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ABSTRACT: The CG_DESCENT (CGD) method is one of the most efficient conjugate gradient methods for solving
unconstrained optimization problems. However, its applications in some other scenarios are relatively few. In this
paper, inspired by one spectral PRP projection method, we extend the CGD method, and establish a derivative-free
spectral CGD type projection method to solve large-scale nonlinear monotone equations with convex constraints. Due to
it inheriting some nice properties of the conjugate gradient method such as the low memory requirement, the proposed
method is very suitable to solve large-scale nonlinear monotone equations. Under appropriate conditions, we prove
that the proposed method is globally convergent. Preliminary numerical results show that the proposed method works
well.
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INTRODUCTION

In this paper, we focus on solving the nonlinear
monotone equations

F(x) = 0, x ∈ Ω, (1)

where F : Ω → Rn is continuous and monotone,
and Ω ⊆ Rn is a nonempty closed convex set. The
monotonicity of F means that

〈F(x)− F(y), x − y〉¾ 0, ∀x , y ∈ Ω. (2)

Nonlinear monotone equations have many prac-
tical applications such as some monotone varia-
tional inequality problems1, economic equilibrium
problems2, and chemical equilibrium systems3.
Even now, a lot of computational methods have been
proposed to solve nonlinear monotone equations.
Among these methods, Newton’s method, the quasi-
Newton method, and their variants are very popu-
lar because of their local superlinear convergence.
However, these methods are not suitable for large-
scale nonlinear monotone equations because they
need to solve a linear system of equations using the
Jacobian matrix of F(x) or an approximation of the
Jacobian matrix at each iteration.

It is well-known that the spectral gradient
method is an efficient method to solve large-scale
unconstrained optimization problems because of its

simplicity and low storage requirements. Thus some
people have extended some spectral gradient meth-
ods to solve large-scale nonlinear monotone equa-
tions. Recently, by combining the projection tech-
nique of Solodov and Svaiter4 and the spectral gra-
dient method of Barzilai and Borwein5, Zhang and
Zhou6 proposed a derivative-free spectral gradient
projection method to solve unconstrained monotone
equations in which the search direction is defined as

d0 = −F0, dk = −θk Fk,

where θk = sT
k−1sk−1/s

T
k−1 yk−1, yk−1 = Fk − Fk−1 +

rsk−1, sk−1 = xk−xk−1, r > 0. The proposed method
is shown to be globally convergent to a solution of
the equations if the nonlinear equations to be solved
are monotone and Lipschitz continuous. Yu et al7

used the above method to solve convex constrained
nonlinear monotone equations. They proved that
the proposed method is globally convergent under
mild assumptions. Preliminary numerical results
show that the proposed method works quite well
for large-scale problems. Most recently, based on
the projection technique4, the spectral gradient
method5 and the classical PRP conjugate gradient
method8, Liu9 proposed a derivative-free spectral
PRP projection method (SPRP) to solve nonlin-
ear monotone equations with convex constraints in
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which the search direction is computed from

d0 = −F0, dk = −θk Fk +β
PRP
k dk−1.

Here βPRP
k = FT

k yk−1/‖Fk−1‖2, and the definitions
of θk and yk−1 are the same as those in Ref. 6.
The global convergence of the SPRP method is es-
tablished with some suitable conditions. Because
of the derivative-free feature and lower storage
requirement, the SPRP method is very suitable to
solve large-scale non-smooth nonlinear monotone
equations. Numerical results also show that the
SPRP method is more efficient and robust than the
method in Ref. 7.

In this paper, motivated by the idea of Liu9,
we combine the famous CG_DESCENT (CGD)
method10 and the spectral gradient method5

with the projection technique4, and construct a
derivative-free spectral CGD projection method for
solving large-scale convex constrained monotone
equations in which the Jacobian matrix of F is not
available or requires a large amount of storage. The
proposed method is suitable for solving large-scale
nonlinear monotone equations because it inherits
some nice properties of the spectral conjugate gra-
dient and CGD methods such as the low memory
requirement and the high efficiency. We prove its
global convergence under some appropriate con-
ditions. By comparing with the SPRP method9,
numerical results show that the proposed method
is very efficient.

