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INTRODUCTION

Partial differential equations (PDEs) can be solved
numerically using various methods such as finite-
element, finite-difference, and finite volume meth-
ods. Wavelet-based methods have also been intro-
duced for solving PDEs. These include a simple and
effective wavelet-based method for solving differ-
ential equations in which the highest derivative is
approximated by a wavelet series1.

Chen and Hsiao1, 2 presented an operational
matrix of integration based on Haar wavelets and a
procedure for applying the matrix in order to anal-
yse lumped and distributed-parameter dynamical
systems. They recommended expanding the highest
derivative appearing in the differential equation into
the Haar wavelet series. The other derivatives and
the solution function are then calculated through
integration. All derivatives and the solution func-
tion are substituted into the ODE system. The ODE
system is then discretized by the collocation method
to form a linear system of algebraic equations in
order to calculate the wavelet coefficients. By in-
creasing the multiresolution parameter m, the accu-
racy of solution can be improved. Lepik adapted the
method of Chen and Hsiao1 to solve various types of
differential equations such as nonlinear ODEs3, evo-

lution equations4, integral equations5, higher-order
ODEs6, and PDEs3, 7. Lepik7 proposed a procedure
to solve PDEs by using the two-dimensional Haar
wavelet and claimed that the proposed method was
mathematically simple and computationally effi-
cient for solving the diffusion and Poisson equations.
The main feature is to expand the highest derivative
into the 2-dimensional Haar wavelet series.

Although many wavelet methods have been
proposed, little on convergence analysis has been
published. Convergence analysis is important for
determining the efficiency of a numerical method.
Siraj-ul-Islam et al8, 9 proved the convergence of the
Haar wavelet series. Majak et al10, 11 published a
convergence theorem for solving ODEs using the
wavelet method1, 2. To the best of our knowledge,
the convergence analysis of a wavelet-based method
for solving PDEs has not been presented before.
Since the method of Lepik7 is simple and efficient,
we perform a convergence analysis on this method
when applied to solve 2D PDE boundary value prob-
lems.

The convergence theorem presented here only
holds for PDEs with boundary value problems. The
validity of the convergence theorem is verified by
two numerical examples in which the Poisson and
Helmholtz equations are solved. These two ex-
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amples are used in this study because numerous
scientific problems can be described by these two
equations.

THE HAAR WAVELET AND ITS PROPERTIES

In this work, the Haar wavelet family is defined in
the same way as in Ref. 1.

Definition 1 Consider the interval [A, B], where A
and B are given constants. Let M = 2J and m = 2 j

where J is the maximum level of resolution and j =
0,1, . . . , J is a dilation parameter. k = 0,1, . . . , m−1
is the translation parameter. When i > 1, the ith
Haar wavelet function is defined as

hi(x) =







1, x ∈ [ξ1(i),ξ2(i)],
−1, x ∈ [ξ2(i),ξ3(i)],
0, elsewhere,

(1)

where i = 2 j + k + 1, ξ1(i) = A+ 2kµ∆x , ξ2(i) =
A+(2k+1)µ∆x , ξ3(i) = A+2(k+1)µ∆x , µ= M/m,
and ∆x = (B − A)/2M . The index i is the wavelet
number. The case i = 1 corresponds to the scaling
function of the Haar wavelet which is defined as

h1(x) = 1, x ∈ [A, B]. (2)

In this definition, h2(x) is called the Haar mother
wavelet.

The Riemann-Liouville integral,

pα,i(x) =

∫ x

A

. . .

∫ x

A

hi(t)d
α t

=
1

(α−1)!

