shape edge will be described
in the section of materials and methods. Meanwhile
the graphical results of the sharp edge preserva-
tion via bicubic B-spline surface performed using
the proposed algorithm is presented in the results
section. Moreover, the effect of noise with different
noise levels towards the sharp edge preservation
is also shown graphically. Next, the sharp edge
preservation and several other issues in this study
will be reviewed. On top of that, the effect of noise
on the surface sharp edge preservation will also be
further discussed, and finally, a conclusion will be
provided at the end of this paper.

MATERIALS AND METHODS

In this paper, a set of sample data points is taken
from the point cloud of cube together with their
respective variance values that act as an input.
Meanwhile, a tensor product of bicubic B-spline sur-
faces with the preserved sharp edge is produced as
an output. In the context of this study, an algorithm
with the combination K-nearest neighbour search
and averaging method is proposed to fit a set of
3D data points using B-spline surface. The main

objective of this study is to recover and preserve
the sharp edge of the bicubic B-spline surface. In
relation to this, sharp edge can be defined as an edge
or line between two surfaces or a corner, provided
that the surfaces meet together. Furthermore, some
of the related mathematical background will be
provided in the following sections.

B-spline surface

The rectangular B-spline patch surface f (u, v) is
constructed by applying tensor product technique
to the B-spline curve, which is described as a linear
combination of B-spline basis functions in two topo-
logical parameter3 u and v. Furthermore, B-spline
surface is defined by a topological rectangular set of
control points Pi, j for 0 ¶ i ¶ m, 0 ¶ j ¶ n as well
as the two knot vectors U = {u0, u1, u2, . . . , um+k}
and V = {v0, v1, v2, . . . , vn+l}, whereby the B-spline
surface patch is given by

f (u, v) =
m
∑

i=0

n
∑

j=0

Pi, jN
k
i (u)N

l
j (v), (1)

where N k
i (u) and N l

j (v) serve as the B-spline basis
functions of orders k (degree k − 1) and l (degree
l − 1), respectively. The parameters u and v are
described as the global parameters. In this study, B-
spline surface of degree 3 (k = l = 4) is used. This
surface is called bicubic B-spline surface.

K -nearest neighbours algorithm

The K-nearest neighbours (KNN) algorithm is one
of the simplest machine learning algorithms. In this
case, the K is a positive integer. This particular
algorithm specifically seeks for K points that are
relatively close to one point considered from a set
of points in m-dimensional space. The metric used
in measuring the closeness known as the Euclidean
distance, in which the distance between two points
X = (x1, x2, . . . , xm) and Y = (y1, y2, . . . , ym) is4

d(X , Y ) =

√

√

√

m
∑

i=1

(x i − yi)2. (2)

K is a user-defined value, thus it has to be chosen
carefully. Moreover, the noise will be modelled if
the K value is too small, whereas many points from
other classes may be included by the neighbours in
the case of a large K . This algorithm is very simple
with no training involved, but it is costly because it
requires the same searching procedure which to be
repeated for every single point in a point set.
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Bootstrap method

The bootstrap method is a statistical method that
is conducted based on the repetition of random
resampling of the data as well as the average of the
results obtained from each sample. The reuse of
the data is the result of repetitive resampling which
is considered helpful when the available data are
sparse. The following descriptions are related to the
bootstrap method5.

Assume that a set of sample data is comprised
of of N data points or training points, whereby V =
{v1, v2, . . . , vN}. In this case, each element in set V
which is labelled as vi is in the form of 3D coordi-
nates, represented as vi = (x i , yi , zi). The bootstrap
set is produced through a random sampling of the N
elements from V with replacement. Meanwhile, the
expected number of distinct elements in bootstrap
set V ∗b is supposed to be lower than V based on the
random resampling performed with replacement.
The sampling procedure is repeated B times in order
to produce B independent bootstrap sets, V ∗b where
b = 1, 2,3, . . . , B.

