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ABSTRACT: The least angle regression selection (LARS) algorithms that use the classical sample means, variances,
and correlations between the original variables are very sensitive to the presence of outliers and other contamination.
To remedy this problem, a simple modification of this algorithm is to replace the non-robust estimates with their robust
counterparts. Khan, Van Aelst, and Zamar employed the robust correlation for winsorized data based on adjusted
winsorization correlation as a robust bivariate correlation approach for plug-in LARS. However, the robust least angle
regression selection has some drawbacks in the presence of multivariate outliers. We propose to incorporate the Olive
and Hawkins reweighted and fast consistent high breakdown estimator into the robust plug-in LARS method based on
correlations. Our proposed method is tested by using a numerical example and a simulation study.
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INTRODUCTION

During the last decade the problem of variable se-
lection, which is a result of unreliable data quality
and many covariates, has been studied using least
angle regression selection (LARS)1, adaptive lasso2,
robust LARS3, robust LARS based on S-estimators4,
and sparse partial robust M (SPRM) regression
estimators5. Most researchers have showed that
fitting all possible subsets and sequential methods
like stepwise selection are not feasible options, be-
ing very time consuming. Furthermore, when the
predictors are correlated, these methods not only
omit some predictors that exhibit small effects, but
may fail to include some covariates that exhibit big
effects.

Recently, many selection procedures have been
developed to remedy the problem of having many
predictors. These use the selection strategy of two-
step model building. The first step involves a se-
quencing that aims to place all candidate covariates
in an order such that the more important ones are
likely to be placed at the beginning. The second
step is a segmentation step whereby a subset of
m (determined by the user’s experience) candidate

variables are carefully examined from the list of
variables in the sequencing step in order to select
the final model. In this paper, we mainly focus on
the sequencing step.

Since the formulation of LARS is based on the
classical correlation matrix, it is sensitive to outliers.
Khan et al3 proposed a robust version of LARS based
on two approaches (plug-in and data cleaning) of
robust bivariate correlation estimates which can be
efficiently computed using bivariate winsorization.
These types of correlations are robust only to bivari-
ate outliers. However, three- or higher-dimensional
outliers may not be detected by univariate and bi-
variate analyses. Khan, Van Aelst, and Zamar6 men-
tioned that the correlation matrix obtained from the
pairwise correlation approach may not be positive
definite, forcing the use of a correction for positive
definiteness in some cases7. These problems have
motivated us to improve this strategy by using a fast
and robust multivariate location and dispersion that
is robust to multivariate outliers. Subsequently, a
robust correlation matrix will be formulated. Olive
and Hawkins8 suggested using a reweighted fast
consistent and high breakdown (RFCH) estimator
that uses a standard method for reweighting a fast
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consistent high breakdown (FCH) estimator and
gives an easily computed

p
n-consistent estimator

robust to outliers. FCH estimators are based on
two attractors, namely, the Devlin-Gnanadesikan-
Kettenring (DGK) and the median ball estimators
with some kind of location criterion. The RFCH
estimator differs from the robust bivariate correla-
tion in that it is robust to multivariate outliers. In
this regard, we propose to incorporate the RFCH ro-
bust correlation matrix9 instead of robust bivariate
correlation in the establishment of the robust LARS
(RLARS) procedure. We will investigate the robust-
ness of the RLARS procedure to different types of
outliers, and compare the results with the method
proposed by Khan, Van Aelst, and Zamar3. For this
purpose, we consider the synthetic data that was
introduced in Ref. 10.