The paper is organized as follows. In the
next section, we introduce the CGD method and
its variants, and establish the new algorithm with
the backtracking line search. In the third section,
some assumptions and lemmas are proposed, and
the global convergence of the proposed method is
proved. Preliminary numerical results are presented
in the final section.

ALGORITHM

In this section, we first introduce the CGD method
with its variants, some basic concepts, and proper-
ties of the projection operator. Then we give the
specific steps of the proposed method.

The CGD method is one of the most effi-
cient conjugate gradient methods for solving uncon-
strained optimization problems. Its search direction
is defined as

d0 = −g0, dk = −gk +βkdk−1,

where gk is the gradient of the objective function f

at xk, βk =max{βHZ
k ,ηk}. Here

βHZ
k =

1
dT

k−1 yk−1

�

yk−1− tdk−1
‖yk−1‖2

dT
k−1 yk−1

�T

gk,

ηk =
−λ

‖dk‖min{η,‖gk−1‖}
,

and yk−1 = gk−gk−1, λ> 0, η> 0, t = 2. The global
convergence of the CGD method is proved under
the standard Wolfe line search. Numerical results
also show that the CGD method, applying the ap-
propriate strong Wolfe line search, is more efficient
than the PRP method. Subsequently, based on the
spectral scaling secant equation proposed by Cheng
and Li11, Liu et al12 further studied some conjugate
gradient methods in the Hager-Zhang family10, and
showed that the CGD method with t = 1 is more
efficient than that with t = 2. Furthermore, Dai
and Kou13 used the spectral technique to analyse the
CGD method, and suggested that the CGD method
with t = 1 is better than that with t = 2.

LetΩ be a nonempty closed convex subset of Rn.
For any x ∈ Rn, its projection onto Ω is defined as

PΩ(x) = arg min{‖x − y‖ | y ∈ Ω}.

The mapping PΩ : Rn −→ Ω is a projection operator.
For any x , y ∈ Rn, it holds that

‖PΩ(x)− PΩ(y)‖¶ ‖x − y‖. (3)

We now describe the specific steps of the
derivative-free spectral CGD projection method. In
this paper, we select the parameter t = 1 in the
algorithm. For convenience, we abbreviate F(xk) by
Fk.

Algorithm 1
Step 1: Give an initial point x0 ∈Rn, ρ ∈ (0,1),σ>

0, r ∈ (0, 1).
Step 2: Set d0 = −F0. Set k := 0.
Step 3: Determine the step-size αk = max{ρi | i =

0,1, 2, . . .} is by the following line search:

−〈F(zk), dk〉¾ σαk‖F(zk)‖ · ‖dk‖2, (4)

where zk = xk +αkdk.
Step 4: Obtain the next iterative point xk+1 by

xk+1 = PΩ[xk −λk F(zk)], (5)

where λk = F(zk)T(xk − zk)/‖F(zk)‖2.
Step 5: If Fk+1 = 0, stop. Otherwise, generate the

next search direction dk+1 by

dk+1 = −θk+1Fk+1+βk+1sk. (6)
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Here

βk+1 =
1

sT
k wk

�

wk −
‖wk‖2

sT
k wk

sk

�T

Fk+1,

θk+1 =
sT
k sk

sT
k wk

,

where

wk = yk + rsk, sk = xk+1− xk, yk = Fk+1− Fk.

Step 6: Set k := k+1 and go to step 3.

Remark 1 From the definitions of wk and sk, we
have

sT
k wk = sT

k yk + rsT
k sk ¾ r‖sk‖2 > 0,

where the inequality follows from the monotonicity
of F . This means that the denominators of βk+1
and θk+1 are always greater than zero before the
algorithm stops.

GLOBAL CONVERGENCE

In this section, we assume that mapping F satisfies
the following assumption.
Assumption H The mapping F : Rn −→ Rn is Lips-
chitz continuous, i.e., there exists a constant L > 0
such that

‖F(x)− F(y)‖¶ L‖x − y‖, ∀x , y ∈ Rn. (7)

The remainder of this section is devoted to pro-
viding some interesting lemmas and one theorem.
To prove the following lemma, we assume that L <
4− r holds, where r is defined in Step 1.