∫ x

A

(x − t)α−1hi(t)dt, (3)

for α, i ∈ N, is required in order to solve nth-order
PDEs. The details of this integral is given in Ref. 12.
When α= 0, we set

p0,i(x) = hi(x). (4)

Using (2) and (1) in (3) yields

pα,1(x) =
1
α!
(x −A)α, (5)

pα,i(x) =











































0, x < ξ1(i),
1
α! [x −ξ1(i)]α, x ∈ [ξ1(i),ξ2(i)],
1
α!{[x −ξ1(i)]α,

−2(x −ξ2(i))α} , x ∈ [ξ2(i),ξ3(i)],
1
α!{[x −ξ1(i)]α,

−2[x −ξ2(i)]α

+[x −ξ3(i)]α} , x > ξ3(i),
(6)

respectively. The Haar wavelets are orthogonal:

∫ B

A

hi(x)hi′(x)dx =







B−A, i = i′ = 1,

(B−A)/2 j , i = i′ > 1,

0, i 6= i′,
(7)

where i = 2 j + k+ 1, i′ = 2 j′ + k′ + 1, and i′, j′, k′

are defined in the same way as i, j, k, respectively.
Since a Haar wavelet function is in L2[A, B], any
function f (x) ∈ L2[A, B] can be expanded into a
Haar wavelet series via

f (x) =
∞
∑

i=1

aihi(x); ai = 2 j

∫ B

A

f (x)hi(x)dx . (8)

The expansion in (8) can be rewritten as

f (x) = a1h1(x) +
∞
∑

j=0

2 j−1
∑

k=0

a2 j+k+1h2 j+k+1(x), (9)

and can be approximated at resolution J as

fJ (x) = a1h1(x)+
J
∑

j=0

2 j−1
∑

k=0

a2 j+k+1h2 j+k+1(x). (10)

By using (9) and (10), we can define the error of
approximation as

EJ (x) = | f (x)− fJ (x)|

=

�

�

�

�

∞
∑

j=J+1

2 j−1
∑

k=0

a2 j+k+1h2 j+k+1(x)

�

�

�

�

. (11)

NUMERICAL SOLUTION OF A PDE USING 2D
HAAR WAVELETS

This section briefly reviews the method proposed
by Lepik7 for solving PDEs using 2D Haar wavelets.
Consider the linear PDE,

Γ
∑

γ=0

Λ
∑

λ=0

Dγλ(x , y)
∂ γ+λ

∂ xγ∂ yλ
u(x , y) = f (x , y),

(x , y) ∈ Ω, ∂Ω= σ, (12)

where Γ , Λ are given constants, and Dγλ(x , y) and
f (x , y) are given functions. The quantities Γ and Λ
can be determined, respectively, from the maximum
order of the x and y derivatives appearing in the
linear system (12). By simplifying the system,
the domain Ω is considered as a rectangular do-
main [A1, B1]× [A2, B2]. The intervals [A1, B1] and
[A2, B2] are divided into 2M1(= 2J+1) and 2M2(=
2J ′+1) parts of equal length, respectively.
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If (12) holds for ∂ Γ+Λu(x , y)/∂ x Γ∂ yΛ ∈ L2(Ω),
we can approximate that

∂ Γ+Λu(x , y)
∂ x Γ∂ yΛ

=
∞
∑

i=1

∞
∑

i′=1

aii′hi(x)hi′(y)

≈
2M1
∑

i=1

2M2
∑

i′=1

aii′hi(x)hi′(y), (13)

where aii′ are wavelet coefficients, and hi(x), hi′(y)
are Haar functions. Then the solution u(x , y) can be
obtained by taking the integrals in (3) Γ and Λ times
with respect to x and y , respectively. In this process,
the unknown functions can be obtained using the
boundary conditions σ. The solution u(x , y) will
appear in the form:

u(x , y) =
∞
∑

i=1

∞
∑

i′=1

aii′pΓ ,i(x)pΛ,i′(y)+Ψ(x , y), (14)

which can be approximated by

uJJ ′(x , y) =
2M1
∑

i=1

2M2
∑

i′=1

aii′pΓ ,i(x)pΛ,i′(y)+Ψ(x , y),

(15)
where pΓ ,i(x), pΛ,i′(y) are functions defined in (5)
and (6), and Ψ(x , y) is a function satisfying the
boundary conditions σ. The other derivatives can
be directly determined by taking the derivatives of
u(x , y).

