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ABSTRACT: A method of domain-specific mathematical modelling (DSMM) whose implementation aims to overcome
the shortcomings of existing domain-specific modelling methods is proposed. The levels of the metamodelling
architecture and the formal semantics of the DSMM metamodels are defined. Examples of the DSMM application
for the development of the metamodels for modelling various domains are considered.
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INTRODUCTION

In computer engineering, there are several methods
for modelling domains to develop software systems.
In any case, a model of domain is created using a
universal language, or by development of unique for
domain (domain-specific) language.

Along with the possibility of covering multiple
domains, universal modelling languages, the most
prominent of which is unified modelling language
(UML, www.uml.org), have many drawbacks. The
need to develop models for a wide range of do-
mains results in a situation, that modelling con-
crete aspects of specific domains remains outside
of the possibilities of universal languages. In this
case, to support the modelling-specific properties of
domains the dialects (special profiles) of universal
languages are developed. For example, the big
list of UML profiles fully negates the idea of its
‘universality.’

The essence of domain-specific modelling
(DSM) is to develop software tools that allow us
to define domain-specific languages (DSLs) and to
apply them for modelling-specific domains. Due to
implementation of the modelling in terms of those
domains, but not universal concepts, using DSLs
simplifies the process of modelling and increases
the adequateness of domain models.

The number of operations needed to develop
a software system using universal modelling lan-
guages corresponds to the number of operations
for direct code writing (www.dsmforum.org/why.
html). Thus using ‘universal’ approaches does not

reduce the time needed for software development
in comparison with traditional way of program-
ming. Increasing the effectiveness of development
a software systems using DSM can be compared
with the transition from assembler to high-level
programming languages. As each concept of a high-
level programming language corresponds to a set
of commands in assembler, each concept of a DSL
corresponds to a set of commands in a high-level
programming language.

Large companies (such as Microsoft) and con-
sortia (like Eclipse) are currently involved in the
development of the DSM method. Software tools
that implement DSM include METAEDIT+1, ECLIPSE

DSL TOOLKIT 2, MS DSL TOOLS 3, JETBRAINS MPS
(www.jetbrains.com/mps). However, despite the
power of DSM, its theoretical basis and practical
implementation have several limitations: the use of
DSM is narrow and mostly limited by the generation
of software data and code, while this approach can
be extended by over techniques (e.g., mathemati-
cal modelling and simulation); the developed with
DSM modelling languages are descriptive and not
suitable to definite methods for solving domain-
specific problems; the syntax of DSLs is limited and
often defined as a graph-based notation (e.g., entity-
relationship diagram); the existing metamodels do
not reflect the mathematical structure of considered
domains, which prevents domain adaptation of the
metamodels; finally, there are no formal definitions
of the object of modelling domain and of the meta-
models for DSLs, which prevents the mathematical
elaboration of the metamodelling method.
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In this paper, we will define the syntax of the
metamodels for DSLs on the basis of set theory,
graph theory, vector algebra, and other mathemati-
cal formalisms. Having all the benefits of modelling
in terms of a domain, the result of such the approach
is a mathematical model, to which appropriate for-
mal methods are applied. That is why we name
the proposed method domain-specific mathematical
modelling (DSMM). DSMM allows us apply DSM to
other domains such as cyber-physical domains4, 5.
Generation of software code and data remains the
important partial cases of the application of pro-
posed method.

This article is organized as follows. First, we
discuss the basic ideas of the proposed approach.
Then, we define the formal model of a domain, a
metamodel, and the levels of the DSMM metamod-
elling architecture. Finally, we consider proving the
concept results.

MATERIALS AND METHODS

The proposed method is essentially based on the
definition of the object of modelling domain. In this
paper, we consider the domain as allocated by the
context of consideration the set of entities D, linked
by the structural (S) and the domain-specific (P)
relationships:

D = {d1, d2, . . . , dN}, S, P ⊆ D× D, (1)

where N is a power of D. Each element of D can
have attributes, which are considered as unary re-
lationships on D. Attributes define domain-specific
properties of D. 0-ary relationships identify the ele-
ments of D. Binary and other types of relationships
fix the mathematical structure of D.

In the logical aspect, the set D is the domain
of interpretation of the model M1, built within the
metamodel M2. Each predicate symbol of M1 is
associated with one n-ary relation on D, and each
functional symbol with some n-ary operation on D.
These relations and operations are the significant
elements of the metamodel M2 being considered as
a formal system.

