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ABSTRACT: For a graph, the general zeroth-order Randić index R0
α

is defined as the sum of the αth power of the vertex
degrees (α 6= 0, α 6= 1). Let Hn be the class of all maximal outerplanar graphs on n vertices, and Tn,k be the class of
trees with n vertices of which k vertices have the maximum degree. We first present a lower bound (respectively, upper
bound) for the general zeroth-order Randić index of graphs in Hn (respectively, Tn,k) when α ∈ (−∞, 0)∪ (1,+∞)
(respectively, α ∈ (2,+∞)), and characterize the extremal graphs. Then we determine graphs of the class Tn,k with
maximal and minimal general zeroth-order Randić index when α ∈ (−∞, 0)∪ (1,+∞), respectively.
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INTRODUCTION

All graphs considered in this paper are finite and
simple. For notation and terminology not defined
here see Ref. 1. A graph invariant is a function on
a graph that does not depend on the labelling of
its vertices. It can be used to characterize some
properties of the graph of a molecule. Up to now,
hundreds of graph invariants based on vertex de-
grees of a graph have been considered in quantita-
tive structure-activity relationship and quantitative
structure-property relationship studies. Among the
most important degree-based topological indices is
the well-known first Zagreb index 2:

M1(G) =
∑

u∈V

�

dG(u)
�2

.

This graph invariant has been considered in connec-
tion with certain chemical applications3, 4. A vast
amount of research on the first Zagreb index has
been done. For details of its mathematical theory
see Refs. 5, 6. Recent contributions could be found
in Refs. 7, 8. There are many other degree-based
topological indices, such as the Zagreb index and
Randić index9–11.

The zeroth-order Randíc index is12

R0(G) =
∑

u∈V

�

dG(u)
�−1/2

,

where the sum goes over all vertices of G. In
analogy to the ordinary (first-order) Randić index,
the general zeroth-order Randíc index is13

R0
α(G) =

∑

u∈V

�

dG(u)
�α

,

where α 6= 0, 1 is a pertinently chosen real num-
ber. It should be noted that the same quantity is
sometimes referred to as ‘general first Zagreb index’.
Generally speaking, there are three groups of closely
related problems which have attracted the attention
of researchers for a long time.

Problem 1 How does R0
α(G) depend on the structure

of graph G?

Problem 2 Given a set of molecular graph Gn, find
the upper and lower bounds for R0

α(G) in Gn and
characterize the graphs in which the maximal and
minimal values are attained, respectively.

Problem 3 Compare the values of general zeroth-
order Randíc index and other topological indices of
graphs.
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On concerning these problems, it is not surpris-
ing that in the chemical literature there are numer-
ous studies of properties of the general zeroth-order
Randić index of molecular graphs. Li and Zhao14

determined the trees with the first three minimum
and maximum zeroth-order general Randić index.
An (n, m)-graph is a simple connected graph that
has n vertices, m edges, and maximum degree at
most 4. In Ref. 15 the authors investigated the gen-
eral zeroth-order Randić index for molecular (n, m)-
graphs. Zhang and Zhang16 determined the uni-
cyclic graphs with the first three minimum and max-
imum general zeroth-order Randić index. Zhang
et al17 determined the bicyclic graphs with the first
three minimum and maximum general zeroth-order
Randić index. Hu et al18 investigated the gen-
eral zeroth-order Randić index for general simple
connected (n, m)-graphs and characterized the sim-
ple connected (n, m)-graphs with extremal (maxi-
mum and minimum) general zeroth-order Randić
index. Li and Shi19 did some further work on this
topic following Ref. 18. Cheng et al20 determined
the minimum and maximum general zeroth-order
Randić index values of bipartite graphs with a given
number of vertices and edges for α = 2. Su et al21

presented several sufficient conditions for graphs
to be maximally edge-connected in terms of the
general zeroth-order Randić index, and generalized
the results given in Ref. 22. We encourage the inter-
ested reader to consult Refs. 23–25. and therein for
more information and details on the general zeroth-
order Randić index.

An outerplanar graph is a planar graph that
has a planar drawing with all vertices on the same
face. From the definition, we know that a graph is
outerplanar if it has an embedding in the plane such
that all vertices lie on the outer face boundary. An
edge of an outerplanar graph is said to be a chord, if
it joins two vertices of the outer face boundary but
is not itself an edge of the outer face boundary. A
maximal outerplanar graph is an outerplanar graph
such that all its faces except the outer face are
composed of three edges. It can be easily verified
that any maximal outerplanar graph possess the
following properties26.