The collocation points (x r , ys) are defined by

(x r , ys) =
�

(2r −1)∆1

4M1
,
(2s−1)∆2

4M2

�

, (16)

where ∆1 = B1 − A1; ∆2 = B2 − A2; r = 1, . . . , 2M1
and s= 1, . . . , 2M2. By substituting the approximate
solution (15) and its derivatives at the collocation
points (16) into (12), we obtain the system of linear
equations

2M1
∑

i=0

2M2
∑

i′=0

aii′Rii′ rs = f (x r , ys). (17)

The wavelet coefficients aii′ can be calculated from
(17). However, dealing with a fourth-order matrix
equation is complicated. For convenience, we trans-
form the fourth-order matrix equation to a second-
order matrix equation. After the aii′ are calculated,
we substitute them back into (15) to obtain the
solution7.

CONVERGENCE ANALYSIS

We derive the upper bound of pα,i(x) since the upper
bound is needed to derive the convergence theorem.

Theorem 1 Suppose pα,i(x) is defined as in (5) and
(6) on [0,1]. Then the upper bound of pα,i(x) is as
follows:

p0,i(x)¶ 1, pα,1(x)¶
1
α!

,

p1,i(x)¶
1

2 j+1
when i > 1,

pα,i(x)< C(α)
�

1
2 j+1

�2

when α¶ 2, i > 1,

where C(α) = 8/(3(b(α+1)/2c!)2).

Proof : Suppose that pα,i(x) is defined as in (5)
and (6) on [0, 1]. According to Definition 1, we
have ξ1(i) = 2k/2 j+1, ξ2(i) = (2k + 1)/2 j+1 and
ξ3(i) = 2(k + 1)/2 j+1, since pα,i(x) is defined on
[0,1]. Then, we have

ξ2(i)−ξ1(i) = ξ3(i)−ξ2(i) =
1

2 j+1
. (18)

According to (4), p0,i(x) is a Haar wavelet defined
in Definition 1 so it is obvious that

−1¶ p0,i = hi(x)¶ 1, ∀i.

We now find the upper bound for p1,i(x). By taking
d/dx on p1,1(x) defined as (5) on [0,1], we obtain

dp1,1(x)

dx
= 1,

so p1,1(x) is non-decreasing on [0, 1]. Then
p1,1(x) ¶ 1. We then find the upper bound for p1,i
when i > 1. Taking d/dx on p1,i(x) defined as (6)
on [0,1] yields

d
dx

p1,i(x) = 0, x ∈ [0,ξ1(i)], (19)

d
dx

p1,i(x) = 1> 0, x ∈ [ξ1(i),ξ2(i)], (20)

d
dx

p1,i(x) = −1< 0, x ∈ [ξ2(i),ξ3(i)], (21)

d
dx

p1,i(x) = 0, x ∈ [ξ3(i), 1]. (22)

Equations (19)–(22) imply that p1,i(x) is non-
decreasing when x ∈ [0,ξ2(i)] and then non-
increasing when x ∈ [ξ2(i), 1]. By (6), p1,i(x) is
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continuous, so p1,i(x) is a maximum at x = ξ2(i).
Then

p1,i(x)¶ ξ2(i)−ξ1(i) =
1

2 j+1
, ∀x ∈ [0, 1],

∀i > 1. (23)

By taking d/dx on pα,1(x), we obtain

d
dx

pα,1(x) =
1

(α−1)!
xα−1 ¾ 0,

so pα,1(x) is non-decreasing over x ∈ [0, 1] and
hence a maximum at x = 1. Hence

pα,1(x)¶
1
α!

when α¾ 2.

