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ABSTRACT: A total dominating set for a graph G = (V(G), E(G)) is a subset D of V(G) such that every vertex in V(G)
is adjacent to some vertex in D. The total domination number of G, denoted by y,(G), is the minimum cardinality of
a total dominating set of G. A total dominating set of cardinality y,(G) is called a y-total dominating set. Let TD, be
the set of all y-total dominating sets in G. We define the y-total dominating graph of G, denoted by TD,(G), to be
the graph whose vertex set is TD,, and two y-total dominating sets D; and D, from TD, are adjacent in TD,(G) if
D, = D,\{u}U{v} for some u € D, and v ¢ D,. In this paper, we present y-total dominating graphs of paths and cycles.
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INTRODUCTION

Let G = (V(G),E(G)) be a graph where V(G) and
E(G) are the set of vertices and the set of edges of G,
respectively. A set D C V(G) is called a dominating
set if every vertex in V(G)\D is adjacent to some
vertex in D. The domination number of G, denoted
by y(G), is the minimum cardinality of a dominating
set of G. A dominating set of cardinality y(G)
is called a y-dominating set (or y-set). For basic
concepts and notation in domination, see Refs. 1, 2.

Let G be a graph and D, the set of all y-
dominating sets. Lakshmanan and Vijayakumar3
introduced a gamma graph y.G of G. The vertex set
of v.G is D, and two y-dominating sets D; and D,
from D, are adjacent in y(G) if D; = D,\{u}u{v} for
some u,v € V(G). They provided the relationship
between the clique number and independence of
a graph and its gamma graph. Fricke et al* also
defined a gamma graph G(y) with a different mean-
ing. The only difference is that two y-dominating
sets D; and D, from D, are adjacent in G(y) if
D; = Dy,\{u} U {v} for some adjacent vertices u and
v. Note that G(y) is a subgraph of y.G with the same
vertex set.

In Ref. 5, Haas and Seyffarth defined a k-
dominating graph of a graph G, denoted by D, (G).
Its vertex set contains all dominating sets D such
that |D| < k, and two such dominating sets are
adjacent in D, (G) if one can be obtained from the
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other by either adding or deleting a single vertex.
The authors gave some conditions for connectivity
of D (G).

Kulli and Janakiram® introduced a minimal
dominating graph of a graph G, denoted by MD(G),
which is the graph whose vertices are minimal dom-
inating sets, and two minimal dominating sets are
adjacent in MD(G) if they have at least one vertex
in common. They characterized connected minimal
dominating graphs.

In Ref. 7, Kulli and Janakiram introduced a
common minimal dominating graph of a graph G,
denoted by CD(G). It has the same vertex set as
G, and two vertices are adjacent in CD(G) if there
is a minimal dominating set in G which contains
them. The authors characterized connected com-
mon minimal dominating graphs. They also gave
characterization of a graph G for which CD(G) is
isomorphic to the complement of G.

A common minimal total dominating graph of a
graph G, denoted by CD,(G), is the graph with the
same vertex set as G, and two vertices are adjacent
in CD.(G) if there is a minimal total dominating
set in G which contains them. This concept was
introduced in Ref. 8.

A set D of vertices in a graph G is called a
total dominating set if every vertex of G is adjacent
to some vertex in D. Total dominating sets were
introduced by Cockayne et al®. The total domination
number of G, denoted by v,(G), is the minimum
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Fig. 1 The y-total dominating graph of a path with 6
vertices. In this and later figures we write abcd instead
Of {VaJ Vb Ves Vd}'

cardinality of a total dominating set of G. A total
dominating set of cardinality y.(G) is called a -
total dominating set. Let TD, be the set of all y-
total dominating sets in G. The y-total dominating
graph of G, denoted by TD,(G), is the graph whose
vertex set is TD,, and two y-total dominating sets
D, and D, from TD, are adjacent in TD,(G) if
D; = D,\{u} U {v} for some u € D, and v ¢ D,. For
instance, the y-total dominating graph of the path
V1V, V3V, V5 Ve is shown in Fig. 1.

PRELIMINARY RESULTS

Let D be a total dominating set of a graph G, S
a subset of D, V’ the set of vertices in G which
are dominated by the vertices in S, and G’ the
subgraph of G induced by V’. Then S is called a total
dominating subset of D if S is a total dominating set
of G'.

We first consider the relation between the num-
ber of vertices in S and the number of vertices in G
dominated by the vertices in S when G is a path or a
cycle. We have that any 2 consecutive vertices in G
can dominate at most 4 vertices, and 3 consecutive
vertices in G can dominate at most 5 vertices, so we
easily obtain the following lemma.

Lemma 1 Let G be a path or cycle with n vertices, D
a total dominating set of G, and S a total dominating
subset of D of size k. If k is even, then S can dominate
at most 2k vertices of G; otherwise, S can dominate
at most 2k — 1 vertices of G.

