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ABSTRACT: A characterization for a Riesz s-potential function of a multisetωN of N points inR2 is given when s= 2−2N
and the potential function is constant on a circle in R2. The characterization allows us to partially prove a conjecture
of Nikolov and Rafailov that if the potential function is constant on a circle Γ then the points in ωN should be equally
spaced on a circle concentric to Γ . As an application of constant Riesz s-potential functions, we also find all maximal
and minimal polarization constants and configurations of two concentric circles in R2 for certain values of s.
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INTRODUCTION

For a fixed multiset of N points ωN :=
{x1, x2, . . . , xN} in R2 and a given constant
s ∈ R, we define the Riesz potential function
U s(·;ωN ) : R2 −→ [0,∞] as

U s(x;ωN ) :=
N
∑

j=1

|x − x j |−s,

where x ∈R2 and |·| is the 2-dimensional Euclidean
norm in R2. We call U s(·;ωN ) a Riesz s-potential
function of ωN . See Ref. 1 for more information
on Riesz s-potential functions in a d-dimensional
Euclidean space Rd .

In this paper, we consider two problems con-
cerning the Riesz s-potential functions U s(·;ωN ).
The first problem is to prove, in parts, Nikolov
and Rafailov’s conjecture about points in ωN be-
ing equally spaced on some circle when a Riesz s-
potential function is constant. The second problem
is to solve polarization optimality problems when
this Riesz s-potential function is constant.

Let ωN be a fixed set of distinct equally spaced
points on a circle T ⊆R2 and Γ be a circle concentric
to T . In Ref. 2, Nikolov and Rafailov show in
Theorem 1 that U s(x;ωN ) is constant as a function
of x on Γ if and only if s ∈ {0,−2,−4, . . . , 4−2N , 2−

2N}. They also show in Theorem 2 that this gives
a characteristic property of distinct equally spaced
points on a circle. More precisely, given a set ωN
of N distinct points such that U s(x;ωN ) is constant
on a circle Γ for every s ∈ {−2,−4, . . . , 2−2N} (the
constant may depend on s), the points in ωN are
equally spaced on some circle concentric to Γ . In
the same paper, it was conjectured (Conjecture 2)
that only s = 2− 2N should be sufficient. We state
the conjecture below.

Conjecture 1 Given a set of N distinct points ωN :=
{x1, x2, . . . , xN} ⊆ R2 and a circle Γ ⊆ R2 such that

U2−2N (x;ωN ) =
N
∑

j=1

|x − x j |2N−2

is constant as a function of x on Γ . Then ωN forms
a set of distinct equally spaced points on a circle
concentric to Γ .

The conjecture was verified in the case N = 3
(see Ref. 2, Proposition 2). In this paper, we prove
Conjecture 1 in the following cases (after translating
the centre of Γ to the origin):
(i) when all points x1, x2, . . . , xN have the same

norm (Proposition 1);
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(ii) when N = 4 and x1, x2, x3, x4 have an equal
angle distribution (Proposition 2);

(iii) when N is prime and x1, x2, . . . , xN have an
equal angle distribution and rational norms
(Proposition 3).

The above results are based on a characterization of
ωN when U2−2N (·;ωN ) is constant on the unit circle
(Theorem 1).

The next problems considered in this paper
are polarization optimality problems. Let ωN =
{x1, . . . , xN} denote a configuration of N (not nec-
essarily distinct) points in R2. Denote by

S1R := {x ∈ R2 : |x |= R}

the circle centred at the origin of radius R. When
R = 1, we simply use the notation S1. Given s ∈ R,
R> 0, and r > 0, we define polarization constants

M s
N (S

1
r ;S1R) := max

ωN⊆S1r
#ωN=N

min
y∈S1R

U s(y;ωN ), (1)

M0
N (S

1
r ;S1R) := N ,

ms
N (S

1
r ;S1R) := min

ωN⊆S1r
#ωN=N

max
y∈S1R

U s(y;ωN ), (2)

m0
N (S

1
r ;S1R) := N ,

where #ωN denotes the cardinality of the multiset
ωN . We will call ωN a maximal (minimal) N-point
Riesz s-polarization configuration of (S1r ;S1R) if ωN
attains the maximum in (1) (minimum in (2)). We
give a brief history of such polarization optimality
problems below.

