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ABSTRACT: Given an integer λ 6= 1, we verify the Hyers-Ulam stability of the alternative Jensen’s functional equations
f (x y−1)−2 f (x)+λ f (x y) = 0 where f is a mapping from a 2-divisible group to a Banach space and λ is an integer.
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INTRODUCTION

The alternative Cauchy functional equations have
been widely studied. For instance, Kannappan and
Kuczma1 studied the solutions of the alternative
Cauchy functional equations of the form

( f (x + y)− a f (x)− b f (y))
( f (x + y)− f (x)− f (y)) = 0, (1)

where f is a function from an abelian group to a
commutative integral domain and of characteristic
zero. Ger2 extended (1) to the alternative func-
tional equation

( f (x + y)− a f (x)− b f (y))
( f (x + y)− c f (x)−d f (y)) = 0.

Forti3 then established the general solution of the
alternative Cauchy functional equations

(c f (x + y)− a f (x)− b f (y)− d)
( f (x + y)− f (x)− f (y)) = 0.

Nakmahachalasint4 first studied the solutions of
an alternative Jensen’s functional equations of the
form

f (x)±2 f (x y)+ f (x y2) = 0 (2)

on a semigroup which extended the work in
Refs. 5, 6 on the classical Jensen’s functional equa-
tion

f (x y−1)−2 f (x)+ f (x y) = 0 (3)

on a group. Nakmahachalasint7 also investigated
the Hyers-Ulam stability of the alternative Jensen’s

functional equation (2) in the class of mappings
from 2-divisible abelian groups to Banach spaces.

Given an integer λ 6= 1, Srisawat, Kitisin and
Nakmahachalasint studied the solution of the alter-
native Jensen’s functional equation of the form8

f (x y−1)−2 f (x)+ f (x y) = 0 or

f (x y−1)−2 f (x)+λ f (x y) = 0 (4)

when f is a function from a group to a uniquely
divisible abelian group, but the stability problem has
not yet been investigated. This paper aims to prove
the Hyers-Ulam stability of the alternative Jensen’s
functional equation (4) when f is a mapping from
a 2-divisible abelian group (G, ·) to a Banach space
(E,‖·‖). In other words, for every ε ¾ 0, we show
that there exist δ1,δ2 ¾ 0 such that if a mapping
f : G→ E satisfies the inequalities

‖ f (x y−1)−2 f (x)+ f (x y)‖¶ δ1 or

‖ f (x y−1)−2 f (x)+λ f (x y)‖¶ δ2 (5)

for all x , y ∈ G, then there exists a unique Jensen’s
mapping J : G→ E with

‖ f (x)− J(x)‖¶ ε

for all x ∈ G.

AUXILIARY LEMMAS

Let (G, ·) be a group and (E,‖·‖) be a Banach space.
Given an integer λ and a function f : G → E, for
every pair x , y ∈ G we define

F (λ)y (x) := ‖ f (x y−1)−2 f (x)+λ f (x y)‖.
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For δ1,δ2 ¾ 0 and λ 6= 1, we write

S f (λ)y (x) :=
�

F (1)y (x)¶ δ1 or F (λ)y (x)¶ δ2

�

,

M λ
δ1,δ2

:= (8+19|λ|+14λ2+3|λ3|)δ1

+(61+88|λ|+31λ2+3|λ3|)δ2

and we denote the statement

A (λ)
(G,E) := { f : G→ E | S f (λ)y (x) for all x , y ∈ G}.

We first prove two lemmas concerning
S f (λ)y (x).

Lemma 1 Let f ∈A (λ)
(G,E) and x , y ∈ G. Given α¾ 0,

if F (λ)y (x)¶ δ2 and ‖ f (x y)‖¶ α, then

F (1)y (x)¶ δ2+(1+ |λ|)α. (6)

Proof : Assume thatF (λ)y (x)¶ δ2 and ‖ f (x y)‖¶ α.
Thus

‖ f (x y−1)−2 f (x)‖¶F (λ)y (x)+ ‖−λ f (x y)‖

¶ δ2+ |λ|α. (7)

By ‖ f (x y)‖¶ α and (7), we obtain

F (1)y (x)¶ ‖ f (x y−1)−2 f (x)‖+ ‖ f (x y)‖

¶ δ2+(1+ |λ|)α.

2

Lemma 2 Let f ∈A (λ)
(G,E) and x , y ∈ G. IfF (1)y (x)>

δ1, then ‖ f (x y−1)− f (x y)‖¶ 2δ2.

Proof : Assume that F (1)y (x) > δ1. The alternatives

in S f (λ)y−1 (x) and S f (λ)y (x) give

F (λ)y−1(x)¶ δ2, F (λ)y (x)¶ δ2, (8)

respectively. Eliminating f (x) from (8), we obtain

‖(1−λ)( f (x y−1)− f (x y))‖¶ 2δ2.