Taking d/dx on pα,i(x) when α¾ 2 and i > 1 yields

d
dx

pα,i(x) = 0, x ∈ [0,ξ1(i)], (24)

d
dx

pα,i(x) =
1

(α−1)!
[x −ξ1(i)]

α−1 ¾ 0,

x ∈ [ξ1(i),ξ2(i)], (25)

d
dx

pα,i(x) =
1

(α−1)!
{[x −ξ1(i)]

α−1

−2[x −ξ2(i)]
α−1
	

,

x ∈ [ξ2(i),ξ3(i)]. (26)

To show that pα,i(x) is non-decreasing for every x ∈
[0, 1] when α ¾ 2, we suppose that (d/dx)pα,i ¾ 0
when α¾ 2, i > 1 and x ∈ [ξ2(i),ξ3(i)], so we have

[x −ξ1(i)]
α−1 ¾ 2[x −ξ2(i)]

α−1. (27)

By rearranging (27) and applying (18), we obtain

x ¶ ξ2(i)+ [ξ3(i)−ξ2(i)]
�

1
21/(α−1)−1

�

. (28)

Then pα,i(x) defined in (6) when x ∈
[ξ2(i),ξ3(i)] is non-decreasing when
x ¶ ξ2(i) + [ξ3(i) − ξ2(i)](1/(21/(α−1) − 1)).
Since ξ3(i) = ξ2(i) + [ξ3(i) − ξ2(i)] ¶
ξ2(i) + [ξ3(i) − ξ2(i)](1/(21/(α−1) − 1)), pα,i(x)
is non-decreasing when x ∈ [ξ2(i),ξ3(i)] and
α ¾ 2. In the subinterval x ∈ [ξ3(i), 1], by using
the binomial expansion, pα,i can be rewritten as

pα,i(x) =

1
α!

¨

α
∑

l=0

�

α

l

�

[x −ξ2(i)]
α−l[ξ2(i)−ξ1(i)]

l

− 2[x −ξ2(i)]
α

+
α
∑

l=0

�

α

l

�

[x −ξ2(i)]
α−l[ξ2(i)−ξ3(i)]

l

«

. (29)

Substituting (18) into (29) and rearranging yields

pα,i(x) =
1
α!

α
∑

l=2

§�

α

l

�

[x −ξ2(i)]
α−l

·
�

�

1
2 j+1

�l

+
�

−
1

2 j+1

�l
�

ª

, (30)

where α ¾ 2 and i > 1. The term [(1/(2 j+1))l +
(−1/(2 j+1))l] from (30) equals zero when l is odd
and is larger than zero when l is even. Thus

d
dx

pα,i(x) =
2
α!

α
∑

l=2

�

α

l

�

(α− l)[x −ξ2(i)]α−l−1

(2 j+1)l

¾ 0, (31)

when α, i > 1 and l is even. Hence, pα,i(x) is non-
decreasing when x ∈ [ξ3(i), 1], α ¾ 2 and i > 1.
Thus pα,i(x) is non-decreasing for x ∈ [0,1] when
α¾ 2 and i > 1, and has a maximum at x = 1.

Finally, we find the upper bound of pα,i(x)
defined by (6) at x = 1 when α ¾ 2 and i > 1. It
is obvious that

�

α

l

�

¶
�

α

α

�

=
α!

α!(α−α)!
=

α!
(α!)2

, (32)

where α ¾ l and α = b(α+ 1)/2c. By investigating
the width of the subinterval [ξ2(i), 1], we have

[x −ξ2(i)]
α−l ¶ [1−ξ2(i)]

α−l ¶ 1, (33)

where α− l ¾ 0 and x ∈ [ξ3(i), 1]. By considering
(32) and (33), pα,i(x) in (30) is bounded by the
following:

pα,i(x)¶
2
(α!)2

α
∑

l=2

�

1
2 j

�l �1
2

�l

, (34)

where l is even. Since (1/2 j)2 > (1/2 j)3 > . . . >
(1/2 j)l > . . ., (34) becomes

pα,i(x)<
8
(α!)2

�

1
2 j+1

�2





bα/2c
∑

ρ=0

( 1
2 )

2ρ −1





<
8
(α!)2

�

1
2 j+1

�2





∞
∑

ρ=0

( 1
2 )

2ρ −1





=
8

3(α!)2

�

1
2 j+1

�2

. (35)