Lemma 2 Let G be a graph. If v is a support vertex
(the vertex adjacent to a vertex of degree one) of G,
then v has to be in every total dominating set of G.

The y-total domination numbers of paths and
cycles were established by Henning!°, as shown in
the following theorem.
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Theorem 1 For n > 3, y(P,) = 1.(C,) = l3n] +
[znl—Llgnl

TOTAL DOMINATING GRAPH OF PATHS

In this section, we consider y-total dominating
graphs of paths. We always let P, = v;v,...v, be
a path with n vertices. If n = 1, we have that
TD,(P,) is the empty graph since P; has no y-total
dominating sets. For n = 2, we obtain the following
theorems.

Then

Theorem 2 Let k = 1 be an

TD,(Py) =K.

integer.

Proof: We first show that each y-total dominating
set of P, cannot contain three or more consecutive
vertices of P,.. Suppose for a contradiction that
there is a y-total dominating set D containing three
or more consecutive vertices of P,.. Let [ be the
largest number of these consecutive vertices, so [ =
3. Let S be the set obtained from D by removing
these [ vertices. Then S is a total dominating subset
of D. Note that |D| = 2k by Theorem 1. Since these
[ vertices dominate at most [ + 2 vertices of Py, the
other 2k — vertices in D must dominate at least
4k —(1+2) = 4k—1—2 vertices of P,.. By Lemma 1,
the 2k—1 vertices in S can dominate at most 4k — 2l
vertices of Py, which is less than 4k—[—2 since [ = 3.
This is a contradiction. Thus every y-total dominat-
ing set must contain k groups of two consecutive
vertices. Hence there is only one y-total dominating
set, which is {v,, Vs, Vs, V7, . . -, Vak—a, Var—1}- O
Then

Theorem 3 Let k = 1 be an

TD,(Pyi11) = Py

integer.

Proof: We prove by induction on k.

Base step. There is only one y-total dom-
inating sets of P;, which is {v,,v5,v,}. Hence
TD,(Ps) = P;. Furthermore, there are two y-total
dominating sets of Py, which are {v,,vs, Vs, vy, vg}
and {v,,v3,Vg,V7,vs}. Hence TD,(Py) = P,.

Induction step. Let k = 2. Suppose that
T D, (Pyy11) = Pi. Without loss of generality, we may
assume that TD,(Py41) = D1D, ... Dy, where D, =
{V2s V3, V4, V7, V8, -+, Vak—s, Vak—4> Vak—1, Vax} and for
each | =2,3,...,k, D, =D;\{vy; | i =1,2,...,1 —
13U {vgeo |1 =1,2,...,1 —1}. We next show
that TD,(Pyy3) = Pryq. For each [ =1,2,...,k,
let D = Dy U {Vyiy3, Varrs4} and Dy = Di\{vg} U
{Vak+2> Vak+3> Vak+4}. Hence D/ is a y-total domi-
nating set of Py, forall l =1,2,...,k+ 1. Fur-
thermore, DD, ...D; , forms a path with k +1
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vertices in TD,(Pycs). We claim that there is no
other y-total dominating set of P, apart from
D;,D,,...,D;,,. Suppose for a contradiction that
there is another y-total dominating set D’ of Pys,
which is different from these total dominating sets.
By Theorem 1, v, (Py) = 2k, v(Psrs1) = 2k + 1 and
Ye(Pyiss) = 2k + 3, so |D’| = 2k + 3. Furthermore,
ID” N {Vars2s Vakrs> Vakras Varss = 2 and Va4 € D’
by Lemma 2. We consider the following 3 cases.

Case 1: |D' N {Vas2, Varsss Vakras VakssH = 2.

Subcase 1.1: Vg3, Vagra € D/, DUt Vo, Varss &
D’. Hence D'\{V4x3, Vaxs4} is a y-total dominating
set of Pyey1. Thus D'\{var s, Vaxssa} = D; for some
1=1,2,...k. Hence D' = Dy U {V4y43, Var4a} = D}, @
contradiction.

Subcase 1.2: Va4, Vagss € D/, but vy o, Varss &
D’. Thus D’'\{V4t44, Varss} is a total dominating sub-
set of D’. Since v,y,4 and v .5 dominate 3 vertices,
the other 2k+1 vertices in D’ must dominate at least
4k + 2 vertices. By Lemma 1, these 2k + 1 vertices
in D’ can dominate at most 4k + 1 vertices. This is a
contradiction.

Case 2: |D" N {Vars2, Vaks3, Vaksds Vakss | = 3.