Proposition 1 Let G be a maximal outerplanar
graph with n ¾ 4 vertices. If v is a vertex of degree
2 whose neighbours are u and w, then u and w are
adjacent in G.

Proposition 2 Let G be a maximal outerplanar
graph with n ¾ 4 vertices. If v is a vertex of degree 2

whose neighbours are u and w, then |N(u)∩N(w)|=
2.

For n¾ 3, we useHn to denote the set of all the
maximal outerplanar graphs with n vertices:

Hn = {G | G is a maximal outerplanar graph and

|V (G)|= n}.

The maximal outerplanar graphs represent a
series of an important class of molecules (see, e.g.,
Refs. 27, 28). In Ref. 26, the authors investigated
sharp lower and upper bounds for Zagreb indices
among all maximal outerplanar graphs, and the cor-
responding extremal graphs were also completely
characterized.

Every tree consists of at least two pendent ver-
tices and some maximum degree vertices. Hence
it is interesting to consider the trees with a fixed
number of maximum degree vertices. Let Tn,k be
the class of trees with n vertices that have exactly k
(k ¶ n−2) vertices having the maximum degree:

Tn,k = {T | T is a tree with n vertices and has exactly

k maximum degree vertices}.

More recently, Lin11 determined the trees that
maximize the Wiener index (which is defined as the
sum of distances over all unordered vertex pairs in
a graph) in the class of Tn,k. Borovicanin et al29

discussed the maximum and minimum Zagreb in-
dices of trees with a given number of vertices of
maximum degree, and the extremal graphs were
also characterized.

To our best knowledge, the general zeroth-order
Randić index of graphs inHn and Tn,k have not been
considered in the chemical literature so far. Inspired
by the ideas of Refs. 26, 29, here we consider the
problem of maximizing and minimizing the general
zeroth-order Randić index among maximal outer-
planar graphs. In addition, we investigate the max-
imum and minimum general zeroth-order Randić
index of trees with a given number of vertices
of maximum degree. The corresponding extremal
graphs are also characterized.

THE GENERAL ZEROTH-ORDER RANDIĆ INDEX
IN Hn

In this section, we shall determine the trees with
maximal and minimal general zeroth-order Randić
index in the class Hn. Let S be a subset of V (G).
Let G[S] denote the subgraph of G induced by S.
The distance between a vertex u and S is defined
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Fig. 1 Graphs H ′1 = K1 ∨ P5, H ′2, and H ′3 = P2
6 .

as minv∈S dG(u, v) and is denoted by dG(u, S). The
neighbourhood of a vertex u of G is the set {x ∈
V (G) | dG(x , u) = 1} and is denoted by NG(u).

For a given graph G, we will use G− x to denote
the graph that arises from G by deleting the vertex
x of G. The join of two graphs G and H, denoted
by G ∨H, is obtained by adding an edge from each
vertex in G to each vertex in H. For example the
graph H ′1 = K1∨ P5 is the join of K1 and P5 in Fig. 1.

We use G+n to denote the class of n-vertex
maximal outerplanar graphs each of which, say G,
satisfies the following properties: (i) there exists a
vertex v in G of degree 2 whose neighbours are u
and w; (ii) for any vertex x in V (G)−{u, w}, at least
one of xu ∈ E(G) and xw ∈ E(G) holds. It is easy to
see that K1 ∨ Pn−1 ∈ G+n .

For any integer k, we use Gk to denote the
k-power graph of G which is obtained from G by
adding new edges joining all pairs of vertices a
distance k apart. In particular, G1 is the graph G
itself. For example, H ′3 in Fig. 1 is an illustration of
P2

6 .

Lemma 1 (Ref. 26) Let G be a maximal outerpla-
nar graph on n ¾ 5 vertices. If v is a vertex of
degree 2 whose neighbours are u and w, then 7 ¶
d(u)+ d(w) ¶ n+2. The left equality holds if and
only if G[N(u)∪ N(w)] ∼= P2

5 , and the right equality
holds if and only if G ∈ G+n .

The following lemma is easily checked.

Lemma 2 For n¾ 4, we have

R0
α(K1 ∨ Pn−1) = (n−1)α+3α(n−3)+2α+1,

R0
α(P

2
n ) = 4α(n−4)+2 ·3α+2α+1.