Farkas and Révész3 were the first to introduce
two-plate polarization constants in a general sense.
However, all previous results4–6 on polarization op-
timality problems related to Riesz potentials were
considered for the case when R = r = 1. The
maximality of N distinct equally spaced points on
the unit circle for the maximal Riesz s-polarization
problem of (S1;S1) in (1) was proved in Ref. 4 for
s = 2. Erdélyi and Saff1 established this for s =
4. For arbitrary s > 0, this result was proved in
Ref. 5 where they also showed the minimality of N
distinct equally spaced points on the unit circle for
the minimal Riesz s-polarization problem of (S1;S1)
in (2) for −1 ¶ s < 0. Note that minimal N -point
Riesz s-polarization problems of (S1;S1) when s > 0
are not interesting because ms

N (S
1;S1) =∞ for all

s > 0.
Up to the present, there are no results on po-

larization optimality problems in (1) and (2) for

R 6= r. In this paper, we give a characterization of all
maximal and minimal N -point Riesz s-polarization
configurations of (S1r ;S1R) when s = −2,−4, . . . , 2−
2N .

Although the asymptotic properties of polar-
ization constants are not our main interest in this
paper, it is worth mentioning the asymptotic types
of behaviour of M s

N (S
1;S1) as N →∞ 5:

M s
N (S

1;S1)∼



























2ζ(s)
(2π)s

(2s −1)N s, s > 1,

(1/π)N log N , s = 1,

2−s

p
π

Γ
�

1−s
2

�

Γ
�

1− s
2

�N , 0¶ s < 1,

where ζ(s) denotes the classical Riemann zeta func-
tion and aN ∼ bN means that limN→∞ aN/bN = 1.
The reader is referred to Refs. 1, 7, 8 for asymptotic
results of polarization constants and configurations
of general subsets of Rd as N →∞ when s > 0.

CONSTANT RIESZ s -POTENTIAL FUNCTIONS

The Euclidean space R2 and the complex space C
over R have the same dimension and the same
norm. However, the complex space C has a richer
algebraic structure; for example, C is a field. Hence
when we prove all theorems in this and the next
section, any element x ∈ R2 will be replaced by x ∈
C, the 2-dimensional Euclidean norm |·| is replaced
by the modulus inC, and the notation x y is adopted
from the multiplication in C and the notation x/y
is adopted from the division in C. We recall that the
usual dot product in C is defined by

(a1+ a2i) · (b1+ b2i) := a1 b1+ a2 b2.

Now let ωN := {x1, x2, . . . , xN} ⊆ C be a set of
N distinct points. In this section, we will assume
that U2−2N (x;ωN ) =

∑N
j=1|x − x j |2N−2 is constant

(as a function of x) on a circle Γ ⊂C and prove that,
under various conditions, the points x1, x2, . . . , xN
are equally spaced on some circle concentric to
Γ . By translating and scaling the circle Γ , we can
assume without loss of generality that Γ is the unit
circle S1. The following conjecture is equivalent to
Conjecture 1.

Conjecture 2 Given a set of N distinct points ωN :=
{x1, x2, . . . , xN} ⊆ C such that

U2−2N (x;ωN ) =
N
∑

j=1

|x − x j |2N−2
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is constant as a function of x on S1, then ωN forms a
set of distinct equally spaced points on S1R for some R.

We begin with our main theorem which gives
a characterization of ωN when U2−2N (·;ωN ) is con-
stant on the unit circle.