Since |1−λ|¾ 1, we must have

‖ f (x y−1)− f (x y)‖¶ 2δ2

as desired. 2
Next, we prove four lemmas concerning

S f (λ)y2 (x).

Lemma 3 Let f ∈A (λ)
(G,E) and x , y ∈ G.

(i) If F (1)y2 (x) > δ1 and F (1)y (x y) > δ1, then

F (1)y2 (x)¶ 6δ2.

(ii) If F (1)y2 (x) > δ1 and F (1)y (x y−1) > δ1, then

F (1)y2 (x)¶ 6δ2.

Proof : Case (i). Assume that F (1)y2 (x) > δ1 and

F (1)y (x y)> δ1. By Lemma 2, we obtain

‖ f (x y−2)− f (x y2)‖¶ 2δ2,

‖ f (x)− f (x y2)‖¶ 2δ2,

respectively. From the above inequality, we obtain

‖ f (x y−2)−2 f (x)+ f (x y2)‖¶ 6δ2.

Hence F (1)y2 (x)¶ 6δ2.
Case (ii). The proof is as in case (i) after

replacing y by y−1. 2

Lemma 4 Let f ∈A (λ)
(G,E) and x , y ∈ G. IfF (1)y2 (x)>

δ1 and F (1)y (x)¶ δ1, then

F (1)y2 (x)¶ 6max{δ1,δ2}.

Proof : Assume thatF (1)y2 (x)> δ1 andF (1)y (x)¶ δ1.

We first consider the alternatives in S f (λ)y (x y−1)
and S f (λ)y (x y) as follows. If F (1)y (x y−1) > δ1

or F (1)y (x y) > δ1, then Lemma 3 gives F (1)y2 (x) ¶
6δ2. Then we assume that F (1)y (x y−1) ¶ δ1 and

F (1)y (x y)¶ δ1. Thus

F (1)y2 (x)¶F (1)y (x y−1)+2F (1)y (x)+F
(1)
y (x y)¶ 6δ1.

2

Lemma 5 Let f ∈A (−1)
(G,E) and x , y ∈ G. IfF (1)y (x)>

δ1 and F (1)y (x y)¶ δ1, then

‖ f (x y2)‖¶max{3δ1+6δ2, 5δ1+4δ2}. (9)

Proof : Assume that F (1)y (x) > δ1 and F (1)y (x y) ¶
δ1. From F (1)y (x)> δ1, Lemma 2 gives

‖ f (x y−1)− f (x y)‖¶ 2δ2. (10)

By F (1)y (x) > δ1, the alternatives in S f (−1)
y (x) and

S f (−1)
y−1 (x) give F (−1)

y (x) ¶ δ2 and F (−1)
y−1 (x) ¶ δ2,

respectively. Hence

‖2 f (x)‖¶
1
2

�

F (−1)
y (x)+F (−1)

y−1 (x)
�

¶ δ2. (11)
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From (11) and F (1)y (x y)¶ δ1 we obtain

‖4 f (x y)−2 f (x y2)‖¶ 2δ1+δ2. (12)

Next, we will consider the following two possible
cases in S f (−1)

y (x y2).
Case (i). Assume that F (−1)

y (x y2) ¶ δ2. Elimi-

nating f (x y2) from (12) and F (−1)
y (x y2) ¶ δ2, we

have

‖3 f (x y)+ f (x y3)‖¶ 2δ1+2δ2. (13)

By (10) and (13), we obtain

‖ f (x y−1)+2 f (x y)+ f (x y3)‖¶ 2δ1+4δ2 (14)

and

‖ f (x y−1)−4 f (x y)− f (x y3)‖¶ 2δ1+4δ2. (15)

Consider S f (−1)
y2 (x y) as follows. The alternative

F (1)y2 (x y)¶ δ1 and (14) give

‖4 f (x y)‖¶ 3δ1+4δ2, (16)

while the alternative F (−1)
y2 (x y)¶ δ2 and (15) give

‖2 f (x y)‖¶ 2δ1+5δ2. (17)

By (12), (16) and (17), we obtain

‖ f (x y2)‖¶ 3δ1+6δ2.

Case (ii). Assume that F (1)y (x y2) ¶ δ1. Elim-

inating f (x y2) from (12) and F (1)y (x y2) ¶ δ1, we
have

‖3 f (x y)− f (x y3)‖¶ 3δ1+δ2. (18)

By (10) and (18), we obtain

‖ f (x y−1)−4 f (x y)+ f (x y3)‖¶ 3δ1+3δ2 (19)

and

‖ f (x y−1)+2 f (x y)− f (x y3)‖¶ 3δ1+3δ2, (20)

follows. The alternative F (1)y2 (x y) ¶ δ1 and (19)
give

‖2 f (x y)‖¶ 4δ1+3δ2, (21)

while the alternative F (−1)
y2 (x y)¶ δ2 and (20) give

‖4 f (x y)‖¶ 3δ1+4δ2. (22)

By (12), (21) and (22), we obtain

‖ f (x y2)‖¶ 5δ1+4δ2.