REWEIGHTED FAST CONSISTENT AND HIGH
BREAKDOWN ESTIMATOR

Olive and Hawkins8 proposed the RFCH estimator
as a robust multivariate location and dispersion
estimator which is consistent and highly robust to
outliers. The algorithm starts by generating a se-
quence of practical robust estimators from K trial
fits, which are called attractors, and are denoted by
(T1, C1), . . . , (TK , CK). Then it uses the concentra-
tion technique to obtain the final estimator (TA, CA)
that minimizes some criterion. The FCH estimator
uses the

p
n-consistent DGK11 estimator and high

breakdown median ball (MB) estimator12. The
classical estimator (T−1,D, C−1,D) = ( x̄ , S) is used as
the initial estimator to obtain the DGK estimator
(TK ,D, CK ,D), while the MB estimator (TK ,M , CK ,M )
uses (T−1,M , C−1,M ) = (MED(X ), Ip) to start with,
where MED(X ) is the coordinatewise median. If
the DGK location estimator, denoted by TK ,D, has
a greater Euclidean distance than MED(X ), then
the FCH uses the MB attractor. The FCH uses the
smallest determinant as the location criterion to
choose the attractor if

‖TK ,D −MED(X )‖¶MED(Di(MED(X ), Ip)). (1)

Let (TA, CA) be the attractor. Then the location of
FCH is TF = TA and the scale is denoted as follows:

CF =
MED(D2

i (TA, CA))

χ2
(p,0.5)

CA, (2)

where D2
i (TA, CA) is the square of the Mahanalobis

distance and χ2
(p,q) is the 100qth percentile of a

chi-squared distribution with p degrees of freedom.

Olive and Hawkins8 used two standard reweighting
steps for the RFCH estimator. Let (µ̂1, Σ̃1) be the
classical estimator applied to the n1 cases with
D2

i (TFCH, CFCH)¶ χ2
(p,0.975) and let

Σ̂1 =
MED(µ̂1, Σ̃1)
χ2
(p,0.5)

Σ̃1. (3)

Then let (TRFCH, Σ̃2) be the classical estimator ap-
plied to the cases with

D2
i (µ̂1, Σ̃1)¶ χ2

(p,0.975), (4)

CRFCH =
D2

i (TRFCH, Σ̃2)

χ2
(p,0.5)

Σ̃2. (5)

Olive and Hawkins8 use results from Ref. 13 to
prove that the RFCH estimator is a

p
n-consistent

estimator of (µ, cΣ) for a large class of elliptically
contoured distributions.

PLUG-IN RLARS BASED ON RFCH

Suppose we have d > 50 covariates, variables
X1, . . . , Xd represented in matrix X . Consider the
response Y as a vector. Let each variable be stan-
dardized based on its median and median absolute
deviation. Consider the linear model without inter-
cept. The steps for plug-in RLARS are as follows.
(i) It starts with µ̂ = 0 ∈ Rn. Let µA be the current

predictor, and CorRFCH = (X t(Y −µ̂ζ)) is the vec-
tor of current correlations r j,RFCH = CorRFCH(Y −
µ̂ζ, X j) where j = 1, . . . , p.

(ii) Let ζ denote the active set and initially ζ = φ.
Only the covariates with the largest absolute
correlations will be considered to enter ζ. Set
RRFCH =max j |r j,RFCH|,

ζ= { j : |r j,RFCH|= RRFCH}, (6)

and without loss of generality, ζ= 1, . . . , m.
(iii) Let s j = {sgn(r j,RFCH) : j ∈ ζ}. Then let Xζ ∈
R(m×n) be the matrix of active covariates which
is constructed by the corresponding signed
columns of the design matrix X , s jX j . Note that
the unit vector u= vζ/‖vζ‖ makes equal angles
with the columns of the Xζ, where

vζ = Xζ(X
t
ζXζ)

−11ζ (7)

which satisfies

X t
ζuζ = Aζ1ζ (8)

where Aζ = 1/‖vζ‖ ∈ R. LARS modifies the
current fit µ̂ζ to

µ̂ζ← µ̂ζ+δµζ. (9)
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Since LARS takes the step in the direction of s jX j
by a certain distance δ, where δ is a positive
number which is chosen as the smallest step to
control the speed and greediness of the LARS
algorithm, it can be expressed in terms of the
correlation between the variables. The step δ
should be chosen so that the residual Y − Ŷ
has equal correlation with s jX j and another
covariate, say Xk. Consequently, δ bisects the
angle between X j and another inactive covariate
Xk with equal correlation. This covariate enters
the model and the active set becomes

ζ← ζ∪{K}. (10)

Note that for each updated δ,

µ̂(δ) = µ̂ζ+δuζ (11)

and so for each j = 1, . . . , p we have

r j,RFCH(δ) = CorRFCH(Y − µ̂(δ))
= X t

j(Y − µ̂(δ)) = r j −δa j , (12)

where a j = X t
juζ. Hence (8) implies

|r j,RFCH(δ)|= RRFCH−δAζ. (13)

The procedure is then repeated for all inactive
variables in sequence based on their impor-
tance.