Hence

pα,i(x)< C(α)
�

1
2 j+1

�2

, ∀x ∈ [0, 1],

where C(α) = 8/(3(b(α+ 1)/2c!)2), α ¾ 2 and i >
1. 2
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Definition 2 According to Lepik7, the solution of a
2D PDE of a boundary value problem is

u(x , y) =
∞
∑

i=1

∞
∑

i′=1

aii′pΓ ,i(x)pΛ,i′(y)+Ψ(x , y), (36)

and (36) can be approximated with the maximum
level of resolution J and J ′ as

uJJ ′(x , y) =
2M1
∑

i=1

2M2
∑

i′=1

aii′pΓ ,i(x)pΛ,i′(y)+Ψ(x , y),

(37)
where M1 = 2J and M2 = 2J ′ . Then, the error of the
approximation at the maximal level of resolution J
and J ′ is defined as

EJJ ′ = |u(x , y)−uJJ ′(x , y)| . (38)

Definition 3 By Definition 2, the L2-norm of the
error of the approximation at the maximum level of
resolution J and J ′ can be defined as

‖EJJ ′(x , y)‖2 =







∫∫

D

[EJJ ′(x , y)]2 dx dy







1/2

,

where (x , y) ∈ D and D is a rectangular domain.
Then ‖EJJ ′(x , y)‖2 is called the L2-norm of the error.

Theorem 2 Given Γ ,Λ¾ 2, assume that

K(x , y) =
∂ (Γ+Λ)

∂ x Γ∂ yΛ
u(x , y) ∈ L2(R2)

is a continuous function on [0, 1]2 and can be approx-
imated as

K(x , y)≈
2M1
∑

i=1

2M2
∑

i′=1

aii′hi(x)hi′(y),

where M1 = 2J and M2 = 2J ′ . For all (x , y) ∈ [0,1]2,
there exists ω¾ 0 such that

|K | ,
�

�

�

�

∂

∂ x
K

�

�

�

�

,

�

�

�

�

∂

∂ y
K

�

�

�

�

,

�

�

�

�

∂ 2

∂ x∂ y
K

�

�

�

�

¶ω;

where K = K(x , y). Then the Haar wavelet method,
based on Ref. 7, is convergent, and it yields the fol-
lowing properties for a boundary value problem on
domain [0,1]2 of a 2D PDE. Let ‖EJJ ′(x , y)‖2 be
the L2-norm of the error at the maximum level of
resolution J and J ′ given in Definition 3. Then

‖EJJ ′(x , y)‖2 < G(Γ ,Λ)
�

1

2J̃+1

�2

,

or

‖EJJ ′(x , y)‖2 = O

�

�

1

2J̃+1

�2
�

; Γ ,Λ¾ 2,

where

G(Γ ,Λ) =

�

[C(Λ)]2

36(Γ !)2
+
[C(Γ )]2

36(Λ!)2

+
[C(Γ )]2[C(Λ)]2

1296
+

C(Γ )C(Λ)
8Γ !Λ!

+
[C(Γ )]2C(Λ)

108Λ!
+

C(Γ )[C(Λ)]2

108Γ !

�1/2

ω,

C(Γ ) = 8/[3(b(Γ + 1)/2c)2] for n ¾ 2 and J̃ =
min{J , J ′}.

Proof : According to Lepik7, the solution of a 2D PDE
is in the form

u(x , y) =
∞
∑

i=1

∞
∑

i′=1

aii′pΓ ,i(x)pΛ,i′(y)+Ψ(x , y), (39)

where Ψ(x , y) is a function determined by the
boundary conditions, and (39) can be rewritten as

u(x , y) = a11pΓ ,1(x)pΛ,1(y)+Ψ(x , y)

+
∞
∑

j=0

2 j−1
∑

k=0

a2 j+k+1,1pΓ ,2 j+k+1(x)pΛ,1(y)

+
∞
∑

j′=0

2 j′−1
∑

k′=0

a1,2 j′+k′+1pΓ ,1(x)pΛ,2 j′+k′+1(y)