Subcase 2.1:  Vgrio, Vakss, Varsa € D, but
Vaers € D’. Suppose for a contradiction that
Vars1 € D’. Then v, ¢ D’ (otherwise, D’ is not
minimal). Thus D'\{Vxs1, Vakra, Vakess Vaksal is @
total dominating subset of D’. Since V41, Varsos
Varss and V4,4 dominate 6 vertices, the other 2k—1
vertices in D’ must dominate at least 4k—1 vertices.
This contradicts Lemma 1. Hence vy, ¢ D'
Since D’ is a y-total dominating set of Pgs,
D'\{Vars2> Vaks3> Varsa} is @ y-total dominating set
of Py.. By Theorem 2, {v,, V3, Vg, V7, ..+, Vak—2, Vak—1}
is the only vy-total dominating set of
Py Thus  D'\{Vas2, Varssr Vaksal =
{v, V3, V6, V7, o, Vag—2, Var—1} = Dp\{vg}.  Hence
D" = Di\{vax} U {Varso, Vakrss Vaksal = Dpyys @
contradiction.

Subcase 2.2: Vg, Vakrar Vakss €D, but vy, 5 ¢
D’. Then vg, € D. We next have that
Vg ¢ D' (otherwise, D’ is not minimal). Thus
D'\{Vars1> Vaks2> Vakras Varss) is a total dominating
subset of D’. Similarly, we then obtain a contradic-
tion to Lemma 1, so this case is impossible.

Subcase 2.3: Vi3, Vakrar Vakss €D, DUt vy o ¢
D’. This case is impossible since D’ is not minimal.

Case 3: D" N {Varia, Varsss Vaksas Vakrst = 4
This case is impossible since D’ is not minimal. O

Theorem 4 Let k = 0 be an integer. Then

TD,(Pgi12) = Pry1 0Py

Proof: We prove by induction on k. For k = 0,
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Fig. 2 The y-total dominating graph of a path with 4k+2

vertices.
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Fig. 3 The y-total dominating graph of a path with 4k+6
vertices.

there is only one y-total dominating set of P,, so
TD,(P,) = K; = P,0OP,. For k =1, the graph
TD,(Ps) is shown in Fig. 1.

Let k = 1. Suppose that TD,(Psz) =
P, 10P,,. Without loss of generality, we may
assume that T D, (Py) is the graph shown in Fig. 2,
whose vertices are D;; = O; UE; for all integers
1<i,j<k+1, where Oy = {v441 |1 =0,1,...,k},
E,={v}u{v, |i=1,2,...,k}, and for each | =
1,2,...,k, O = {v4iys [ 1=0,1,..., 1=1}U{v4,1 |
i=LI+1,...,k}and E;;; = {v44211=0,1,...,1}U
{vgi | i =1L1+1,...,k}. It is easy to check that
Vgi—1 € O; if and only if i = k + 1, and vy, € E;
if and only if j = k+ 1.

We next show that TD,(Py6) = PyoOPpss-
For each i,j = 1,2,...,k + 1, let Dl.”j = D;; U
{Vaksa> Vaxss} Foreachi=1,2,...,k+1,letD], ., =
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Dj 11 U{Vais, Varre}. Foreach j=1,2,... k+1,

/ —
let Dy » i = Dis1,j\{Var+1}U{Vars3, Var+a, Varss}, and

/ —
Diigriz = Diprprt \MVaria} U {Vais, Vares, Vakrs -
Then Di”j is a y-total dominating set of P, ¢ for
all i,j =1,2,...,k + 2. Furthermore, these Di/j’s
form the graph P, ,0Py,, in TD,(Pyee) (Fig. 3).
Suppose for a contradiction that there is another y-
total dominating set D’ of Py 4, which is different
from these y-total dominating sets. Note that |D’| =
2k + 4, |D" N {Vass3, Vaksas Vakss Vakso | = 2, and
Varrs € D'. We consider the following 3 cases.
Case 1: |D' N {Vas3, Varsas Varss Vakro | = 2.
/

Subcase 1.1: Vypyg, Varss € D', but Vypys, Varrs ¢
D’. Hence D'\{V4i4,Varss} is @ y-total dominat-
ing set of Pyyp. Thus D'\{Vaxi4, Varss} = D;; for
some integers 1 <1i,j < k+ 1. Hence D' = D;;u
{Varkras Varsst = Di’j, a contradiction.

Subcase 1.2: Vyis, Varre € D', DUt Vagi 3, Vagss &
D’. Then vy, € D’. Thus D'\{V4ris, Varse} IS @
y-total dominating set of Py, containing vse,,.
Since Vypy is in only Ejyq, D'\{Vaiess, Vakr6} = Dy
for some i € {1,2,...,k+1}. Hence D’ =D, U
{Vai+ss Vak+6} = D} ., @ contradiction.