Theorem 1 Let G be a maximal outerplanar graph
on n ¾ 4 vertices. Then for any α > 1 or α < 0, we
have

R0
α(G)¾ 4α(n−4)+2 ·3α+2α+1

with the equality if and only if G ∼= P2
n .

Proof : Note that for n= 4,Hn contains exactly one
graph P2

n . The result is clearly true. In the following
we proceed by induction on n ¾ 5. Without loss of

generality, we assume that the result holds for all
maximal outerplanar graphs of order less than n.
Let G be a maximal outerplanar graph on n vertices.
If G ∼= P2

n , then by Lemma 2, we are done. It suffices
to prove that R0

α(G) > 4α(n − 4) + 2 · 3α + 2α+1 if
G � P2

n .
Since G is a maximal outerplanar graph, there

must exist vertices of degree two. We can choose a
vertex v of degree 2 whose neighbours are u, w such
that d(u)+d(w) is as small as possible. Let G′ = G−
v. Then G′ is a maximal outerplanar graph of order
n−1. It is also clear that dG′(u) = dG(u)−1, dG′(w) =
dG(w)− 1, and dG′(z) = dG(z) for all vertices z in
VG\{v, u, w}.

Note that G � P2
n and we have G′ � P2

n−1 by the
choice of v. By inductive hypothesis we have

R0
α(G

′)> R0
α(P

2
n−1).

It follows from Lemma 1 that dG(u)+dG(w)¾ 7 and
the equality holds if and only if G[N(u)∪ N(w)] ∼=
P2

5 . Combining Proposition 1 and Proposition 2, we
conclude that dG(u)¾ 3, dG(w)¾ 3. Without loss of
generality, we assume that dG(u)¾ 3 and dG(w)¾ 4.
Hence

�

dG(u)
�α−

�

dG(u)−1
�α
¾ 3α−2α,

�

dG(w)
�α−

�

dG(w)−1
�α
¾ 4α−3α.

Hence we have

R0
α(G) = R0

α(G
′)+

�

dG(v)
�α
+
��

dG(u)
�α

−
�

dG′(u)
�α�

+
��

dG(w)
�α−

�

dG′(w)
�α�

= R0
α(G

′)+
��

dG(u)
�α−

�

dG(u)−1
�α�

+2α+
��

dG(w)
�α−

�

dG(w)−1
�α�

¾ R0
α(P

2
n−1)+2α+

�

3α−2α
�

+
�

4α−3α
�

= 4α(n−5)+2 ·3α+2α+1+4α

= 4α(n−4)+2 ·3α+2α+1

= R0
α(P

2
n ).

2
If α = 2 in Theorem 1, we immediately obtain

the following result.

Corollary 1 (Ref. 26) Let G be a maximal outerpla-
nar graph on n¾ 4 vertices. Then M1(G)¾ 16n−38,
with the equality if and only if G ∼= P2

n .

Finally, we will give a complete characterization
of maximal outerplanar graphs with maximal gen-
eral zeroth-order Randić index.
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Theorem 2 Let G be a maximal outerplanar graph
on n¾ 4 vertices. Then for α > 2, we have

R0
α(G)¶ (n−1)α+(n−3)3α+2α+1

with equality if and only if G ∼= K1 ∨ Pn−1.

Proof : Note that for n = 4, Hn contains exactly
one graph P2

n . The result is clearly true. Now we
consider the case of n ¾ 5. Assume that the result
holds for all maximal outerplanar graphs of order
less than n. Let G be a maximal outerplanar graph
on n vertices, and v be a vertex of degree 2 in G
whose neighbours are u, w.

Let G′ = G−v, which is also a maximal outerpla-
nar graph of order n− 1. By inductive hypothesis,
R0
α(G

′) ¶ R0
α(K1 ∨ Pn−2) = (n − 2)α + (n − 4) · 3α +

2α+1, and the equality holds if and only if G′ ∼=
K1 ∨ Pn−2. Note that G′ = G − v. We have dG′(u) =
dG(u)− 1, dG′(w) = dG(w)− 1, and for all vertices
z in VG\{v, u, w}, dG′(z) = dG(z). It follows from
Lemma 1 that 7¶ dG(u)+ dG(w)¶ n+2 and so

5¶ (dG(u)−1)+ (dG(w)−1)¶ n+2−2.

By Proposition 1 and 2, we immediately obtain

(dG(u)−1)¾ 2 , (dG(u)−1)¾ 2.