+
∞
∑

j=0

2 j−1
∑

k=0

∞
∑

j′=0

2 j′−1
∑

k′=0

a2 j+k+1,2 j′+k′+1

· pΓ ,2 j+k+1(x)pΛ,2 j′+k′+1(y), (40)

where i = 2 j + k + 1 and i′ = 2 j′ + k′ + 1. Then,
the approximate solution at the maximum level of
resolution J and J ′ relevant to pΓ ,i(x) and pΛ,i′(y),
respectively, is

uJJ ′(x , y) = a11pΓ ,1(x)pΛ,1(y)+Ψ(x , y)

+
J
∑

j=0

2 j−1
∑

k=0

a2 j+k+1,1pΓ ,2 j+k+1(x)pΛ,1(y)

+
J ′
∑

j′=0

2 j′−1
∑

k′=0

a1,2 j′+k′+1pΓ ,1(x)pΛ,2 j′+k′+1(y)

+
J
∑

j=0

2 j−1
∑

k=0

J ′
∑

j′=0

2 j′−1
∑

k′=0

a2 j+k+1,2 j′+k′+1

· pΓ ,2 j+k+1(x)pΛ,2 j′+k′+1(y), (41)
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where i = 2 j + k + 1 and i′ = 2 j′ + k′ + 1. By
Definition 2, the error of approximation EJJ ′(x , y) =
|u(x , y)− uJJ ′(x , y)| with respect to (40) and (37)
can be written as

EJJ ′(x , y) =
�

�T1+ T2+ TT3

�

� , (42)

where

T1 =
∞
∑

j=J+1

2 j−1
∑

k=0

a2 j+k+1,1pΓ ,2 j+k+1(x)pΛ,1(y)

T2 =
∞
∑

j′=J ′+1

2 j′−1
∑

k′=0

a1,2 j′+k′+1pΓ ,1(x)pΛ,2 j′+k′+1(y)

T3 =
∞
∑

j=J+1

2 j−1
∑

k=0

∞
∑

j′=J ′+1

2 j′−1
∑

k′=0

a2 j+k+1,2 j′+k′+1

· pΓ ,2 j+k+1(x)pΛ,2 j′+k′+1(y),

where i = 2 j + k + 1 and i′ = 2 j′ + k′ + 1. From
Definition 3, the L2-norm of the error ‖EJJ ′(x , y)‖2
can be written as

‖EJJ ′(x , y)‖2
2 = D1+D2+D3+D4+D5+D6, (43)

where

D1 =
∑

j,k

∑

r,s

a2 j+k+1,1a2r+s+1,1I
(2)
Γ ; j,k;r,sI

(1)
Λ , (44)

D2 =
∑

j′,k′

∑

r ′,s′
a1,2 j′+k′+1a1,2r′+s′+1I

(1)
Γ I

(2)
Λ; j′,k′;r ′,s′ ,

(45)

D3 =
∑

j,k

∑

r,s

∑

j′,k′

∑

r ′,s′
a2 j+k+1,2 j′+k′+1

· a2r+s+1,2r′+s′+1I
(2)
Γ ; j,k;r,sI

(2)
Λ; j′,k′;r ′,s′ , (46)

D4 = 2
∑

j,k

∑

r ′,s′
a2 j+k+1,1

· a1,2r′+s′+1I
(3)
Γ ; j,kI

(3)
Λ;r ′,s′ , (47)

D5 = 2
∑

j,k

∑

r,s

∑

r ′,s′
a2 j+k+1,1a2r+s+1,2r′+s′+1

· I (2)
Γ ; j,k;r,sI

(3)
Λ;r ′,s′ , (48)

D6 = 2
∑

r,s

∑

j′,k′

∑

r ′,s′
a1,2 j′+k′+1a2r+s+1,2r′+s′+1

· I (3)Γ ;r,sI
(2)
Λ; j′,k′;r ′,s′ , (49)

where

I (1)Γ =

∫ 1

0

[pΓ ,1(x)]
2 dx , (50)

I (2)
Γ ; j,k;r,s =

∫ 1

0

[pΓ ,2 j+k+1(x)pΓ ,2r+s+1(x)]dx , (51)

I (3)
Γ ; j,k =

∫ 1

0

[pΓ ,2 j+k+1(x)pΓ ,1(x)]dx , (52)

where j = J +1, . . . ,∞; k = 0, 1, . . . , 2 j−1; r = J +
1, . . . ,∞; s= 0, 1, . . . , 2r−1; j′ = J ′+1, . . . ,∞; k′ =
0, 1, . . . , 2 j′−1; r ′ = J ′+1, . . . ,∞; s′ = 0, 1, . . . , 2r ′−
1; j, j′, r, and r ′ are dilation parameters; and k, k′,
s, and s′ are translation parameters.