Case 2: |D" N {Vars3, Vak+4, Vakes: Vars}H = 3-

/

Subcase 2.1: Vi3, Vakras Vakes €D, but vy ¢ &
D/

Subcase 2.1.1: vy, € D’. Clearly, vy, ¢ D’.
No matter whether v, is in D’ or not, v_; must
be in D’. Then D'\{Viy;3, Vars4s Vakrst U {Vasa} s
a y-total dominating set of P4, containing v._;.
Since vy is only in Oy, D'\ {Vas3, Varsas Vares U
{Vars1} = Diyqj for some j € {1,2,...,k +1}. Thus

/! __ —_ /
D" = Dyeyy j\MVars1 U {Varsss Vakras Varss} = Dyypjp@
contradiction.

Subcase 2.1.2: Vg5 € D’. If vy, €D, D' is
not minimal. Thus v, € D’, SO Vg_1,Va € D'.
Hence D'\{Vqry3, Vars4, Varss} U {Vars1} is a y-total
dominating set of Py, containing v4_;. Thus

/
D'\{Var13> Vak+4> Vakss} U {Vars1} = Dyyqj for some
. /
j€{1,2,....,k+1}. Hence D" = Dy j\{vars1} U
{Vak+35 Vaksas Vares} = Dy, ;, @ contradiction.

Subcase 2.2: Vai i3, Vakis, Vakss € D', but vy 4 ¢
D’. Then vy, € D'. If vy € D', D' is not
minimal. Thus v4,; ¢ D’. No matter whether
V4 is in D’ or not, v4_; must be in D’. Thus
D'\{Vais3> Vasss Vakrs} U {Varsr} is @ y-total dom-
inating set of Py.,,, containing v,_; and vga.

/ j—
Thus D'\{Vsr+3, Varss, Vake} U {Var1} = Dir g

Thus D’ = Diy1 k1 \{Vars1} U {Varsss Varess Varro) =

, S
Diiopin @ contradiction.

. /
Subcase 2.3: Vypya, Vakss, Vakse €D, but vy 5 &
D’. This case is impossible since D’ is not minimal.
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. / —
Case 3: |D" N {Vaki3, Vaksas Vakss, Varso}| = 4.
This case is impossible since D’ is not minimal. O

Theorem 5 Let k = 0 be an integer Then

TD,(Pyi13) = Pryo.

Proof: We prove by induction on k. It is easy to
obtain TD,(P;) = P, and TD,(P;) = P;.

Let k = 1. Suppose that TD,(Py3) =
Pi,,. Without loss of generality, we may as-
sume that TD,(Pg43) = D1D, ... Dyy,, where Dy =
{v1,va, V5, V6, - -5 Vak—3, Vak—2, Vak+1, Vak+2} and D =
Di\{v4i1 11=0,1,...,1=2}U{vy,5|i=0,1,...,1—
2} foreachl=2,3,...,k+2. Itis easy to check that
Varss € Dy if and only if [ = k+ 2.

We show that TD,(Py7) = Prys. For each
[=1,2,...,k+2, let D] = D; U {Vyys, Var+6} and
Dy ,s = Dyyp U {Vari6, Vars7}. Hence D] is a y-
total dominating set of Py, forall [ =1,2,...,k+
3. Clearly, DD, ...D; , forms a path with k + 3
vertices in TD,(Pg.7). Suppose for a contradic-
tion that there is another y-total dominating set
D’ of Py, which is different from these y-total
dominating sets. Note that v,(Py,3) = 2k + 2 and
Y¢(Pss7) = 2k + 4, so |D’| = 2k + 4. Furthermore,
ID” N {Vaie45 Vasss Varro Vars7} = 2 and vy 6 €D
We consider the following 3 cases.

Case 1: |D" N {Vakras Vaktss Vakres Vakr7}| = 2.

Subcase 1.1: Vg5, Varrs € D', DUt Vypia, Varsr ¢
D’. Hence D'\{Viss, Vaki6} iS @ y-total dominating
set of Pys. Thus D'\{v4,s, Varse} = D; for some
1€{1,2,...,k+2}. Hence D' = D;U{Vyiss, Varso} =
Dj, a contradiction.

Subcase 1.2: V16, Varr7 € D', DUt Vypia, Varss ¢
D’. Then v, 5 € D’. Thus D'\{Vrs6, Vars7} is a -
total dominating set of P, 3, which contains v.
Hence D'\{Vai16>Vaxr7} = Djin SINCE Vypy5 is only
in Dyy,. Hence D' = Dyy5 U{Vars6, Vars7} = Dyygr @
contradiction.

Case 2: |D' N {Va14, Varss, Vakres Vaks7H = 3.

Subcase 2.1: V4, Vagsss Vakss €D, but vy, ¢

/
k+3°

D/
. / /
Subcase 2.1.1: vg,3 € D'. Thus vy, ¢ D'.
) .
Hence D'\{V4y13, Vak+4> Vak+s, Vak+6} is @ total dom-
inating subset of D’. Since Vi3, Vaksa> Vakss, and
Var+e dominate 6 vertices, the other 2k vertices in

D’ must dominate at least 4k + 1 vertices. This
contradicts Lemma 1.