Theorem 1 Let ωN = {x1, x2, . . . , xN} ⊆ C be a set
of N distinct points. Then the function

U2−2N (x;ωN ) =
N
∑

j=1

|x − x j |2N−2

is constant on the circle S1 if and only if

N
∑

j=1

N−k−1
∑

q=0

�

N −1
q

��

N −1
k+ q

�

|x j |2N−2k−2q−2 x k
j

= 0, for all k = 1, . . . , N −1. (3)

Note that (3) gives a system of N −1 equations
in terms of elements in the setωN . The proof of The-
orem 1 requires a technical lemma which involves a
lot of calculations, and so we will postpone it to the
end of this section.

Example 1 Suppose U2−2N (x;ωN ) is constant on
S1. We list the systems of equations (3) that the x j
must satisfy for small values of N below.
(i) Let N = 3. Then x1, x2, x3 must satisfy

3
∑

j=1

x2
j = 0,

3
∑

j=1

(1+ |x j |2)x j = 0.

(ii) Let N = 4. Then x1, x2, x3, x4 must satisfy

4
∑

j=1

x3
j = 0,

4
∑

j=1

(1+ |x j |2)x2
j = 0,

4
∑

j=1

(1+3|x j |2+ |x j |4)x j = 0.

(iii) Let N = 5. Then x1, x2, x3, x4, x5 must satisfy

5
∑

j=1

x4
j = 0,

5
∑

j=1

(1+ |x j |2)x3
j = 0,

5
∑

j=1

(3+8|x j |2+3|x j |4)x2
j = 0,

5
∑

j=1

(1+5|x j |2+ |x j |4)(1+ |x j |2)x j = 0.

Using the characterization given in Theorem 1,
we can verify Conjecture 2 in various cases. Our first
result asserts that Conjecture 2 holds if the points
x1, x2, . . . , xN already lie on the same circle centred
at the origin (i.e., they have the same norm).

Proposition 1 Let ωN = {x1, x2, . . . , xN} ⊆ C be a
set of N distinct non-zero points lying on some circle
centred at the origin. If U2−2N (·;ωN ) is constant on
S1, then x1, x2, . . . , xN are equally spaced.

Proof : It suffices to show that x1, x2, . . . , xN are the
N th roots of some complex number. Suppose |x1|=
|x2|= · · ·= |xN |= R. From (3) we deduce that

N
∑

j=1

x k
j = 0,

for all k = 1,2, . . . , N −1. By Newton’s identities,

ek(x1, x2, . . . , xN ) = 0, k = 1,2, . . . , N −1,

where the ek are elementary symmetric polynomi-
als. Thus x1, x2, . . . , xN are distinct roots of the
polynomial

N
∏

k=1

(X − xk) = X N −µ

for some µ ∈ C. 2
Now we will consider another special case. In-

stead of assuming that all points have the same
norm, we will assume that they have an equal angle
distribution around the origin. More precisely, let
ζ= e2πi/N and, without loss of generality, we assume
that

x1 = r1ζ
1, x2 = r2ζ

2, . . . , xN = rNζ
N (4)

for some positive real numbers r1, r2, . . . , rN . Our
next result proves Conjecture 2 when N = 4 and x1,
x2, x3, x4 have an equal angle distribution.

Proposition 2 Let x1, x2, x3, x4 be as in (4). Sup-
pose that

U−6(x;ωN ) :=
N
∑

j=1

|x − x j |6

is constant as a function of x on S1. Then x1, x2, x3,
x4 are equally spaced on a circle centred at the origin.

Proof : By Proposition 1, it suffices to show that
|x1|= |x2|= |x3|= |x4|. From Example 1, the points
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x1, x2, x3, x4 must satisfy

4
∑

j=1

x3
j =

4
∑

j=1

(1+ |x j |2)x2
j

=
4
∑

j=1

(1+3|x j |2+ |x j |4)x j = 0.

With x j = r jζ
j , the equation

∑4
j=1 x3

j = 0 becomes

r3
1ζ

3+ r3
2ζ

2+ r3
3ζ+ r3

4 = 0.