Mathematically, we define the metamodel M2 as
a triple, which contains the alphabet A (the carrier
of the formal system), grammar G, and operations
O,

M2= 〈A, G, O〉. (2)

In particular, the metamodel can be an algebraic sys-
tem, in which the carrier is the set D, corresponding
to the definition (1). The feature of development of
metamodels as formal systems is that the result of

applying the rules G of the grammar and operations
O to the carrier A at this level is used as a carrier
of the formal system at the next level of the DSMM
architecture. The set D is a carrier for the M4 (meta-
meta-metamodel), by applications of operations on
D and structuring D within the rules of grammar
G, we obtain metatypes MT to be used as a carrier
of the formal system for the development of the
metamodel at the level M3 (the meta-metamodel).

Let us consider the levels of the DSMM architec-
ture and their implementation in the corresponding
software tools. From a linguistic point of view,
the levels of the DSMM architecture: meta-meta-
metamodel (M4), meta-metamodel (M3), and meta-
model (M2) define the specific modelling languages
(DSLs). Each level of the DSMM architecture is used
for the definition of the modelling language of the
next level.

The levels of DSMM architecture are arranged in
a way to ensure the direction of the domain analyses
from abstract to concrete. The first stage of the
metamodelling and, accordingly, the highest level of
abstraction, is a consideration of a domain as a set
of heterogeneous entities D (1). Consideration of
mathematical structure and domain-specific prop-
erties of D is performed at the levels M3 and M2,
respectively. At the level M3 the elements of D are
structured as the mathematical metatypes MT, and
next are used to build domain specific types T at the
level M2. The essence of the metamodel adaptation
is linking defined at the level M3 mathematical
structures of a domain with domain attributes at the
level M2.

The following relationships are between carriers
of the previous (prototype) and the next (image)
levels of the DSMM architecture:

M43 : D→MT, M43 ⊆ D×MT, (3)

M32 : MT→ T, M32 ⊆MT× T, (4)

M21 : T → I , M21 ⊆ T × I , (5)

where D is the set of domain entities (1), MT
metatypes, T domain specific types, and I instances
of the types. M43, M32, M21 are the mappings,
used, respectively, for domain structuring, meta-
model adaptation, and types instantiation (Fig. 1).

Mappings M43, M32, M21 are homomorphic,
i.e., defined on D operations are applicable to the
equivalent structures in the sets MT, T , and I ; e.g.,
in accordance with the M43, we allocate in the set
D the subsets {d1, d2, . . . , dn} corresponding to the
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Fig. 1 Mappings of domain structuring, metamodel adaptation, and types instantiation.

elements of MT:

M43({d1, d2, . . ., dn}) =MT

∀mt ∈MT : ∃{d1, d2, . . . , dn} ∈ D, n= 1 . . . |D|.
(6)

Such a mathematical types MT can be the model
objects of any mathematical apparatus, e.g., nodes
and edges of a graph in the case of graph-based
structuring of a domain (the examples will be con-
sidered in the next section).

The essence of the DSMM method is to identify
and incrementally transform the special information
objects—metamodels. The meta-meta-metamodel
at the level M4 contains the corresponding to D
carrier (alphabet) A4; the grammar G4, defining
the rules for structuring elements of D and the
operations O4 on the elements of the set D. In the
software implementation of DSMM6, each symbol
of the alphabet A4 is typed as the meta-meta-type
(MMT) the ‘element of the D’ (Fig. 2).

The grammar rules G4 allows users to fix the
memberships of an element d in the set D(d ∈ D),
and of any subset {d1, d2, . . ., dN} in the set D({d} ⊆
D).

O4 includes operations for creation and deletion
of the elements of the set d ∈ D; and for creation,
deletion, union, intersection, and subtraction of
an arbitrary subset {d} ⊆ D. At the level M4 the
API4 (Application Programming Interface) of the
DSMM tool has software functions FO4 and FG4,
implementing the operations O4 and the rules G4,
respectively.

The meta-metamodel M3 contains as carrier
the alphabet of the metatypes MT used to produce
domain specific types T , the grammar G3, defining
rules for structuring elements of MT and the set of
applicable for MT mathematical operations O3.

Defined at the level M3 metatypes MT show the
mathematical structure of D. For example, in the

case of using graph theory for structuring hierarchi-
cal domains, elements of MT are the node and the
edge of a graph, O3 are the operations of addition
and deletion of a node and an edge of a graph,
G3 contains the rules for connection of nodes using
edges of a graph. The grammar of the level M3 can
be any law, that define the structural relationships
S of the elements of D. This is why the proposed
metamodelling architecture allow users to model
domains having different mathematical structure7.