Suppose that S(V ) is represented by any quan-
tity computed from the data V ; hence, the bootstrap
samples, V ∗b can be used to estimate any aspect of
the distribution of S(V ). For instance, the mean can
be estimated based on the bootstrap mean as

S̄(V ) =
1
B

B
∑

b=1

S(V ∗b), (3)

while the variance can be estimated by the bootstrap
variance as

Ŝ(V ) =
1

B−1

B
∑

b=1

(S(V ∗b)− S̄(V ))2. (4)

Next, consider a set of data points with size N ,
represented as D = {d1, d2, . . . , dN}. The K-nearest
neighbourhood of di ∈ D for i = 1, 2, . . . , N is de-
fined as Ni = {p1, p2, . . . , pK}, where p j ∈ D for j =
1,2, . . . , K . The bootstrap variance for di , denoted
as Ŝ(Ni), can be determined using (4).

Continuity

The concern of this subsection revolves around the
continuity that occurs at the joint of two neigh-
bouring curve segments. Hence it is extremely
important to know how the individual segments can
be connected. There are two types of continuity to
be considered, namely, parametric continuity and
geometric continuity6.

Parametric continuity, Cn, is known as nth-order
parametric continuity, where n is usually repre-
sented by 0, 1, and 2. The algebra is used to describe
the smoothness of the parameters’ value along the
curve.

Geometric continuity, Gn, is known as nth-order
geometric continuity, where n is normally repre-
sented by 0, 1, and 2. Geometric continuity is
considered as a less restrictive than the parametric
continuity. Furthermore, the curve is expected to
have C0 continuity which also implies G0 continuity
if the two consecutive segments meet at a point. The
curve may have G1 continuity if the directions of the
tangent vectors of the two segments are similar at
the join point. In general, a curve has Gn continuity
at a join point, provided that every pair of the first
n derivatives of the two segments are in the same
direction at the join point. The G0, G1, and G2

continuity are also referred to the point, tangent,
and curvature continuity, respectively.

Moreover, the curve is said to have Cn if the
same derivatives also have identical magnitudes at
the join point. A curve that has Cn continuity at a
join point implies Gn continuity, considering that Cn

is more restrictive than Gn, but the inverse will not
necessarily be true. Finally, a curve with continuous
tangent and curvature vectors is said to have G2

continuity.
In general, B-spline surface in (1) with multi-

plicity α will have C (k−α−1) and C (l−α−1) continuities
in the direction of u and v, respectively. Multiplic-
ity is the number of knots or control points being
repeated consecutively7, 8. When a control point
is repeated, that is the multiplicity increases, the
resulting surface moves closer to that point7. For the
case of bicubic B-spline surface, the surface is forced
to interpolate that control point resulting a surface
with C0 continuity if the control point is given a
multiplicity of 37.

Preserving the sharp edge on surface

The previous work on the variance-based method
conducted for the purpose of detecting the sharp
edge from the set of points is extended with the fo-
cus of recovering the sharp edge during the surface
reconstruction. In this section, the variance values
are obtained by determining it from the bootstrap
method performed earlier. These variance values
are helpful in marking the part where the sharp edge
occurs, with the assumption that the sample of data
points is uniformly distributed. A particular row or
column of control points is repeated to achieve the
sharp edge preservation. Hence a particular row
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of control points will be repeated 3 times for the
bicubic B-spline surface. The following example is
provided to enhance the understanding.

Example 1 Given a set of control points

{{r11, r12, r13, r14}, {r21, r22, r23, r24},
{r31, r32, r33, r34}, {r41, r42, r43, r44},

{r51, r52, r53, r54}}

where ri j ≡ (x i j , yi j , zi j), we assume that the third
row control points are {r31, r32, r33, r34}, and sup-
pose that they are detected as the part of sharp edge.
Hence the particular row is required to be repeated
three times in order to preserve the sharp edge for
a bicubic B-spline surface. The result of the process
is

{{r11, r12, r13, r14}, {r21, r22, r23, r24},
{r31, r32, r33, r34}, {r31, r32, r33, r34},
{r31, r32, r33, r34}, {r41, r42, r43, r44},

{r51, r52, r53, r54}}.

This means that the level of continuity at the
repeated part is decreased from C2 to C0, which
implies G2 to G0. The proposed algorithm is as
follows.