SIMULATION

In this section we report on a simulation study
similar to Ref. 14. The contaminated observations
are simulated in a similar way to Ref. 4, where
the correlation between the covariates is weak and
no outliers are in the data set. A design matrix
coming from a centred multivariate normal dis-
tribution with covariance structure Cov(X j , XK) =
ρ| j−K | where ρ = 0 is considered. The response
variable Y is generated using P = 9 covariates that
have non-zero coefficients and d−P covariates with
coefficients equal to zero, where the d are selected
to construct the design matrix with dimension 500×
50. The non-zero coefficients are selected randomly
at each iteration.

We generated 500 simulated data sets using the
following.
(i) Y = Xβ + ε, where ε ∼ N(0, 1).
(ii) Y = Xβ + ε̃, where ε̃ = 0.90(ε) + 0.10(ε̂), ε̃ is

contaminated by 10% symmetric normal out-
liers with the slash distribution, ε̂ ∼ ε/u(0,1).

Table 1 The average of the top potential covariates of 500
simulated data sets for clean data generated by case (i).

Q n= 500 n= 1000 n= 5000

RLARS- RLARS- RLARS- RLARS- RLARS- RLARS-
Winsor RFCH Winsor RFCH Winsor RFCH

2 2.00 2.00 2.00 2.00 2.00 2.00
3 3.00 3.00 3.00 3.00 3.00 3.00
5 5.00 5.00 5.00 5.00 5.00 5.00
10 8.66 9.00 8.60 9.00 8.00 9.00
20 8.84 9.00 8.88 9.00 8.00 9.00
30 8.90 9.00 8.90 9.00 9.00 9.00
40 8.94 9.00 8.92 9.00 9.00 9.00
50 9.00 9.00 9.00 9.00 9.00 9.00

Table 2 The average of top potential covariates of 500
simulated data set for clean data generated by case (ii).

Q n= 500 n= 1000 n= 5000

RLARS- RLARS- RLARS- RLARS- RLARS- RLARS-
Winsor RFCH Winsor RFCH Winsor RFCH

2 1.98 2.00 2.00 2.00 2.00 2.00
3 2.98 3.00 3.00 3.00 3.00 3.00
5 4.96 5.00 5.00 5.00 5.00 5.00
10 8.52 9.00 8.80 9.00 8.94 9.00
20 8.76 9.00 8.88 9.00 8.94 9.00
30 8.78 9.00 8.90 9.00 8.96 9.00
40 8.88 9.00 8.94 9.00 8.98 9.00
50 9.00 9.00 9.00 9.00 9.00 9.00

(iii) Y = Xβ + ε̇ where ε̇ = 0.90(ε) + 0.10(ε̈) and
regression residuals ε̇ are contaminated by 10%
asymmetric normal outliers ε̈ ∼ N(20,1), and
10% good observations of all predictors are ran-
domly replaced by another observation which
are generated from an N(50,1) distribution to
create bad leverage points.

The average number of correctly selected predictors
in the top of sequence list which is taken to select the
final model. We consider the number of the target
potential covariates (predictors) that should appear
in the top of the sequence of the selected covariates
list, Q, equalling 2, 3, 5, 10, 20, 30, 40, and 50.

A good method is one that is able to select the
correct number of potential covariates in the top of
the sequence. From the simulation, we chose only
9 potential covariates to construct Y . The results
of the simulation are presented in Tables 1, 2, and
3. We observe that the RLARS-RFCH is consistently
able to select the correct covariates. It can be seen
that the number of selected potential variables for
the RLARS-RFCH is consistent with the simulated
data. The results are consistent for sample sizes 500,
1000, and 5000.