Let P(X ) = r3
1 X 3 + r3

2 X 2 + r3
3 X + r3

4 ∈ R[X ]. Since
ζ= i, ζ̄= −i are roots of P(X ), we have

P(X ) = C(X 2+1)(X + b) = C(X 3+ bX 2+ X + b),

for some non-zero C ∈ R. Comparing the coeffi-
cients, we have r1 = r3, r2 = r4.

The equation
∑4

j=1(1+ |x j |2)x2
j = 0 becomes

∑4
j=1(1 + r2

j )r
2
j ζ

2 j = 0. Expanding the sum and
using r1 = r3, r2 = r4 we have

2(1+ r2
1 )r

2
1ζ

2+2(1+ r2
2 )r

2
2 = 0.

Since ζ2 =−1 we obtain (1+ r2
1 )r

2
1 = (1+ r2

2 )r
2
2 . Let

t = r2/r1 and a = 1/r2
1 . We have

(a+1) = (a+ t2)t2 =⇒ t4+ at2− (a+1) = 0.

Thus

t2 =
−a±

p
a2+4a+4
2

=
−a± (a+2)

2
.

The only possible case is t2 = 1
2 (−a+ (a+ 2)) = 1.

Since t > 0 we have t = 1. Hence r2 = r1. We have
shown that r1 = r2 = r3 = r4. 2

Actually, if we further assume that all norms are
rational, then Conjecture 2 holds for all prime N .

Proposition 3 Let N be a prime number. Let
x1, x2, . . . , xN be as in (4) where all r j ∈ Q. Sup-
pose that U2−2N (·;ωN ) is constant on S1. Then
x1, x2, . . . , xN are equally spaced on a circle centred
at the origin.

Proof : By Proposition 1, it suffices to show that
|x1| = |x2| = · · · = |xN |. Applying the condition (3)
with k = N −1 gives

∑N
j=1 xN−1

j = 0. Thus

N
∑

j=1

rN−1
j ζ− j =

N
∑

j=1

rN−1
N− j ζ

j = 0.

Let A be a positive integer so that ArN−1
N− j ∈ Z>0

for every j. Then
∑N

j=1(ArN−1
N− j )ζ

k = 0. This is a
vanishing linear combination of 1,ζ, . . . ,ζN−1 with
positive-integer coefficients. Since the minimal
polynomial of ζ is 1+ X + · · ·+ X N−1 (N is prime),
this implies that all coefficients are equal. Thus
ArN−1

1 = ArN−1
2 = · · · = ArN−1

N and hence r1 = r2 =
· · ·= rN . 2

Proof of Theorem 1

The following technical lemma is needed for the
proofs of Theorem 1 and Theorem 2.

Lemma 1 Let N ∈ N and p ∈ {1, 2, . . . , N − 1} be
fixed. If x j := |x j | cos t j + i|x j | sin t j for all j =
1,2, . . . , N, then for all y := cos t + i sin t ∈ S1,

N
∑

j=1

|y − x j |2p

= E0+
p
∑

k=1

N
∑

j=1

[Ek, j cos kt j cos kt+Ek, j sin kt j sin kt],

(5)

where

E0 =
N
∑

j=1

p
∑

q=0

�

p
q

�2

|x j |2p−2q,

Ek, j = (−1)k2
p−k
∑

q=0

�

p
q

��

p
k+ q

�

|x j |2p−k−2q.

Proof : Let y := cos t + i sin t ∈ S1 and x j :=
|x j | cos t j+i|x j | sin t j for all j = 1,2, . . . , N . A simple
calculation shows that

f j(t) := |y − x j |2p = (|x j |2+1−2|x j | cos(t − t j))
p.