The metamodel M2 is the set of types T in-
herited from the metatypes MT and attributed by
domain properties; the rules of the grammar G2
reflect domain-specific relationships P; operations
O2 are used for the definition of software-based
solutions F for domain-specific problems (e.g., code
generation).

A user of a DSMM tool develops a domain model
M1 by instantiation of the types T , linking their
instances within the rules of grammar G1, and appli-
cation of the set of methods F . Thus the model of a
domain is a set of structured within G1 instances of
the types T and processes F in a computer memory.
In other words, we consider a model of a domain in
DSMM as a specific software system.

Let us generalize the basic principles of the
DSMM:

Definition and hierarchical structuring the lev-
els of the architecture of domain-specific modelling
to ensure the direction of analyses from abstract
to concrete during the development of metamodels
and models of domains.

Mathematical definition of the metamodels and
formulation of the properties of all levels of the
metamodelling architecture inside set theory.

Development of the specific for each level of
DSMM architecture metamodel. Metamodel at each
level of the architecture defines the modelling lan-
guage for the next level.

Linking linguistic aspects of metamodelling
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Fig. 2 The scheme of domain-specific mathematical modelling.

with mathematical theory of modelling. This is
done by including in the metamodels mathematical
operations, which allows users not only to describe
properties of domains, but also define methods for
solving domain-specific problems.

Predominant role of semantics over syntax.
Meta-metamodel defines a syntax of the metamodel,
based on a formal (e.g., algebraic) system. Meta-
model defines the semantics of a domain (types of
attributes, possible structures of systems, laws of
grammar and methods for problem solving).

Development of the metamodels for modelling
different domains (software, hardware, physical,
chemical, etc.), as well as domains, elements of
which are heterogeneous.

Support for the users at different levels of anal-
yses and qualifications: a mathematician creates
meta-metamodel; a domain expert develops meta-
model, and the methods to solve a class of problems;
a domain specialist uses a metamodel for the mod-
elling and solving problems that arise in the domain.

RESULTS

The considered method was implemented in the
set of software tools for domain-specific mathemat-
ical modelling6. These tools were used to specify
complex heterogeneous hardware and software sys-
tems8, to develop the metamodels and modelling
distributed real time software9, to desig metamate-
rials (composite materials with properties, exceed-
ing the properties of natural physical materials)10,

and for some other domains.
Let us consider an example of DSMM applica-

tion for the development of metamodels and mod-
elling distributed real-time parallel software sys-
tems. Since complex software systems are hierarchi-
cal, we developed a graph based meta-metamodel,
which allows users to define the structure of dis-
tributed on computing devices software tasks.

Analysis of interaction of software tasks in a
real-time environment allows us to identify the
needed properties of the model, in particular, the
effect of synchronization when tasks have differ-
ent temporal semantics (wait, do not wait, wait
a time interval)9. To develop models of software
systems that have the needed properties, the types
of tasks and synchronization objects were defined
as the alphabet of the metamodel, and the rules
of interaction of their instances were formulated as
a grammar. For example, the metamodel should
guarantee that all tasks in a parallel software system
can only communicate through intermediate nodes-
synchronization objects. This why we introduce
a special type of the metamodel-‘synchronization
object’, which generalizes all the typical for parallel
programming synchronization entities like mutex,
semaphore, resource, queues, etc. Attributes of this
type are synchronization condition and action func-
tions. A user of the DSMM tool defines the semantics
of the model of a concurrent system by specifying a
synchronization condition and an action that occurs
in the case of its truth. This approach allows users to
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Table 1 Example of the definition of metamodel M2App and the model of software in the frame of M2App.

Level Alphabet Grammar Operations and methods

M4 Elements d of the set D The rules of grammar, based on the
relations d ∈ D, {d} ⊆ D

Create / delete elements and
subsets of D

M3 Node n ∈ Node and edge e ∈
Edge of graph G = (Node, Edge),
Node, Edge ⊂ D

Connection of nodes by edges
ek(ni , n j), ni , n j ∈ Node, ek ∈ Edge,
i, j = 1 . . . |Node|, i 6= j, k =
1 . . . |Edge|

Add edge G′ = G+ e
Delete edge G′ = G− e
Add node G′ = G+ n
Delete node G′ = G− n

M2 Node Task, Sync;

Edge PutData, GetData;

PutData(Task, Sync);

GetData(Sync, Task)

Add / delete a type of task Task
/ sync object Sync,
create communication channel
PutData, GetData

M1 Task Task1, Task2;
Sync Sync1;
PutData (Task1, Sync1), (Task1, Sync1);
GetData (Sync1, Task1), (Sync1, Task1);

develop models of tasks interaction in a distributed
parallel software systems that ensure the property
of safety synchronization11.