Let f (x) be a function defined above. For any
positive integers x1, x2, x3, x4 with x1 < x3 < x4 <
x2, we have f (x1) + f (x2) ¾ f (x3)+ f (x4). From
this and the inductive hypothesis we obtain

R0
α(G) = R0

α(G
′)+

�

dG(v)
�α
+
�

dG(u)
�α

−
�

dG′(u)
�α
+
�

dG(w)
�α−

�

dG′(w)
�α

= R0
α(G

′)+2α+
�

dG′(u)+1
�α

−
�

dG′(u)
�α
+
�

dG′(w)+1
�α−

�

dG′(w)
�α

¶
�

(n−2)α+(n−4)3α+2α+1
�

+2α+3α−2α+(n−1)α− (n−2)α

= (n−1)α+(n−3)3α+2α+1.

The equality holds if and only if G′ ∼= K1 ∨ Pn−2 and
G ∈ G+n , which is equivalent to G ∼= K1 ∨ Pn−1. 2

The following is an immediate consequence of
Theorem 2, which was also proved by Hou et al in
Ref. 26.

Corollary 2 Let G be a maximal outerplanar graph
on n ¾ 4 vertices. Then (i) if n = 6, M1(G) ¶ 60,
with equality if and only if G ∼= K1 ∨ P5 or H ′2 which
is depicted in Fig. 1; (ii) if n 6= 6, then M1(G)¶ n2+
7n−18, with equality if and only if G ∼= K1 ∨ Pn−1.

THE GENERAL ZEROTH-ORDER RANDIĆ INDEX
IN Tn,k

In this section, we shall determine the trees with
maximal and minimal general zeroth-order Randić
index in the class Tn,k.

Lemma 3 (Ref. 29) If T ∈ Tn,k is a tree with the
maximum vertex degree∆, then∆¶ b((n−2)/k)c+1.

Let π= (d1, d2, . . . , dn) be a sequence of positive
integers, which is called a degree sequence of G if
di = dG(v) holds for i = 1,2, . . . , n and v ∈ V (G).
For convenience, in the following we always assume
that d1 ¾ d2 ¾ · · ·¾ dn.

Lemma 4 (Ref. 30) A non-decreasing sequence π=
(d1, d2, . . . , dn) of non-negative integers, whose sum is
even is graphic if and only if

k
∑

l=1

dl ¶ k(k−1)+
n
∑

l=k+1

min{dl , k}

for every k, 1¶ k ¶ n.

Lemma 5 Let Tmax be the tree with maximum general
zeroth-order Randíc index for α > 1 or α < 0 in Tn,k.
Then its maximum vertex degree is equal to b((n −
2)/k)c+1.

Proof : Let {v1, v2, . . . , vn} be the vertex set of the tree
Tmax with the degree sequence π = (d1, d2, . . . , dn),
and ∆ be the maximum vertex degree in the tree
Tmax. From Lemma 3, it follows that ∆ ¶ b((n −
2)/k)c+1.

To show the result, it suffices to prove that ∆<
b((n− 2)/k)c+ 1 cannot occur. In the following we
use induction, and so

∆= d1 = d2 = · · ·= dk =
�

n−2
k

�

+1− t

=
n−2

k
− a+1− t,

where 0 ¶ a < 1 and t ¾ 1. Denote the number of
vertices of degree i in Tmax by ni . Then

∑∆

i=1 ni = n
and

∑∆

i=1 ini = 2(n−1). Hence

∆
∑

i=2

(i−1)ni = n−2.
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Hence
∆−1
∑

i=2

(i−1)ni = n−2− k(∆−1)

= n−2− k
��

n−2
k

�

− t
�

= n−2− k
�

n−2
k
− a− t

�

= k(a+ t)¾ k.

For any integer k < i ¶ n, let vi ∈ V (Tmax) be
a vertex with degree di ∈ [2,∆ − 1]. Define the
following sequence

π1 = (d
1
1 , d1

2 , . . . , d1
i−1, d1

i , d1
i+1, . . . , d1

j−1,

d1
j , d1

j+1, . . . , d1
n)

= (d1+1, d2, . . . , di−1, di −1, di+1, . . . , d j−1,

d j , d j+1, . . . , dn).

It follows from Lemma 4 that π1 is a degree se-
quence of some graph, say G′. Comparing the
structure of G′ and Tmax, one can find that G′ is
exactly a tree, say T1. By simple calculation,

R0
α(T1)−R0

α(Tmax)
= (d1+1)α− dα1 +(di −1)α− dαi
= (d1+1)α− dα1 − (d

α
i − (di −1)α)> 0.