Since A := {1, cos(t− t j), . . . , cos p(t− t j)} forms an
orthogonal system with respect to the inner product

〈 f , g〉 :=

∫ 2π

0

f (t)g(t)dt

and f j ∈ span(A), we have

f j(t) =
p
∑

k=0

Ek, j cos k(t − t j) = E0, j

+
p
∑

k=1

Ek, j(cos kt j cos kt + sin kt j sin kt).
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Now,

N
∑

j=1

|y − x j |2p =
N
∑

j=1

f j(t)

= E0+
p
∑

k=1

N
∑

j=1

[Ek, j cos kt j cos kt+Ek, j sin kt j sin kt],

where E0 =
∑N

j=1 E0, j . By the orthogonality of the
elements in the set A and the calculation in Lemma 3
in the last section, we have

E0 =
N
∑

j=1

〈 f j , 1〉
2π

=
N
∑

j=1

p
∑

q=0

�

p
q

�2

|x j |2p−2q

and

Ek, j =
〈 f j , cos k(t − t j)〉

π

= (−1)k2
p−k
∑

q=0

�

p
q

��

p
k+ q

�

|x j |2p−k−2q,

for all k ∈ {1,2, . . . , p} and j ∈ {1, 2, . . . , N}. 2
Proof of Theorem 1: For each j = 1,2, . . . , N , set

x j := |x j | cos t j + i|x j | sin t j .

(⇒) By our assumption, f (y) :=
∑N

j=1|y − x j |2N−2

is constant on S1, say f (y) = C on S1. Set

y = cos t + i sin t ∈ S1.

By (5) for all t ∈ [0,2π],

C = f (y) = E0

+
N−1
∑

k=1

N
∑

j=1

[Ek, j cos kt j cos kt + Ek, j sin kt j sin kt].

(6)

Because the set {1, cos t, sin t, . . . , cos(N −
1)t, sin(N − 1)t} is linearly independent over
R, we deduce

C − E0 = 0

and for all k = 1,2, . . . , N −1,

N
∑

j=1

Ek, j cos kt j = 0 and
N
∑

j=1

Ek, j sin kt j = 0. (7)

Using the formulae of Ek, j from Lemma 1, it follows

from (7) that for all k = 1, 2, . . . , N −1,

0=
N
∑

j=1

Ek, j(cos kt j + i sin kt j) =
N
∑

j=1

Ek, j

|x j |k
x k

j

= (−1)k2
N
∑

j=1

N−k−1
∑

q=0

�

N −1
q

��

N −1
k+ q

�

× |x j |2N−2k−2q−2 x k
j , (8)

which implies (3).
(⇐) Assume that (3) holds. Then we have (8)

and (7). Combining (7) and the second identity in
(6), we have for all y ∈ S1,

N
∑

j=1

|y − x j |2N−2 = E0,

which implies that U2−2N ,h(·;ωN ) is constant on
S1. 2

AN APPLICATION TO POLARIZATION
OPTIMALITY PROBLEMS

We remind the reader that we will consider polar-
ization optimality problems in the complex plane.
A complete characterization of all maximal and
minimal N -point Riesz s-polarization configurations
of (S1r ;S1R) when s = −2,−4, . . . , 2− 2N is given as
follows.

Theorem 2 Let N ∈ N, p ∈ {1,2, . . . , N − 1}, R >
0, r > 0, and {x1, x2, . . . , xN} ⊆ S1r . The following
statements are equivalent:
(a) {x1, x2, . . . , xN} is a maximal N-point Riesz−2p-

polarization configuration of (S1r ;S1R);
(b) {x1, x2, . . . , xN} is a minimal N-point Riesz −2p-

polarization configuration of (S1r ;S1R);
(c)

∑N
j=1 x j =

∑N
j=1 x2

j = · · ·=
∑N

j=1 x p
j = 0.

Furthermore,

M−2p
N (S1r ;S1R) = m−2p

N (S1r ;S1R)

=
N
2p

p
∑

j=0

�

p
j

�2

(2rR)2 j(r2+R2+ |r2−R2|)p−2 j .