The next step is to find the upper bound of aii′

by considering

K(x , y) =
2M1
∑

i=1

2M2
∑

i′=1

aii′hi(x)hi′(y). (53)

Since the problem of interest is a boundary value
problem on domain [0,1]2, both pΓ ,i(x) and pΛ,i(y)
are defined on [0, 1]. Then, by Definition 1, we have

ξ2(i)−ξ1(i) = ξ3(i)−ξ2(i) =
1

2 j+1
. (54)

Since the domain is [0, 1]2, (7) becomes

∫ 1

0

hi(x)hi′(x)dx =







1, when i = i′ = 1,

2− j , when i = i′ > 1,

0, when i 6= i′.
(55)

Then we need to find the upper bound of a11. By
applying the orthogonal property (55) in (53) and
setting i, i′ = 1, we see that

a11

∫ 1

0

∫ 1

0

K(x , y)h1(x)h1(y)dx dy

=

∫ 1

0

∫ 1

0

K(x , y)dx dy. (56)

Applying the mean value theorem for integrals with
respect to x and then y to (56), we find

a11 =

∫ 1

0

K(δ, y)dy = K(δ, δ̃)¶
�

�K(δ, δ̃)
�

�¶ω,

(57)
where δ, δ̃ ∈ [0, 1]. We then find the upper bound
of ai,1 when i > 1. By letting ε̃3 ∈ (0, 1), ε4 ∈
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(ξ1(i),ξ2(i)), ε5 ∈ (ξ2(i),ξ3(i)), ε6 ∈ (ε4,ε5) and
i = 2 j + k+ 1, where ξ1(i), ξ2(i), ξ3(i) are defined
by Definition 1, it yields

�

�ε4− ε5

�

�<
�

�ε4−ξ2(i)
�

�+ |ξ2(i)− ε5|
< |ξ1(i)−ξ2(i)|+ |ξ2(i)−ξ3(i)|

=
1
2 j

, (58)

where i = 2 j + k + 1. Applying the orthogonal
property (55) for i > 1 and i′ = 1 to (53) yields

ai,1 = 2 j

∫ 1

0

∫ 1

0

K(x , y)hi(x)dy dx . (59)

Applying the mean value theorem for integrals with
respect to y and then x to (59), we obtain

ai,1 = 2 j

∫ 1

0

K(x , ε̃3)hi(x)dx

= 2 j

¨

∫ ξ2(i)

ξ1(i)
K(x , ε̃3)dx −

∫ ξ3(i)

ξ2(i)
K(x , ε̃3)dx

«

= 2 j{[ξ2(i)−ξ1(i)]K(ε4, ε̃3)
−[ξ3(i)−ξ2(i)]K(ε5, ε̃3)} . (60)

Substituting (54) into (60) yields

ai,1 =
1
2 [K(ε4, ε̃3)− K(ε5, ε̃3)]. (61)

Applying the mean value theorem to K(ε4, ε̃3) and
K(ε5, ε̃3) in (61) yields

ai,1 =
1
2 (ε4− ε5)

∂

∂ x
K(ε6, ε̃3). (62)

(58) and (62) imply that

ai,1 ¶
1
2

�

�ε4− ε5

�

�

�

�

�

�

∂

∂ x
K(ε6, ε̃3)

�

�

�

�

<
ω

2 j+1
. (63)