Algorithm 1 Sharp edge preservation on bicubic
B-spline surface. Input: sample data points P =
{(xc, yc, zc)}. Output: Bicubic B-spline surface with
sharp edge.
Step 1: Obtain the variance from the bootstrap

method for each sample data points using (4).
Step 2: Determine the positive standardized vari-

ance values, denoted as wi .
Step 3: Use the rotation matrix M to reorient the

data points9.
Step 4: Set coordinates pz = 0 for the initial set of

control points, φi j = (px , py , pz).
Step 5: Update the pz value by taking the value

for the sum of product of z-coordinate of the
2-nearest data points, zi , with its positive re-
spective standardized variance values, wi , and
divided by its respective sum of positive stan-
dardized variance values, wi , which can be for-
mulated as
∑2

i=1 ziwi/
∑2

i=1 wi . This iterative
process is repeated three times.

Step 6: Reorient the sample data points as well as
the updated set of control points to its original
position through the inverse of rotation matrix,
M−1.

Step 7: Calculate the average value of the standard-
ized variances of each control points, v with
respect to the 4-nearest data points. If v > e,
where e is a user-defined (in this case is 0.20),
then mark the particular control point as 1 to
identify it as a sharp edge, while 0 as the non-
sharp edge.

Step 8: Transpose the set of control points if it is in
the form of vertical sharp edge.

Step 9: Calculate the sum of the marking values for
a row of control points, S. If S > g,where g is a
user-defined (in this case is 4), then repeat the
row of control points for three times.

Step 10: Plot the bicubic B-spline surface patch
based on the obtained control points.

Step 11: Project the sample data points P =
{(xc, yc, zc)} onto the constructed surface.

According to Algorithm 1, wi in Step 5 serves as
weight for the zi in the formula. The variance values
obtained from the bootstrap method is necessary
in order to standardize and project the value to
be positive before the variance value is used. The
standardization is carried out as a result of some
variance values being equal to zero. The variance
values will have a negative or positive value after the
standardizing process. Meanwhile, the mean and
the standard deviation for the standardized variance
values will be 0 and 1, respectively. Next, all the
standardized variance values are projected to the
positive values for the purpose of preventing the
effect of negative standardized variance values on
the surface fitting. The iterative process in Step 5 is
repeated for three times to ensure that the value of
pz will be stable eventually.

It is well aware that the small value of K is cho-
sen in performing the K-nearest neighbour search
method in Step 5 and 7 considering that the distance
within the points is near to each other. In Step 9,
the user-defined value is 4 due to the presence of 6
control points in a row for this study. However, the
projection procedure in Step 11 is an optional step.
The smoothing effect can be achieved after finding
the z-coordinate on the bicubic B-spline surface with
respect to the xc and yc.

Effects of noisy data on sharp edge preservation

In this subsection, the effect of noisy data on the
sharp edge preservation will be analysed. In this
context, the noise is defined as the variation in
a set of data points. The presence of noise does
not only result in the bad fitting of the surface,
but may also smooth up certain parts of the sharp
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edge. Moreover, the accuracy of the 3D model will
be reduced during the surface reconstruction due
to the set of data points being contaminated by
noise. Nevertheless, it is not the exactly the case
when many of the surface reconstruction procedures
tend to assume that the distribution of the noise is
Gaussian or normal distribution10.

A sample of data points assumed to be noise-
free is collected to carry out this experiment. Next,
Algorithm 1 is applied in the experiment, where 13
noisy data points are randomly added in positive
and negative vertical direction for the noise-free
data points. The d-noise level implies a simulated
noise which is added through normal distribution
with the variance of hd, where the h is referred
as the average distance between the two nearest
points from a set of points. The noise levels d to be
considered include 0.16, 0.32, 0.48, and 0.64. The
h value which serves as the average distance of two
nearest points of this study is 0.03125. Hence the
respective noise values, hd, are 0.005, 0.010, 0.015,
and 0.020. Finally, the effect of noisy data is visually
inspected by comparing the noise-free sample with
the noise-added sample.

RESULTS AND DISCUSSION

An easy method that utilizes the K-nearest neigh-
bour search and incorporates the averaging method
is proposed to determine the set of control points.
The main purpose of this paper is to focus on sharp
edge preservation, thus the B-spline surface fitting
is excluded in this study. Next, the number of the
control points also needs to be considered because it
will have an effect on the sharp edges of the B-spline
surface. In this study, the dimension of the control
points net is set specifically to 6×6 as a result of the
distribution of the data points.