From the two cases, we have (9) as desired. 2

Lemma 6 Let f ∈ A (λ)
(G,E) and let x , y ∈ G. If

F (1)y2 (x)> δ1 and F (1)y (x)> δ1, then

F (1)y2 (x)¶M λ
δ1,δ2

. (23)

Proof : From F (1)y (x)> δ1, we obtain

‖ f (x y−1)− f (x y)‖¶ 2δ2 (24)

by Lemma 2. We will consider the alternatives
in S f (λ)y (x y) as follows. If F (1)y (x y) > δ1, then

Lemma 3 give F (1)y2 (x) ¶ 6δ2 which satisfies (23).

Thus we assume that F (1)y (x y)¶ δ1. First, suppose

thatλ=−1. FromF (1)y (x)>δ1 andF (1)y (x y)¶δ1,
by Lemma 5, we obtain

‖ f (x y2)‖¶max{3δ1+6δ2, 5δ1+4δ2}.

Second, suppose that λ 6= −1. Since F (1)y (x) > δ1,

the alternatives in S f (λ)y (x) givesF (λ)y (x)¶ δ2. By

(24) and F (λ)y (x)¶ δ2, we obtain

‖2 f (x)− (1+λ) f (x y)‖¶ 3δ2. (25)

Eliminating f (x) from (25) and F (1)y (x y)¶ δ1, we
obtain

‖(3−λ) f (x y)−2 f (x y2)‖¶ 2δ1+3δ2. (26)

Next, we will consider the following two possible
cases in S f (λ)y (x y−1).

Case (i). Assume that F (1)y (x y−1) > δ1. Since

F (1)y2 (x)> δ1 and F (1)y (x y−1)> δ1, Lemma 3 gives

F (1)y2 (x)¶ 6δ2 which satisfies (23).

Case (ii). Assume that F (1)y (x y−1) ¶ δ1. We
eliminate f (x y−1) and f (x) from (24), (25) and
F (1)y (x y−1)¶ δ1 to obtain

‖2 f (x y−2)− (3−λ) f (x y)‖¶ 2δ1+11δ2. (27)

From F (1)y2 (x) > δ1, the alternative S f (λ)y2 (x) gives

F (λ)y2 (x) ¶ δ2. Then we eliminate f (x) and f (x y2)

from (25), (26) and F (λ)y2 (x)¶ δ2 to obtain

‖2 f (x y−2)− (2−λ+λ2) f (x y)‖
¶ 2|λ|δ1+(8+3|λ|)δ2. (28)

From (27) and (28), we obtain

‖(1−λ2) f (x y)‖¶ (2+2|λ|)δ1+(19+3|λ|)δ2. (29)
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Since |1−λ2|¾ 1, (29) simplifies to

‖ f (x y)‖¶ (2+2|λ|)δ1+(19+3|λ|)δ2. (30)

From (26) and (30), we use |λ−3|¶ |λ|+3 to obtain

‖ f (x y2)‖¶ (8+11|λ|+3λ2)δ1+(60+28|λ|+3λ2)δ2.
(31)

From the above two cases, we obtain (31).
Hence by Lemma 1 we obtain (23) as desired. 2

HYERS-ULAM STABILITY

In this section, we will prove the Hyers-Ulam sta-
bility of the alternative Jensen’s functional equation
(4). The following lemma is crucial for the main
theorem.

Lemma 7 Let (G, ·) be a 2-divisible group. If f ∈
A (λ)
(G,E), then F (1)y (x)¶M

λ
δ1,δ2

for all x , y ∈ G.

Proof : Let f ∈ A (λ)
(G,E) and x , y ∈ G. Since G is a

2-divisible group, there exists z ∈ G such that y =
z2. Considering the alternatives in S f (λ)z2 (x) and
S f (λ)z (x), the proof is complete by Lemma 4 and
Lemma 6. 2

It should be remarked that the 2-divisibility of
the group (G, ·) is important. In fact, Srisawat8,
Kitisin and Nakmahachalasint proved that (4) is
equivalent to (3) when the domain of f is a 2-
divisible group. For λ= −3, (4) becomes

f (x y−1)−2 f (x)+ f (x y) = 0 or

f (x y−1)−2 f (x)−3 f (x y) = 0. (32)

However, when the domain of f is not a 2-divisible
group, (32) does not need to be equivalent to (3) as
illustrated by the following example.