Subcase 2.1.2: Varses & D Hence
D'\{Vats4>Vakss, Varse} 1S a total dominating

subset of D’.
contradiction.

Subcase 2.2: V4, Varros Vakey €D, but v s ¢
D’. Then vgu,; € D'. If vy, € D', then

As with Subcase 2.1.1, there is a
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D’ is not minimal. Hence vy, ¢ D’. Hence
/ . L
D'\{V4r+3> Vaksas Vak+6s Vars7} is @ total dominating
subset of D’. Similarly, we then obtain a contradic-

tion to Lemma 1.
. /
Subcase 2.3: Vyiys, Vakrs, Vaksy €D, but vy 4 &
D’. This case is impossible since D’ is not minimal.
. / —
Case 3: D" N {Viiq, Vakrs Vakses Vars7} = 4
This case is impossible since D’ is not minimal. O

TOTAL DOMINATING GRAPH OF CYCLES

In this section, we always let C, = vov;...V,_1Vo
be a cycle with n > 3 vertices. It easy to see that
TD,(C3) = C5 and TD,(C;) = C4. For n =5, we
obtain the following theorems.

Theorem 6 Let k = 2 be an integer Then
TD,(Cy) = 4K,.

Proof: We claim that each y-total dominating set
of C4 cannot contain three or more consecutive
vertices of C4. Suppose for a contradiction that
there is a y-total dominating set D of C,, which
contains three or more consecutive vertices of Cy.
Let [ be the largest number of these consecutive
vertices, so [ = 3. Let S be the set obtained from
D by removing these [ vertices. Then S is a total
dominating subset of D. By Theorem 1, |D| = 2k.
Since these [ vertices dominate [ + 2 vertices of
Cyx> the other 2k — [ vertices in D must dominate
at least 4k — (1 +2) = 4k — [ — 2 vertices of C4. By
Lemma 1, the 2k — [ vertices in S can dominate
at most 4k — 21 vertices of C,;, which is less than
4k —1 —2 since [ = 3. This is a contradiction.
Thus every y-total dominating set must contain k
groups of two consecutive vertices of C4. It is easy
to see that there are only four y-total dominating
sets, which are
{v1, V3, Vs, Vg, - -

{VO: vl; v4> VS: ceey V4k_4, V4k_3},
o> Vak—3> Vak—2}>

{Va, V3, Ve, Vo e v vy Var—as Vag—1}» and
{vo, V3, Vas -+, Var—ss Vak—4s Var—1}- O
Theorem 7 Let k = 1 be an integer. Then

TD,(Cars1) = Cappa-

Proof: For k = 1, it is easy to obtain TD,(Cs) = Cs.
Let k = 2.

Claim 1: each y-total dominating set of Cy; q
cannot contain four or more consecutive vertices of
Cur+1- Suppose for a contradiction that there is a
y-total dominating set D of C4,;, which contains
four or more consecutive vertices of Cy,;. Let [ be
the largest number of these consecutive vertices, so
[ = 4. The set obtained from D by removing these
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[ vertices forms a total dominating subset of D. We
then obtain a contradiction to Lemma 1.

Claim 2: Each y-total dominating set of Cyyq
contains only one group of three consecutive ver-
tices of Cyryq. Since y(Cqri1) = 2k + 1 is an odd
integer, each y-total dominating set of Cy,; con-
tains at least one group of three consecutive vertices.
Suppose for a contradiction that there is a y-total
dominating set D of C4, 1, which contains [ groups
of three consecutive vertices of Cy,;, Where | = 2.
These 31 vertices dominate at most 5/ vertices. Thus
the other 2k + 1 — 3! vertices in D must dominate
at least 4k + 1 — 5[ vertices of Cy,;. By Lemma 1,
these 2k +1— 3! vertices in D can dominate at most
4k + 2 — 6l vertices of Cyq, which is less than
4k 4+ 1—51 since | = 3. This is a contradiction.

Let D be any y-total dominating set, so D con-
tains one group of 3 consecutive vertices, which
dominates 5 vertices of C4,;. We may consider
the other 4k — 4 vertices in C4,; which are not
dominated as a path. Apart from the 3 consecutive
vertices in D, the other 2k—2 vertices must dominate
all 4k — 4 vertices on this path. By Theorem 2,
there is only one y-total dominating set of this
path. Hence there is only one y-total dominating
set of C,_, containing these 3 consecutive ver-
tices. To find all y-total dominating sets of Cy 1,
it suffices to find 3 consecutive vertices on the
cycle. Clearly, there are 4k + 1 y-total dominating
sets. Recall that Cyq = VoVy ... VarVy. Let Dy =
{VO: V1, V2, V5, V6, V9, V105 - + -5 V4k—35 V4k72} and Dl =
D1 \{V(41-2) (mod 4k+1)} YU {V(4) (mod 4k+1)} for each
l=1,2,...,4k. Then DyD; ...DyuD, forms a cycle
with 4k + 1 vertices. m|

Theorem 8 Let k = 1 be an integer Then

TD,(Carr2) = Cory10Co041-

Proof:

We prove by inductionon k. Fork=1and k=2,
the graph T D, (Cs) and T D, (C;,) are shown in Fig. 4
and Fig. 5, respectively.