It follows from this fact that the transformation
T1→ Tmax increases the value of the general zeroth-
order Randić index, but T1 /∈ Tn,k.

Note that
∑∆−1

i=2 (i − 1)ni is at least k. We can
repeat the above transformation k times on every
vertex of degree ∆ in the tree Tmax. Each step
produces a tree Tl , l = 1,2, . . . , k, with the degree
sequence

πl = (d
l
1, d l

2, . . . , d l
i−1, d l

i , d l
i+1, . . . , d l

j−1,

d l
j , d l

j+1, . . . , d l
n)

= (∆+1, d l−1
2 , . . . , d l−1

i−1 , d l−1
i −1, d l−1

i+1 , . . . ,

d l−1
j−1, d l−1

j , d l−1
j+1, . . . , d l−1

n )

where j ∈ {1, 2, . . . , n} and j 6= i, l, and d l−1
i is the

degree of an arbitrary vertex vi in the resulting tree
Tl−1 for k < i ¶ n.

By using a similar approach, we obtain

R0
α(Tk)> R0

α(Tk−1)> · · ·> R0
α(T1)> R0

α(Tmax)

and easily see that Tk ∈ Tn,k is a tree with maximal
vertex degree ∆ + 1, which contradicts the initial
hypothesis. This proves that ∆ = b((n − 2)/k)c +
1. 2

Theorem 3 Let T ∈ Tn,k, 1 ¶ k ¶ 1
2 n− 1. Then for

α > 1 or α < 0, we have

R0
α(T )¶ k∆α+ p(∆−1)α+µα+ n− k− p−1

with equality if and only if T has the degree sequence

(∆, . . . ,∆
︸ ︷︷ ︸

k

,∆−1, . . . ,∆−1
︸ ︷︷ ︸

p

,µ, 1, . . . , 1
︸ ︷︷ ︸

n−k−p−1

)

for∆= b((n−2)/k)c+1, p= b((n−2−k(∆−1))/(∆−
2))c and µ= n−1− k(∆−1)− p(∆−2).

Proof : Let π = (d1, d2, . . . , dn) be the degree se-
quence of a tree Tmax with maximal general zeroth-
order Randić index in the class Tn,k. Then, by
Lemma 5, we have that d1 = d2 = · · · = dk = ∆ =
b((n−2)/k)c+1.

The number of vertices of degree ∆−1 is equal
to

p = n∆−1 =
�

n−2− k(∆−1)
∆−2

�

. (1)

To show this, as is mentioned in Lemma 5

∆−1
∑

i=2

(i−1)ni = n−2− k(∆−1)

= n−2− k
��

n−2
k

�

− t
�

= ka = r,

where 0 ¶ r < k. Note that ni is a positive integer
for each i = 2, 3, . . . ,∆−1, it follows that p= n∆−1 ¶
r/(∆−2) and consequently we obtain p ¶ b(r/(∆−
2))c. This completes the proof of (1).

In the following we will show that p = b(r/(∆−
2))c. Without loss of generality, we assume that p <
b(r/(∆−2))c, i.e., p ¶ b(r/(∆−2))c−1. Then

∆−2
∑

i=2

(i−1)ni = r − (∆−2)p

¾ r − (∆−2)
�j r
∆−2

k

−1
�

¾∆−2.

Furthermore, according to the analysis we have

π= (d1, d2, . . . , dn)
= (∆,∆, . . . ,∆
︸ ︷︷ ︸

k

, dk+1, dk+2, . . . , dk+ j1 ,

· · · , dk+i1 , . . . , dk+r , 1, 1, . . . , 1)

and there exists two distinct numbers dk+ j1 and dk+i1
for 1¶ j1 < i1 ¶ r such that dk+ j1 = j > dk+i1 = i or
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there exists two numbers such that dk+ j1 = dk+i1 = i
for ni ¾ 2.

Define a degree sequence of positive integers as
follows

π′ = (d ′1, d ′2, . . . , d ′k, d ′k+1, . . . , d ′k+ j1−1, d ′k+ j1
,

d ′k+ j1+1, . . . , d ′k+i1−1, d ′k+i1
, d ′k+i1+1, . . . , d ′n)

= (d1, d2, . . . , dk, dk+1, . . . , dk+ j1−1, dk+ j1 +1,

· · · , dk+i1−1, dk+i1 −1, dk+i1+1, . . . , dn).