(9)

Unlike the case when R= r = 1 and s > 0, opti-
mal configurations for the cases in Theorem 2 may
not be unique up to rotation. For example, when p=
1 and N = 4, our characterization of optimal config-
urations is

∑4
j=1 x j = 0. Hence there are infinitely

many optimal configurations that are not rotations
of one another. The proof of Theorem 2 relies on
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the fact that if ωN is a configuration of N distinct
equally spaced points on S1r , then for each s =
−2,−4, . . . , 2−2N , U s(·,ωN ) is constant on S1R. This
special property allows the problems to have more
than one solution (up to rotation). Furthermore,
our experimental study suggests that for the cases
when s ∈ R2\{0,−2,−4, . . . , 2− 2N}, any maximal
and minimal N -point Riesz s-polarization configu-
ration of (S1r ;S1R) is unique up to rotation, namely,
it is a configuration of distinct equally spaced points
on S1r . We make the following conjecture.

Conjecture 3 Let N ∈ N, s ∈ R\{0,−2,−4, . . . , 2−
2N}, R > 0, r > 0, and {x1, x2, . . . , xN} ⊆ S1r . The
following statements are equivalent:
(a) {x1, x2, . . . , xN} is a maximal N-point Riesz s-

polarization configuration of (S1r ;S1R);
(b) {x1, x2, . . . , xN} is a minimal N-point Riesz s-

polarization configuration of (S1r ;S1R);
(c) {x1, x2, . . . , xN} is a configuration of distinct

equally spaced points on S1r .

Proof of Theorem 2

We need the following lemma.

Lemma 2 Let N ∈ N, p ∈ {1,2, . . . , N − 1}, R > 0,
and r > 0. Then any configuration of N distinct
equally spaced points on S1r is both a maximal and
a minimal N-point Riesz −2p-polarization configura-
tion of (S1r ;S1R).

Proof : LetωN := {x1, x2, . . . , xN} be a configuration
of N distinct equally spaced points on S1r and p ∈
{1,2, . . . , N − 1} be fixed. By Theorem 1 in Ref. 2,
we know that f (x) :=

∑N
j=1|x − x j |2p is constant as

a function of x on S1R, say f (x) = C for all x ∈ S1R.
Thus

max
x∈S1R

N
∑

i=1

|x i − x |2p = C =min
x∈S1R

N
∑

i=1

|x i − x |2p. (10)

Let {y1, y2, . . . , yN} be any N -point configuration on
S1r . To show that ωN is a minimal N -point Riesz
−2p-polarization configuration of (S1r ;S1R), we will
show that

max
x∈S1R

N
∑

i=1

|x i − x |2p ¶max
x∈S1R

N
∑

i=1

|yi − x |2p. (11)

Consider
�

�

�

�

x j −
R

yi/r

�

�

�

�

=

�

�

�

�

x j

yi

�

yi −
R

x j/r

��

�

�

�

=

�

�

�

�

yi −
R

x j/r

�

�

�

�

.

As R/(yi/r) ∈ S1R for all i, we have

NC =
N
∑

i=1

f
�

R
yi/r

�

=
N
∑

i=1

N
∑

j=1

�

�

�

�

x j −
R

yi/r

�

�

�

�

2p

=
N
∑

j=1

N
∑

i=1

�

�

�

�

yi −
R

x j/r

�

�

�

�

2p

. (12)

It follows from (12) that there is j0 ∈ {1, 2, . . . , N}
such that

C ¶
N
∑

i=1

�

�

�

�

yi −
R

x j0/r

�

�

�

�

2p

¶max
x∈S1R

N
∑

i=1

|yi − x |2p.

But C = maxx∈S1R

∑N
i=1|x i − x |2p from (10). Hence

we have (11) as required.
To show that ωN is a maximal N -point Riesz

−2p-polarization configuration of (S1r ;S1R), we will
show that

min
x∈S1R

N
∑

i=1

|yi − x |2p ¶min
x∈S1R

N
∑

i=1

|x i − x |2p. (13)

It follows from (12) that there is j′0 ∈ {1, 2, . . . , N}
such that

min
x∈S1R

N
∑

i=1

|yi − x |2p ¶
N
∑

i=1

�

�

�

�

�

yi −
R

x j′0
/r

�

�

�

�

�

2p

¶ C .