Table 1 shows an example of the definition of
the metamodel M2App for the modelling concurrent
software with the meta-metamodel, based on graph
theory. Table 1 also compares visual and textual ap-
proaches for the definition of the metamodel M2App
and the corresponding models of the software.

In this sample, a Node and an Edge are the
mathematical metatypes of the graph based meta-
metamodel M3. The nodes Task, Sync and the
edges PutData, GetData are the domain specific
types, which compose the alphabet of the meta-
model and are used to create instances at the
level M1 (for the development of the models of
a software system). M2 also defines grammar
rules for linking instances of the types by using
predicates PutData(Task, sync) and GetData(Sync,
task). These grammar rules correspond to the
edges of the graph-based meta-metamodel and are
used for the development of code generation meth-
ods (implemented by traversal of graph of the
model M1). The model M1 includes instances of
Task1, Task2, . . . , TaskT and synchronization objects
Sync1, Sync2, . . . , SyncS , linked by the channels of
interaction PutData, GetData (where T and S are
number of tasks and of synchronization objects in

the model M1, respectively).

DISCUSSION

The DSMM method and corresponding software
tools were used to solve several problems:

Web-based DSMM tools were used to organize
work of distributed teams to specify the require-
ments for complex heterogeneous hardware and
software systems8. Each new project for a system
definition was designed as a web portal with the
types of content, reflecting proposed by domain
expert conceptual metamodel. An alphabet of the
metamodel for a system specification contains con-
cepts such as ‘requirement’, ‘specification’, ‘develop-
ment task’, and ‘architecture’. These abstract con-
cepts serve as types for making instances—the state-
ments about properties of a system being developed.
The concepts of the metamodel were structured in-
side the graph based meta-metamodel, which allows
users to apply mathematical operations of graph
theory to develop the needed methods. For exam-
ple, a system specification is a graph, whose nodes
contain requirements for the architectural elements;
the methods of the graph traversal allow users to
generate a document of requirements and specifi-
cations, select trees of requirements, specifications,
and architectural elements for version control, etc.

Another interesting application of the DSMM
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is the development of logical and algebraic meta-
model on the based on vector algebra and logic
of syllogisms12. The symbols of the alphabet of
the meta-metamodel (vectors) are mapped to the
categorical statements, which led to the definition
of the metamodel ‘vector logic’13. In this case,
the model of a domain consists of the syllogisms,
which are instances of the metamodel types ‘logical
vectors’. Vector algebra was used to define the rules
of grammar and methods; in particular, the logical
inference (here, the inference is the sum of the
vectors, that represent the given assumptions).

For the physical domains, DSMM was used for
the development of the metamodel for metama-
terials modelling 13. In the frame of set theory,
the geometrical meta-metamodel Θ was defined,
alphabet of which contains corresponding to the di-
mensions of a physical space geometrical metatypes
(point, line, surface and three-dimensional region).
The structure of Θ is caused by the fact, that its
symbols are the predominant result of abstraction
from geometrical structure of objects in any phys-
ical domain. Composition of geometric metatypes
allows us to develop domain specific types T. Set-
ting distributions of physical values on geometrical
objects links structural (geometrical) and domain
specific (physical) properties of the physical model.

CONCLUSIONS

Analysis of the ‘universal’ approach shows impos-
sibility of developing a language applicable for
modelling all existing domains. Thus each do-
main should have own modelling language to solve
arising domain specific problems most effectively.
Existing method of DSM has known limitations, to
overcome which the method of Domain Specific
Mathematical Modelling is proposed.

This article gives the definition of the meta-
model as a formal system, which includes carrier
(alphabet of types), grammar rules, and mathemat-
ical operations. The syntax of DSLs can be defined
in terms of set theory, graph theory, vector algebra,
or other mathematical system. The approach allows
users to consider the result of metamodelling as
a mathematical model of domain of discourse, to
which the relevant mathematical methods are ap-
plied.

The levels of the metamodelling architecture
and the stages of domain-specific mathematical
modelling are defined. The first stage is a consider-
ation of a domain as a set of heterogeneous entities,
linked by structural and domain-specific relation-
ships. The following steps devote to the definition

of the structural and the domain-specific types, the
grammar and the methods of the metamodels.

Applicability of DSMM has been proven by the
development of the metamodels and their use for
conceptual and architectural modelling of software
systems, for the design of metamaterials and some
other domains. Our plan for future research is
to expand DSMM method to the different types of
mathematical structures (e.g., metric, differential,
and topological).
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