Lemma 1 Let the sequences {dk} and {Fk} be gener-
ated by Algorithm 1. Then we have

FT
k dk ¶ −c‖Fk‖2, ∀k ¾ 0, (8)

where c =min{1,1/(L+ r)− 1
4}.

Proof : From the definition of wk−1 in Step 5 and (7),
we have

sT
k−1wk−1 ¶ ‖sk−1‖ · ‖wk−1‖

¶ ‖sk−1‖(‖Fk − Fk−1‖+ r‖sk−1‖)

¶ (L+ r)‖sk−1‖2.

This means that

θk ¾
1

L+ r
. (9)

For k ¾ 1, by taking the inner product of (6) with
the vector Fk, it follows from (9) that

FT
k dk = −θk‖Fk‖2+βk FT

k sk−1

¶
FT

k wk−1sT
k−1wk−1FT

k sk−1−‖wk−1‖2(FT
k sk−1)2

(sT
k−1wk−1)2

−
1

L+ r
‖Fk‖2.

Let a = (sT
k−1wk−1)/

p
2FT

k ,b =
p

2(FT
k sk−1)wk−1. It

follows from a · b ¶ 1
2 (a

2+ b2) that

FT
k dk ¶ −

1
L+ r

‖Fk‖2+ 1
4‖Fk‖2.

From Step 2, for k = 0, FT
0 d0 = −‖F0‖2. Thus (8)

holds. 2

Lemma 2 Suppose that Assumption H holds. Then
there exists a step-size αk satisfying the line search (4)
for any k ¾ 0.

Proof : Assume that there exists a constant k0 ¾ 0
such that (4) is not satisfied for any nonnegative
integer i, i.e.,

−〈F(xk0
+ρidk0

), dk0
〉<σρi‖F(xk+ρ

idk0
)‖·‖dk0

‖2.

From the continuity of the mapping F , let i →∞.
We have

−〈F(xk0
), dk0

〉< 0.

It follows from (8) that

−F(xk0
)Tdk0
¾ 0.

The above two inequalities are contradictory. Thus
the assumption does not hold, which means that the
line search (4) is always well posed. 2

Lemma 3 Suppose that Assumption H holds. Let the
sequences {xk} and {zk} be generated by Algorithm 1,
and x̄ ∈ Ω is an arbitrary solution of (1). Then

‖xk+1− x̄‖2 ¶ ‖xk − x̄‖2−σ2‖xk − zk‖4. (10)

Proof : From the monotonicity of the mapping F , it
holds that

〈F(zk)− F( x̄), zk − x̄〉¾ 0.

Then

〈F(zk)− F( x̄), xk − x̄〉¾ −〈F(zk)− F( x̄), zk − xk〉.
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From the definition of zk and (4), we have

〈F(zk), xk − x̄〉¾ −〈F(zk), zk − xk〉

= α2
kσ‖F(zk)‖ · ‖dk‖2 ¾ 0. (11)

From (5) we have

‖xk+1− x̄‖2 = ‖PΩ[xk −λk F(zk)]− PΩ[ x̄]‖2

¶ ‖xk −λk F(zk)− x̄‖2

= ‖xk − x̄‖2−2λk F(zk)
T(xk − x̄)+λ2

k‖F(zk)‖2

¶ ‖xk − x̄‖2−
F(zk)T(xk − zk) · F(zk)T(xk − zk)

‖F(zk)‖2

¶ ‖xk − x̄‖2−α4
kσ

2‖dk‖4

= ‖xk − x̄‖2−σ2‖xk − zk‖4,

where the first inequality follows from (3), the sec-
ond inequality follows from (11) and the definition
of λk, the last inequality follows from (4). 2

Remark 2 From (10) we have

σ2‖xk − zk‖4 ¶ ‖xk − x̄‖2−‖xk+1− x̄‖2.

It is not difficult to show that
+∞
∑

k=0

σ2‖xk − zk‖4 ¶ ‖x0− x̄‖2 < +∞,

which means that

lim
k→∞
‖xk − zk‖= 0. (12)

Theorem 1 Suppose that Assumption H holds. Let
the sequence {Fk} be generated by Algorithm 1. Then
we have

lim inf
k→∞

‖Fk‖= 0. (13)

Proof : We assume that (13) does not hold, i.e., there
exists a constant u> 0 such that

‖Fk‖¾ u, ∀k ¾ 0. (14)

It follows from the definition of wk and (7) that

‖wk−1‖¶ ‖Fk − Fk−1‖+ r‖sk−1‖¶ (r + L)‖sk−1‖.