But C = minx∈S1R

∑N
i=1|x i − x |2p from (10). Hence

we have (13) as required. 2
Proof of Theorem 2: Because the proof of (a) ⇔
(c) is similar to the proof of (b)⇔ (c), we will show
only (b) ⇔ (c) and skip the proof of (a) ⇔ (c).
Without loss of generality, we can assume that R= 1.

Let N ∈ N, p ∈ {1,2, . . . , N − 1}, and r > 0
be fixed and {x1, x2, . . . , xN} be any configuration
in S1r . We recall from Lemma 1 that for x j :=
r cos t j + ir sin t j for all j = 1, 2, . . . , N and for all
y := cos t + i sin t ∈ S1,

N
∑

j=1

|y − x j |2p = E0

+
p
∑

k=1

N
∑

j=1

[Ek, j cos kt j cos kt + Ek, j sin kt j sin kt],

(14)

= E0+
p
∑

k=1

N
∑

j=1

� Ek, j

rk
(yk · x k

j )
�

, (15)
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where

E0 =
N
∑

j=1

p
∑

q=0

�

p
q

�2

r2p−2q,

Ek, j

rk
= (−1)k2

p−k
∑

q=0

�

p
q

��

p
k+ q

�

r2p−2k−2q. (16)

Notice that the constant E0 does not depend on a
configuration on S1r and the constants Ek, j/r

k do
not depend on a configuration on S1r and j. For
convenience for all configurations {x1, x2, . . . , xN} ⊆
S1r , we set

Ek :=
Ek, j

rk
, for all k = 1, 2, . . . , p. (17)

First of all, we will show that

m−2p
N (S1r ;S1) = E0.

Let ω′N := {x ′1, x ′2, . . . , x ′N} be a configuration of
distinct equally spaced points on S1r . Using (15), we
have for all y ∈ S1,

N
∑

j=1

|y − x ′j |
2p = E0+

p
∑

k=1

N
∑

j=1

Ek(y
k · (x ′j)

k)

= E0+
p
∑

k=1

Ek

�

yk ·
N
∑

j=1

(x ′j)
k
�

= E0 (18)

where the last equality follows from the fact that
∑N

j=1(x
′
j)

k = 0 for all k = 1, 2, . . . , p. Since ω′N is
a minimal N -point Riesz −2p-polarization configu-
ration of (S1r ;S1) (by Lemma 2), we obtain

m−2p
N (S1r ;S1) =max

y∈S1
U−2p(y;ω′N ) = E0.

We now prove (c)⇒(b). Assume that ωN =
{x1, x2, . . . , xN} ⊆ S1r such that

∑N
j=1 x k

j = 0 for all
k = 1,2, . . . , p. Applying the same argument as in
(18), we have for all y ∈ S1,

U−2p(y;ωN ) = E0+
p
∑

k=1

Ek

�

yk ·
N
∑

j=1

x k
j

�

= E0,

which implies that ωN is a minimal N -point Riesz
−2p-polarization configuration of (S1r ;S1).

Next, we show (b)⇒(c). Assume that ωN =
{x1, x2, . . . , xN} is a minimal N -point Riesz −2p-
polarization configuration of (S1r ;S1). Then for all
y ∈ S1,

U−2p(y;ωN ) =
N
∑

j=1

|y − x j |2p ¶ m−2p
N (S1r ;S1) = E0.

Then, by (14) and (17) for all t ∈ [0,2π],

E0 ¾ U−2p(y;ωN ) = E0+
p
∑

k=1

(C cos kt +S sin kt).

whereC =
∑N

j=1 Ek cos kt j andS =
∑N

j=1 Ek sin kt j .
Thus for all t ∈ [0, 2π],

0¾
p
∑

k=1

(C cos kt +S sin kt).

Hence for all t ∈ [0,2π],
p
∑

k=1

(C cos kt +S sin kt) = 0.