Let k = 2. Suppose that TD,(Cyz) =
Cor+10Cok41- Without loss of generality, we may
assume that TD,(Cy.,) is the graph shown in
Fig. 6, whose vertices are D;; = O; U E; for all
integers 1 < i,j < 2k + 1, where O; = {v;} U
s [T =1,2,..,k}, By = {vo} U{vgpo | 1 =
0,1,...,k—1}, and for each [ = 2,3,...,2k + 1,
O = 011 \{V(41-5) (mod 4k+2)} I {V(41-3) (mod 4k+2)} and
E; = Ei -1 \{V(41-6) (mod 4k+2)} U {V(41-4) (mod ak+2)}-

Recall that Cyy6 = VoVi-- - VarssVo. We prove
that TD,(Cys6) = Coy30Co43. For each i,j =
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0123 1234

0134

Fig. 4 The y-total dominating graph of a cycle with 6

vertices.
012367 013467 013478 123478 123678
012567 01456 01457 12457 12567

012569 014569 014589 124589 125689

02356 034569 034589 234589 235689

0236 4679 034789 2347 36789

Fig. 5 The y-total dominating graph of a cycle with 10
vertices.

1,2,. . .,k + 1 let D/ e Dl] U {V4k+2, V4k+3}. For

eachi=1,2,...,k+ 1 let D/ ., =D/ 1 \{Vars2} U
{Vaks4}. For each i=1,2,...,k+1and j=k+3,k+
4,...,2k +2, let D’

= Dl] 11U {v4k+3:v4k+4—}- For

eachi=1,2,.. k+ 1, let Dl/2k+3 = Dl/zk+2\{v4k} u
{Varsa}. For each j=1,2,...,2k + 3, let Dl/<+21

Diyy j\MVarsa} U {varys}. For each i =k + 3,k +
4,...,2k+2and j=1,2,...,k+1,let D/ =D ;U
{v4k+2,v4k+5} For eachl—k+3 k+4,. 2k+2 let
Dl fin = Dl i1 Va2t U {Vagsa}. For each i,j=k+
3,k+4,...,2k+2,let D} ; = Di_y j 1 U{Vars4 Varss}-
Foreachl—k+3k+4 2k + 2, letD12k+3=

1’2k+2\{v4k}u{v4k+2}. For each] =1,2,...,2k+3,
let D2k+31 = D;k+2’j\{v4k+1} U {v4s3}. Note that
Yi(Carye) =2k +4 = (2k +2) + 2 = v (Caey2) + 2.
It is easy to check that D; ; is a y-total dominating
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D12p41

D321\ 1

Daki11 2k+1,2k+1

Fig. 6 The y-total dominating graph of a cycle with 4k+2
vertices.

set of Cy, for all i,j =1,2,...,2k + 3. Further-
more, these D/ j’s form the graph Cy 30C5 5 in
TD,(Care)-

Claim 1. Foreachi=1,2,...,2k+3, D’l\{vo}u
{Vasat = 1’2k+3 Letie€ {1,2,...,2k+3}. Then
we have D/ | and Dl ok+3 are adjacent in T D, (Cypere)-
Furthermore Vo €D/,, v ¢ D] ok+3 Vak+a € D!
and Vak+4 ¢ Dl’l' Thus Dl’l\{vo} U {v4k+4} - 1,2k+3

Claim 2. Foreachj=1,2,...,2k+3, D{j\{vl}u
{Varas} = £k+31 Let j € {1,2,...,2k + 3}. Then
we have Dj jand D} are adJacent in TD,(Cyrse6)-
Furthermore v, €D pné D2k+31, Varss € D),
and Vak+s ¢ Dl,]‘- Thus D/,j\{vl} U {V4k+5} - 2k+3,]

Next, we prove that there are no other ver-
tices in TD,(Cye4)- Suppose for a contradiction
that there is another y-total dominating set D’ of
Cur+6, Which is different from these y-total dom-
inating sets. Note that |D’| = 2k + 4 and |[D’ N
We consider the

l ,2k+32

2k+3,j
2k+3 NE

{Vaks2> Vakess Vaksar Varas = 2.
following 3 cases.