From Remark 1 and the definition of βk,

|βk|¶
‖Fk‖ · ‖wk−1‖

sT
k−1wk−1

+
‖wk−1‖2 · ‖Fk‖ · ‖sk−1‖

(sT
k−1wk−1)2

¶
�

1+
L
r

� ‖Fk‖
‖sk−1‖

+
(L+ r)2 · ‖Fk‖

r2‖sk−1‖

=
�

2+
3L
r
+

L2

r2

� ‖Fk‖
‖sk−1‖

.

Then from Remark 1 we have

‖dk‖¶
1
r
‖Fk‖+ |βk| · ‖sk−1‖¶ v‖Fk‖, (15)

where v = 2+ (3L + 1)/r + L2/r2. It follows from
(4) that ρ−1αk satisfies

−〈F(ezk), dk〉< σρ−1αk‖F(ezk)‖ · ‖dk‖2,

where ezk = xk+ρ−1αkdk. From (8) and (7) we have

c‖Fk‖2 ¶ −FT
k dk

= (F(ezk)− Fk)
Tdk − F(ezk)

Tdk

¶ ρ−1 Lαk‖dk‖2+ρ−1σαk‖F(ezk)‖ · ‖dk‖2,

i.e., αk‖dk‖ ¾ cρ‖Fk‖2/(L +σ‖F(ezk)‖)‖dk‖. It fol-
lows from (14) and (15) that

αk‖dk‖¾
cρu

v(L+σ‖F(ezk)‖)
> 0. (16)

From (12) and the definition of zk,

lim
k→∞

αk‖dk‖= 0.

This result contradicts (16). Thus the assumption
does not hold, which means that (13) holds. 2

NUMERICAL RESULTS

In this section, we compare Algorithm 1 with the
SPRP method, an efficient derivative-free projec-
tion method9 based on the PRP conjugate gradient
method and spectral gradient method for solving
nonlinear monotone equations with convex con-
straints. The parameters in Algorithm 1 are ρ = 0.5,
σ = 0.01, r = 0.001. The parameters in the SPRP
method come from Ref. 9. All algorithms termi-
nate whenever ‖Fk‖ ¶ 10−5 or the total number
of iterates exceeds 100 000. All presented codes
are written in MATLAB 7.0, and run on a PC with
3.30 GHz CPU, 8.00 GB memory, and Windows 7
operation system. The tested problems with differ-
ent initial starting points and various dimensions are
as follows.

Example 1 The function F is defined as

F(x) = x − sin x ,

where x ∈ Ω = {x ∈ Rn |
∑n

i=1 x i ¶ n, x i ¾ −1, i =
1,2, . . . , n}.
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Table 1 The numerical results of Example 1 with the given
initial points.

dim Algorithm 1 SPRP

niter CPU niter CPU

x0 5000 337 0.17 616 0.30
10 000 424 0.38 777 0.65
20 000 534 0.87 980 1.58

x1 5000 347 0.17 625 0.30
10 000 434 0.40 785 0.65
20 000 544 0.87 989 1.61

x2 5000 347 0.15 625 0.30
10 000 434 0.37 785 0.66
20 000 544 0.91 989 1.64

x3 5000 337 0.17 616 0.28
10 000 424 0.36 777 0.66
20 000 534 0.86 980 1.59

x4 5000 66 0.05 111 0.09
10 000 66 0.08 111 0.14
20 000 66 0.14 111 0.22

x5 5000 342 0.15 618 0.30
10 000 429 0.48 780 0.67
20 000 538 0.89 982 1.62

Example 2 The elements of function F are given as

F1(x) = x1− exp
�

cos
x1+ x2

n+1

�

,

Fi(x) = x i − exp
�

cos
x i−1+ x i + x i+1

n+1

�

,

Fn(x) = xn− exp
�

cos
xn−1+ xn

n+1

�

,

where x ∈ Ω= Rn
+, i = 2,3, . . . , n−1.