The model of this study is tested with an area
from a cube point set model containing 12 sharp
edges. A sample region with a sharp edge consisting
51 data points is chosen in order to test the per-
formance of the algorithm on the data points. The
results obtained from Algorithm 1 will be presented
in this section. It is crucial to note that the sample
data points are denoted as green dots, whereas the
control points are denoted as red dots. The sample
data point is shown in Fig. 1.

The bicubic B-spline surfaces in Fig. 2a,b have
C2 continuity. The reorientation is conducted to
facilitate the determination of a set of control points
(Fig. 2). The effect of noisy data on the sample
data points assumed to be noise-free are observed.
Meanwhile, the noise-free surface can be seen in

Fig. 1 A sample of 51 data points from the cube point set
model.

Fig. 2 The process of sharp edge preservation according
to Algorithm 1. The sample of data points is (a) reoriented
and an initial bicubic B-spline surface is constructed,
(b) reoriented to its original position. The final bicubic B-
spline surface with sharp edge (c) before projection and
(d) after projection.

Fig. 2. The 13 noise data is randomly added to
the sample of noise-free data points in positive
and negative vertical direction. Next, the effect of
noisy data on sharp edge preservation is visually
inspected. The noise level of 0.16, 0.32, 0.48, and
0.64 are chosen for experimental purpose. The
observations for the bicubic B-spline surface with
sharp edge (after projection) are shown in Fig. 3.

According to Fig. 3, a slight bump at the sharp
edge part is observed when the noise level is in-
creased from 0.16–0.64, but it is still considered
well preserved. However, the sharp edge part is un-
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Fig. 3 The effect of noise towards sharp edge preservation
on the final bicubic B-spline surface with sharp edge
with different noise levels; (a) 0.16, (b) 0.32, (c) 0.48,
(d) 0.64.

Fig. 4 The bicubic B-spline surface where the sharp edge
is not in the direction of x , y , or z-axis.

able to be recovered in the higher noise level. Apart
from that, the reorientation of the data points along
the correct main axis is necessary to be performed
if the sharp edge does not occur in the direction of
x , y , or z-axis. Algorithm 1 can be applied after the
reorientation is performed. The surface then needs
to be reoriented to its original position following the
orientation. Nevertheless, the sharp edge cannot
be recovered without a proper reorientation using
this approach; hence it will remain smooth after the
surface reconstruction. Fig. 4 is an example of the
sharp edge region which is not placed along any of
the three main axes, but the sharp edge turns out

to be well preserved after the reorientation. In this
case, the orientation is performed manually.

In short, the certain row of control points is
repeated k − 1 times to preserve the sharp edge,
thus showing that the sharp edge part has C0 and
G0 continuity. The process of repeating the k − 1
knots is an alternative method that is applied to
preserve the sharp edge, even though the sharp
edge is known to have both C0 and G0 continuity.
However, the process of detecting which knots to be
repeated has become difficult. Another issue that
needs to be taken into account is the fitting problem,
in which it can only be well-fitted if the data points
are sufficient; otherwise it will cause the corners of
the surface patch to be curvy.

CONCLUSIONS

This paper describes and discusses the sharp edge
preservation in bicubic B-spline surface. In relation
to this, the sharp edge preservation in bicubic B-
spline surface was also observed. According to
the result obtained from the sharp edge detection
method known as the variance-based feature detec-
tion method, it was discovered that each control
point managed to be marked by applying the K-
nearest neighbour search method. The particular
set of control points was repeated for three times
to ensure the sharp edge is achieved. The result
showed that the proposed algorithm is capable in
preserving the sharp edge. Moreover, the effect of
noisy data on sharp edge preservation will slightly
influence the sharp edge area and the smoothness
of the bicubic B-spline surface. In regard to this,
there is a possibility that the sharp edge will not
be able to recover if a high level of noisy data is
present, which will eventually smooth up the sharp
edge area. Hence it is safe to conclude that the
denoising process is important to be carried out as
the pre-process of the surface reconstruction.
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