Case 1: [D' N {Varya, Varsss Vaksss Varsstl = 4
If v € D, D’ is not minimal. Hence v, ¢ D’.
Similarly, v, € D’. Since Vaeis, Vakrs, Varsa and
V4,5 dominate 6 vertices, the other 2k vertices in
D’ must dominate the vertices v;,Vy,Vs,..., Va.
We now consider these 4k vertices as a path.
By Theorem 2,  D'\{Vii2, Vaks3s Vaksds Vakss)
is the only y-total dominating set of this
path  which is  {vy, V3, Ve, Vo, ..., Var—o, Var—1}-
Thus D'\{Var12, Vak+3, Vak+4> Var+s} U
Vars Var = {va, v, V6, V75 Vareas Vaga b U
{Vars Vaks1} = Dagy10k41 (Fig. 6).  Hence D' =
Dojy1,2k41 \{Varo Vars1 O {Varr25 Vak+3s Vakras Vakast =
[(Dakt1,2k41 U {Varra Varrs D\ {var} U

www.scienceasia.org
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a2 I\ Va1l U arast = D50 0000 \Mvar} U
Va2 \ Vg } U {varas} = D£k+2,2k+3\{"4k+1} U
{Vaks3} = Dy 5 9143» @ contradiction.

Case 2: |D" N {Vars2, Vaks3, Vaks4s VakssH = 3.

Subcase 2.1: Vg0, Vaxrss Vagsa € D', but vy, s €
D’.

Subcase 2.1.1: v, € D’. Since D’ contains
four consecutive vertices of the cycle, by repeating
the process in Case 1, D’ must be equal to Dl.”j for
some i, j, a contradiction.

Subcase 2.1.2: vy, ¢ D’. Thus v, ¢ D’
(otherwise, D’ is not minimal). Then v;,v, € D’.

Similarly, vy € D/, SO Vg_1,Vap € D’
Hence  D'\{Viii2, Vakss, Varsad U {va} is  a
y-total dominating set of Cyya- Thus

D'\{Vair2> Vaksss Vakeat U {vax} = Dij = O; U E;
for some 1 < i,j < 2k + 1. Since v; € O,
1<is<k+1. Since vy o, vy €Ej, j =2k+1.

Hence D'\{Vii2, Varsss Varsal U {Val = Digea
for some i € {1,2,...,k + 1}. Hence
D' = D\l U {Varsor Varss Vakral =

Digkr U {vagrss Varea )\ vard U v} =
D!, .o \{Var} U{vas2} = D!, 5, a contradiction.

Subcase 2.2: V0, Vakrss Vakes €D, DUt vy, 4 &
D’. Hence vy € D'. If vy, € D', D' is not
minimal. Hence v, ¢ D’. No matter whether
Va4 is in D’ or not, v, must be in D’. Thus
D'\{Vars2> Vaksss Vakss} U {Va1} is @ y-total domi-
nating set of Cyip- Thus D'\{Vii2, Varss, Varsst U
{V4k+1} = Dl,] = Ol UE] fOI‘ some 1 < i,j < 2k+ 1.
Since a1, Va1 €0y, 1 =2k +1. Since vy €E;, 1 <
Jj < k+1. Thus D'\{Vari2, Varsss Vaksst U {Vars1} =
Dyjyq; for some j € {1,2,...,k+1}. Hence D' =
Dojey1,j\{Vars1} U {V4k+21V4k+3:V4k+5/} = (Dyrs1,j U
Vaterzs Vaiers D\ Va1 YU {vars} = D2k+2,j\{v4k+1} U

o L
{Vakss} = Dy 43, @ contradiction.

Subcase 2.3: Vi, Vaksar Vakes € D', but
Vares € D', It is easy to obtain vy, vy ¢ D’ but
V2, Va2, Va1 € D'. Thus D'\{Vars2, Vasss Vaxes U
{vo} is a y-total dominating set of Cyo. Thus
D'\{V4ie+2, Vs Vakss} U {vo}} = Dy j = O; UE; for
some 1 < i,j <2k+ 1. Since vy € 0;, k+
1<i<2k+1. Since vy,v, € E;, j=1. Thus
D'"\{Vaies2, Vajesas Vakas} U {vo} = D;; for some i €
{k+1,k+2,...,2k+1}.

Subcase 2.3.1: kK + 1. Then
D" = Diy1n U {Varsos Vares I\ o} U {vggs} =
[(Drs1,1 Y {Vars2s Vakss D\ Vars3} U {varasH\ {vo} U
{Varral = Dy 1 MVaras U aras I\ vo Ulvaa} =
D1/<+2,1\{V0} U {Varsa} = D£+2,2k+3 by Claim 1.