Note that
∑n

i=1 d ′i = 2n − 2. Hence π′ must be
the degree sequence of a tree T ′ with k maximum
degree vertices. Equivalently, T ′ ∈ Tn,k. On the
other hand,

R0
α(T

′)−R0
α(Tmax)

= ( j+1)α− jα+(i−1)α− iα

= ( j+1)α− jα− (iα− (i−1)α)> 0,

again a contradiction with the initial hypothesis.
Hence

p = n∆−1 =
j r
∆−2

k

=
�

n−2− k(∆−1)
∆−2

�

.

We now show that there exists one vertex with
degree µ= n−1−k(∆−1)−p(∆−2). To show this
it is easy to prove that it has to be nµ = 1, where
µ= r−p(∆−2)+1, i.e., µ= n−1−k(∆−1)−p(∆−2),
otherwise, there would produce a tree T ′′ whose R0

α-
value is greater than that of Tmax. Hence it follows
from this and (1) that the tree Tmax with maximal
general zeroth-order Randić index in the class Tn,k
has the vertex degree sequence

π= (∆, . . . ,∆
︸ ︷︷ ︸

k

,∆−1, . . . ,∆−1
︸ ︷︷ ︸

p

,µ, 1, . . . , 1
︸ ︷︷ ︸

n−k−p−1

)

and consequently we obtain R0
α(Tmax) = k∆α+p(∆−

1)α+µα+ n− k− p−1. 2
In the following, we will describe the tree with

minimum general zeroth-order Randić index in Tn,k,
using a similar idea to that used in Ref. 31.

Lemma 6 Let Tmin be a tree with minimal general
zeroth-order Randíc index for α > 1 or α < 0 in the
class Tn,k, where 1 ¶ k ¶ 1

2 n− 1. Then its maximum
vertex degree ∆ equals 3.

Proof by contradiction: In what follows we assume
that∆¾ 4. Let u be a vertex of maximum degree∆
in Tmin and P = v0v1 · · · vi−1vi vi+1 · · · vl be the longest

path in Tmin that contains u = vi . In addition, let
vi−1, vi+1 and u1, u2, . . . , u∆−2 be the vertices adja-
cent to u in Tmin, and z1 a pendent vertex connected
to u via u1 (it is possible that z1 ≡ u1). Let T 1 be a
tree obtained in the following way:

T 1 = Tmin−uu2+u2z1.

By some computations, for α < 0 or α > 1, we have

R0
α(T

1)−R0
α(Tmin)

= (∆−1)α+2α−∆α−1

= 2α−1− (∆α− (∆−1)α)
< 0

which shows that the transformation Tmin → T 1

decreases the R0
α-value, but T 1 /∈ Tn,k. The transfor-

mation described above repeated k times on every
vertex u of degree ∆ would produce a sequence of
trees T 1, T 2, . . . , T k, which satisfy

R0
α(T

k)< R0
α(T

k−1)< · · ·< R0
α(T

2)< R0
α(T

1).

It follows that T k has exactly k maximum degree
vertices with degree ∆− 1. Consequently, we have
T k ∈ Tn,k. Again a contradiction. 2

Theorem 4 Let T ∈Tn,k, where 1¶ k¶ 1
2 n−1. Then

for α > 1 or α < 0 we have

R0
α(T )¾ 3αk+2α(n−2k−2)+ k+2

with equality if and only if the tree T has the degree
sequence

(3,3, . . . , 3
︸ ︷︷ ︸

k

, 2, 2, . . . , 2
︸ ︷︷ ︸

n−2k−2

, 1, 1, . . . , 1
︸ ︷︷ ︸

k+2

).

Proof : Let Tmin be a tree with minimal general
zeroth-order Randić index in the class Tn,k. By
Lemma 6, the vertex degree sequence of Tmin is

π= (3,3, . . . , 3
︸ ︷︷ ︸

k

, 2, 2, . . . , 2
︸ ︷︷ ︸

n2

, 1, 1, . . . , 1
︸ ︷︷ ︸

n1

),

when k ¶ 1
2 n− 1. It follows that n1 + 2n2 + 3k =

2(n1+n2+k)−2, which implies that n1 = k+2 and
n2 = n−2k−2. Hence R0

α(Tmin) = 3αk+2α(n−2k−
2)+ k+2. 2
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general Randić index. Discrete Appl Math 155,

1044–54.
19. Li X, Shi Y (2009) (n, m)-Graphs with maximum

Zeroth-order general Randić index for α ∈ (−1,0).
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