Example 3 The elements of function F are given as

Fi(x) =
p

10−5(x i −1),

Fn(x) =
1

4n

n
∑

j=1

x2
j −

1
4 ,

where x ∈ Ω= Rn
+, i = 1,2, . . . , n−1.

Example 1 comes from Ref. 9. Example 2 is
a modification of the tridiagonal exponential prob-
lem14 by adding an additional convex constraint.
Example 3 is a modification of the Penalty I func-
tion15 by adding an additional convex constraint. It
is not difficult to show that all the functions F in
these problems are monotone.

The numerical results are listed in Tables 1–4,
where dim stands for the dimension of the test

Table 2 The numerical results of Example 2 with the given
initial points.

dim Algorithm 1 SPRP

niter CPU niter CPU

x0 5000 4 0.03 14 0.08
10 000 4 0.03 14 0.16
20 000 4 0.05 15 0.23

x1 5000 4 0.02 14 0.08
10 000 4 0.03 15 0.16
20 000 4 0.04 15 0.22

x2 5000 5 0.03 14 0.11
10 000 5 0.05 14 0.13
20 000 5 0.04 15 0.23

x3 5000 4 0.03 14 0.08
10 000 4 0.04 14 0.11
20 000 5 0.05 15 0.22

x4 5000 4 0.03 14 0.09
10 000 4 0.04 14 0.13
20 000 4 0.05 15 0.22

x5 5000 5 0.04 14 0.09
10 000 5 0.04 14 0.13
20 000 5 0.05 15 0.23

Table 3 The numerical results of Example 3 with the given
initial points.

dim Algorithm 1 SPRP

niter CPU niter CPU

x0 5000 325 0.17 622 0.32
10 000 507 0.48 984 0.92
20 000 777 1.39 1516 2.84

x1 5000 325 0.17 622 0.32
10 000 507 0.47 984 0.93
20 000 777 1.37 1516 2.82

x2 5000 320 0.19 614 0.30
10 000 502 0.44 974 0.85
20 000 769 1.26 1502 2.53

x3 5000 324 0.17 622 0.33
10 000 507 0.47 984 0.93
20 000 777 1.38 1516 2.80

x4 5000 325 0.18 621 0.32
10 000 507 0.47 984 0.93
20 000 777 1.38 1516 2.81

x5 5000 321 0.19 618 0.33
10 000 503 0.48 974 0.93
20 000 770 1.37 1502 2.87

problems, and niter and CPU represent the total
number of iterates and the CPU time in seconds,
respectively. To show the practicability of Algo-
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Table 4 The numerical results with random initial points.

dim Algorithm 1 SPRP

niter CPU niter CPU

Example 1 5000 342 0.27 619 0.33
10 000 429 0.42 780 0.73
20 000 538 0.98 983 1.86

Example 2 5000 5 0.03 14 0.08
10 000 5 0.05 14 0.12
20 000 5 0.06 15 0.24

Example 3 5000 323 0.17 619 0.32
10 000 506 0.47 980 0.94
20 000 775 1.31 1512 2.80

rithm 1, we test the given problems with the number
of variables n = 5000, 10 000, 20 000 and some
given initial points: x0 = (−0.1,−0.1, . . . ,−0.1)T,
x1 = (−1,−1, . . . ,−1)T, x2 = (−1, 1,−1, . . .)T, x3 =
(−0.1,0.1,−0.1 · · · )T, x4 = (1, 1

2 , . . . , 1/n)T, x5 =
(1 − 1/n, 1 − 2/n, . . . , 1 − n/n)T. In addition, for
the given n, each problem is tested three times
with random initial points generated by MATLAB’s
rand(n,1) in (−1,1), and the average of the three
results is given in Table 4

We see from Tables 1–3 that, starting from
the given initial points, the two methods terminate
successfully at a solution of the problem. For Exam-
ple 2, there seems to be not much difference among
the performances of the two methods. However, Al-
gorithm 1 performs better than the SPRP method for
Example 1 and Example 3. Table 4 further indicates
that Algorithm 1 is more stable and efficient than
the SPRP method for the given problems.
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