Because {cos t, sin t, cos2t, sin2t, . . . , cos pt, sin pt}
is a linearly independent set over R for all k =
1,2, . . . , p,

N
∑

j=1

Ek cos kt j =
N
∑

j=1

Ek sin kt j = 0.

Since for all k = 1, 2, . . . , p, Ek 6= 0 ((16)),
N
∑

j=1

cos kt j =
N
∑

j=1

sin kt j = 0, k = 1,2, . . . , p,

which implies that
∑N

j=1 x k
j =

∑N
j=1 rk(cos kt j +

i sin kt j) = 0 for all k = 1, 2, . . . , p.

To compute M−2p
N (S1r ;S1R) and m−2p

N (S1r ;S1R) in
(9), we can use a similar argument in Lemma 1 by
replacing y = R cos t+iR sin t and f j(t) = |y−x j |2p =
(r2+R2−2Rr cos(t−t j))p. Applying the calculations
as in Lemma 4, it is not difficult to check that if ωN
is a configuration of N distinct equally spaced points
on S1r , then for all y ∈ S1R,

U−2p(y;ωN )

=
N
2p

p
∑

j=0

�

p
j

�2

(2rR)2 j(r2+R2+ |r2−R2|)p−2 j .

2

COMPUTATIONS OF INTEGRALS

We collect our computations of all integrals in this
section.

Lemma 3 Let p ∈ N, k ∈ {0, 1, . . . , p}, and z ∈ C.
Then
∫ 2π

0

(z2+1−2z cos t)p cos kt dt

= (−1)k2π
p−k
∑

q=0

�

p
q

��

p
k+ q

�

z2p−k−2q. (19)
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Proof : Let p ∈ N and k ∈ {0,1, . . . , p}. First, we
prove the equality (19) for z ∈ R. Let z ∈ R. Then,
for ζ= eit ,

∫ 2π

0

(z2+1−2z cos t)p cos kt dt

=

∫ 2π

0

(z2+1− z(eit + e−it))p eikt dt

=

∫ 2π

0

(z− eit)p(z− e−it)p eikt dt

=
1
i

∫

S1
(z−ζ)p(z−1/ζ)pζk−1 dζ

= 2πRes
�

(z−ζ)p(zζ−1)p

ζp−k+1
;ζ= 0

�

= (−1)k2π
p−k
∑

q=0

�

p
q

��

p
k+ q

�

z2p−k−2q,

where the first equality follows from the fact that
the last expression is a real number. Notice that the
left-hand side and the right-hand side of (19) are
polynomials as functions of z. Thus both functions
are analytic on C and we have (19) for all z ∈C. 2

Lemma 4 Let p ∈ N and k ∈ {0,1, . . . , p}. For a, b ∈
C,

∫ 2π

0

(a− b cos t)p cos kt dt

=
(−1)kπ

2p−1

p−k
∑

q=0

�

p
q

��

p
k+ q

�

Ca,b,p,q,k, (20)

where Ca,b,p,q,k = b2q+k(a±
p

a2− b2)p−k−2q and the
square root function in (20) can be selected to be both
branches of the complex square root function.

Proof : Clearly, if b = 0, then the equation in (20) is
0= 0. Assume that b ∈ C\{0} and a ∈ C. To reduce
(20) to (19), we consider

(λa−λb cos t)p,

where λ is chosen to satisfy the equations

2z = bλ, z2+1= aλ,

for some z ∈ C. From the above equations,

z =
a±
p

a2− b2

b

and

λ=
2z
b
=

2a±2
p

a2− b2

b2
.

Furthermore, λ 6= 0 because if λ = 0, then z = 0
which implies that b = 0. Hence by Lemma 3,

∫ 2π

0

(a− b cos t)p cos kt dt

=
1
λp

∫ 2π

0

(λa−λb cos t)p cos kt dt

=
1
λp

∫ 2π

0

(z2+1−2z cos t)p cos kt dt

=
(−1)kπ

2p−1

p−k
∑

q=0

�

p
q

��

p
k+ q

�

Ca,b,p,q,k.
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