Example 1 Given a ∈ E\{0}. Let f : Z → E be a
mapping such that

f (n) = (−1)na for all n ∈ Z.

We will first prove that f satisfies (32). Given n, m∈
Z. If m is odd, then we see that n−m and n+m
have the same parity whereas n and n+m have the
opposite. Hence f (n−m)−2 f (n)−3 f (n+m) = 0.
Otherwise, if m is even, then n−m, n, n+m all have
the same parity, i.e., f (n−m)−2 f (n)+ f (n+m) = 0.
Next, we will show that f does not satisfy (3). It
should be noted that f (0)−2 f (1)+ f (2) = 4a. From
a 6= 0, we obtain 4a 6= 0. Thus f satisfies (32) but f
does not satisfy (3).

Next, we will prove the Hyers-Ulam stability of
the alternative Jensen’s functional equation (4) by
the so-called direct method. The stability results
of Jensen’s functional equation can be found, for
instance, in Ref. 9.

Theorem 1 Let (G, ·) be a 2-divisible group. If f ∈
A (λ)
(G,E), then there exists a unique Jensen’s mapping

J : G→ E satisfying (3) with J(0) = f (0) such that

‖ f (x)− J(x)‖¶ 2M λ
δ1,δ2

∀x ∈ G.

Furthermore, the mapping J is given by

J(x) = f (0)+ lim
n→∞

1
2n
( f (x2n

)− f (0)) ∀x ∈ G.

Proof : Assume that f ∈ A (λ)
(G,E). By Lemma 7, we

obtain F (1)y (x)¶M
λ
δ1,δ2

for all x , y ∈ G, i.e.,

‖ f (x y−1)−2 f (x)+ f (x y)‖¶M λ
δ1,δ2

.

We define a function f̃ : G→ E by

f̃ (x) = f (x)− f (0) for all x ∈ G.

It can be observed that f̃ (0) = 0. Then for each
x , y ∈ G, we have









1
2

�

f̃ (x y)+ f̃ (x y−1)
�

− f̃ (x)







¶ 1
2M

λ
δ1,δ2

. (33)

Put y = x in (33). Using f̃ (0) = 0 we obtain










f̃ (x2)
2
− f̃ (x)








¶ 1
2M

λ
δ1,δ2

. (34)

For each positive integer n and each x ∈ G, we apply
(34) to obtain












f̃ (x2n
)

2n
− f̃ (x)













=













n
∑

i=1

�

f̃ (x2i
)

2i
−

f̃ (x2i−1
)

2i−1

�













¶
�

1−
1
2n

�

M λ
δ1,δ2

. (35)

Consider the sequence {2−n f (x2n
)}. For all positive

integers m, n and every x ∈ X , we use (35) to obtain












f̃ (x2n+m
)

2n+m
−

f̃ (x2n
)

2n













=
1
2n













f̃ (x2n·2m
)

2m
− f̃ (x2n

)













¶
1
2n

�

1−
1

2m

�

M λ
δ1,δ2

.

Hence {2−n f (x2n
)} is a Cauchy sequence. We can

define a function J̃ : G→ E by

J̃(x) = lim
n→∞

f̃ (x2n
)

2n
∀x ∈ G.
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Replacing x by x2n
and y by y2n

in (33), we obtain









1
2

�

f̃ (x2n
y2n
)+ f̃ (x2n

y−2n
)
�

− f̃ (x2n
)







¶ 1
2M

λ
δ1,δ2

.

(36)
Next, multiplying (36) by 2−n and taking n→∞,
we obtain

J̃(x y)+ J̃(x y−1)−2J̃(x) = 0.

From (35), as n→∞, we have

‖ f̃ (x)− J̃(x)‖¶M λ
δ1,δ2

∀x ∈ G.

To show the uniqueness of J̃ , let J : G → E satisfy
J (0) = 0 and

‖ f̃ (x)−J (x)‖¶M λ
δ1,δ2

∀x ∈ G.

For every positive integer n, we have

J̃(x2n
) = 2n J̃(x), J (x2n

) = 2nJ (x).

Hence

‖J (x)− J̃(x)‖

=













1
2n

�

J̃(x2n
)− f̃ (x2n

)
�

−
1
2n

�

f̃ (x2n
)−J (x2n

)
�













¶
1
2n








 f̃ (x2n
)− J̃(x2n

)







+
1
2n








 f̃ (x2n
)−J (x2n

)









¶
2
2n
M λ
δ1,δ2

. (37)

As n →∞ in (37), we have J (x) = J̃(x) for all
x ∈ G. By defining a function J : G → E by J(x) =
J̃(x)+ f (0) for all x ∈ G, the proof is complete. 2
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