Subcase 2.3.2: i€ {k+2k+3,...,2k+1}.
Then D' = Dy U {Vaiyz, Varrs\{Vo} U {vasa} =

| ——
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D{H,l\{vo} U{varsal = Di/+1,2k+3'

Subcase 2.4: Vi3, Vagras Vakss €D, DUt vy o &
D’

Subcase 2.4.1: vy € D’. Then D’ contains four
consecutive vertices of the cycle. Again, we repeat
the process in case 1, so we are done.

Subcase 2.4.2: v, ¢ D’. It is easy to obtain
Vo, Vs, Var € D', but vy, Vi1, Varss € D’. Hence
D'\{V4r135 Varrss Varss yU{v1 } is a y-total dominating
set of Cyprp. Thus D'\{Vary3, Varsas Varrst U {vi} =
D;; = O; UE; for some 1 <1i,j <2k+1. Since
vi,vs € O; and vy, vy € E;, i =1 and j € {k+
2,k+3,...,2k+1}. Hence D'\{V4i13, Vars4» Varas U
{ni} = Dy; for some j € {k + 2,k +3,...,2k +
1}. Hence D" = Dy ;\{v1} U {Vars3, Vars» Vakss} =
(Dl,j U {V4k+3; V4k+4})\{V1} U{Varss} = D{,jH\{Vl} V)
{Varss} = D§k+3,j+1 by Claim 2.

Case 3: |D' N {Var2, Varsss Vakras VakssH = 2.

Subcase 3.1: Vg3, Vagra € D', DUt Vygin, Varss &
D’. It is easy to obtain v;,v, € D’. Since
D'\{V4r135 Varsa} is a y-total dominating set of C g,
D'\{V4k+3, Vax+4} = D; j = O; UE; for some integers
1<i,j <2k+1. Since v; € D'\{V4rs3, Vaksa}> V1 €
O;. Thusie{1,2,...,k+1}.

Subcase 3.1.1: v, € D'. Since vy, vy € E;, j =
k+1. Hence D’ = D; ;1 U {43, Varsat = (Dig1 U
Va2 Vaiers D\ Warea2} U {vageaa} = D{,k+1\{V4k+2} U
{Varsal =D}

Subcase 3.1.2: v, ¢ D’. Hence v, € D’. Since
Vo, Var € Ej, j € {k+2,k+3,...,2k+1}. Hence D’ =
D; ;U {Vars3, Varsa} = D] 41

Subcase 3.2: Vi, Vages € D', DUt Vap g, Varys €
D’. 1If vy, € D', we repeat the process in Sub-
case 2.1; otherwise, we repeat the process in Sub-
case 3.1.

Subcase 3.3: Vg4, Varrs € D7, DUt Voo, Varss
D’. If vy € D’, we repeat the process in Subcase 2.4;
otherwise, we repeat the process in Subcase 3.1.

Subcase 3.4: V0, Vares € D', DUt vy s, Varys &
D’. Then v, € D’. If v; € D’, we repeat the process
in Subcase 2.4; otherwise, we repeat the process in
Subcase 3.1. m|

Theorem 9 Let k = 1 be an integer. Then

TD,(Cyrs3) = Caps-

Proof: First, we show that each y-total dominating
set of C,,5 cannot contain three or more consecu-
tive vertices of C4,5. Suppose for a contradiction
that there is a y-total dominating set D of C3,
which contains three or more consecutive vertices
of Cyy3- Let I be the largest number of these
consecutive vertices, so [ = 3. By Theorem 1, |D| =
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2k+2. Since these [ vertices dominate [ 4+ 2 vertices
of Cyi43, the other 2k +2 —1 vertices in D must
dominate at least 4k+3—(1+2) = 4k—I+1 vertices of
C4r+3- By Lemma 1, if [ = 3, these 2k +2—1 vertices
can dominate at most 2(2k+2—1)—1=4k+3—2I
vertices of Cyy3, which is less than 4k —1 + 1.
Suppose [ = 4. Then these 2k + 2 — vertices can
dominate at most 4k +4—21 vertices of C4, 3, which
is less than 4k—1+1. This is a contradiction. Hence
every y-total dominating set must contain k + 1
groups of two consecutive vertices of Cy,3. This
means there is only one vertex in C,,3, which is
dominated by 2 vertices in such a y-total dominating
set. To find all y-total dominating sets, it suffices to
find such a vertex on the cycle dominated by two
vertices. Clearly, there are exactly 4k + 3 y-total
dominating sets. Recall that Cy 3 =VyV; ... VarqaVo-
Let Dy = {Vo, V1, V3, V45 V7, V8, Vi1, Vias - - - Vak—1, Vak }
and D; = D;_1 \{V(41-1) (mod 4k+3) } I {V(a141) (mod 4k+3)}
foreachl =1,2,...,4k+ 2. Then DyD; ...Dy 2Dq
forms a cycle with 4k + 3 vertices. a
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