NUMERICAL EXAMPLE

In this section we use a synthetic data set to illus-
trate the performance of the RLARS method based
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Table 3 The average of top potential covariates of 500
simulated data set for clean data generated by case (iii).

Q n= 500 n= 1000 n= 5000

RLARS- RLARS- RLARS- RLARS- RLARS- RLARS-
Winsor RFCH Winsor RFCH Winsor RFCH

2 1.98 2.00 2.00 2.00 2.00 2.00
3 2.98 3.00 3.00 3.00 3.00 3.00
5 4.96 5.00 5.00 5.00 5.00 5.00
10 8.52 9.00 8.76 9.00 8.88 9.00
20 8.78 9.00 8.88 9.00 8.94 9.00
30 8.88 9.00 8.90 9.00 8.98 9.00
40 8.96 9.00 8.94 9.00 8.98 9.00
50 9.00 9.00 9.00 9.00 9.00 9.00
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Fig. 1 Average number of correctly selected predictors for
various m for the original artificial dataset. In this are the
remaining figures, circles are data points selected by the
RLARS-RFCH method, and squares are points selected by
the RLARS-Winsor method.

on RFCH correlation. The synthetic data is taken
from Ref. 10 which presents 1000 observations cor-
responding to 200 candidate predictors which are
labelled from 1–200. Only the predictors 83, 33,
42, 59, 96 and 172 have non-zero coefficients.
The response variable is generated from the true
potential predictors with non-zero coefficients.

We created 50 data sets from the original one
with the same dimensions (1000× 200). The dif-
ference between one data set and another is the
contamination of certain covariates. Those covari-
ates are randomly selected to be within 10% of
the leverage point (LP) and vertical outliers. The
positions of those outliers are selected randomly.
For each data set, we consider m potential covariates
(i.e., the model size is m) that appear in the top
of the sequencing step of LARS, such that m =
5,10, 15,20, 25 are recorded.

The best method is the one that includes all or
most target variables, as a function of model size
that is considered according to m values. The per-
formance of the LARS method based on the RFCH
estimator and adjusted winsorization is shown in
Figs. 1, 2, 3, and 4. It can be observed that
in Fig. 1 for clean data, both the adjusted win-
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Fig. 2 Average number of correctly selected predictors for
various m for the artificial data set contaminated with 100
LPs.
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Fig. 3 Average number of correctly selected predictors for
various m for the artificial data set contaminated with 100
vertical outliers.

sorization correlation and the RFCH correlation can
correctly identify the same number of predictors.
We noted that when the LPs and vertical outliers
are present together in the data set, our proposed
method performs better than the Khan, Van Aelst,
and Zamar algorithm3. As can be seen from Fig. 4,
the RLARS method based on Winsor fails to select all
or most target predictors. On the other hand, RLARS
method based on RFCH selects all target predictors
regardless of the outlier’s position.

DISCUSSION

It is evident from Figs. 1–3 that the results from our
method match those from the Khan, Van Aelst, and
Zamar algorithm. When m= 5, both methods select
5 target variables, and select all target variables
when m = 10, 15, 20, and 25. Note that when the
LPs and vertical outliers are present together in the
data set, our proposed method is better than that of
Khan, Van Aelst, and Zamar. As can be seen from 4,
the RLARS procedure based on Winsor fails to select
all or most of the target predictors. On the other
hand, the RLARS procedure based on the RFCH
estimator selects all target predictors regardless of
the outlier’s position.

The main focus of this article was to propose a
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Fig. 4 Average number of correctly selected predictors for
various m for the artificial data set contaminated with 100
LPs and 100 vertical outliers.

new method for linear regression model selection
based on a RLARS-RFCH method. The empirical
studies show that the performance of the RLARS-
RFCH and RLARS-Winsor methods are equally good
for clean data. However, in the presence of con-
taminated data or outliers, the RLARS-Winsor is less
efficient whereas the RLARS-RFCH is very successful
at selecting the correct covariates. Hence we can
consider the RLARS-RFCH as a better variable selec-
tion technique and recommend using this technique
particularly when outliers are present in the data.

See http://www.researchgate.net/publication/
304056513 for the R code used in this article.
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