By letting ε3 ∈ (0,1), ε̃4 ∈ (ξ1(i′),ξ2(i′)), ε̃5 ∈
(ξ2(i′),ξ3(i′)), ε̃6 ∈ (ε̃4, ε̃5), ε1 ∈ (ξ1(i),ξ2(i)), ε2 ∈
(ξ2(i),ξ3(i)), ε ∈ (ε1,ε2), ε̃1 ∈ (ξ1(i′),ξ2(i′)), ε̃2 ∈
(ξ2(i′),ξ3(i′)) and ε̃ ∈ (ε̃1, ε̃2), where ξ1(i), ξ2(i),
ξ3(i), ξ1(i′), ξ2(i′), ξ3(i′) are defined by Defini-
tion 1, i = 2 j + k+1 and i′ = 2 j′ + k′+1, it yields

�

�ε̃4− ε̃5

�

� , |ε1− ε2| , |ε̃1− ε̃2|<
1

2 j′
. (64)

By using the same procedure, we can obtain the
upper bound of a1,i′ when i′ > 1 and that of aii′

when i, i′ > 1 as

a1,i′ =
1
2 (ε̃4− ε̃5)

∂

∂ y
K(ε3, ε̃6)<

ω

2 j′+1
, (65)

and

ai,i′ =
1
4 (ε1− ε2)(ε̃1− ε̃2)

∂ 2

∂ x∂ y
K(ε, ε̃)

<
ω

(2 j+1)(2 j′+1)
. (66)

The next step is to determine the upper bound of
the integrals in (50)–(52). By applying Theorem 1,
we obtain

I (1)Γ ¶
1
(Γ !)2

, (67)

I (2)
Γ ; j,k;r,s <

[C(Γ )]2

(2 j+1)2(2r+1)2
, (68)

I (3)
Γ ; j,k <

C(Γ )
Γ !(2 j+1)2

, (69)

where C(Γ ) = 8/(3(b(Γ+1)/2c)2) and Γ ¾ 2. Before
determining the upper bound ofD1, D2, D3, andD4,
we require the following:

∞
∑

j=J+1

2 j−1
∑

k=0

�

1
2 j+1

�3

= 1
6

�

1
2J+1

�2

. (70)

The next step is to find an upper bound of D1,
D2, D3, andD4. By applying the upper bound of aii′ ,
(67)–(69) and (70) for (44)–(49), we obtain

D1 <
∑

j,k

∑

r,s

[C(Γ )]2ω2

(Λ!)2(2 j+1)3(2r+1)3

¶
[C(Γ )]2ω2

36(Λ!)2

�

1

2J̃+1

�4

, (71)

D2 <
∑

j′,k′

∑

r ′,s′

[C(Λ)]2ω2

(Γ !)2(2 j′+1)3(2r ′+1)3

¶
[C(Λ)]2ω2

36(Γ !)2

�

1

2J̃+1

�4

, (72)

D3 <
∑

j,k

∑

r,s

∑

j′,k′

∑

r ′,s′

[C(Γ )]2[C(Λ)]2ω2

(2 j+1)3(2r+1)3(2 j′+1)3(2r ′+1)3

¶
[C(Γ )]2[C(Λ)]2ω2

1296

�

1

2J̃+1

�8

, (73)

D4 < 2
∑

j,k

∑

r ′,s′

C(Γ )C(Λ)ω2

Γ !Λ!(2 j+1)3(2r ′+1)3

¶
C(Γ )C(Λ)ω2

18Γ !Λ!

�

1

2J̃+1

�4

, (74)
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D5 < 2
∑

j,k

∑

r,s

∑

r ′,s′

[C(Γ )]2C(Λ)ω2

Λ!(2 j+1)3(2r+1)3(2r ′+1)3

¶
[C(Γ )]2C(Λ)ω2

108Λ!

�

1

2J̃+1

�6

, (75)

D6 < 2
∑

r,s

∑

j′,k′

∑

r ′,s′

C(Γ )[C(Λ)]2ω2

Γ !(2r+1)3(2 j′+1)3(2r ′+1)3

¶
C(Γ )[C(Λ)]2ω2

108Γ !

�

1

2J̃+1

�6

, (76)

where j = J +1, . . . ,∞; k = 0,1, . . . , 2 j−1; r = J +
1, . . . ,∞; s= 0, 1, . . . , 2r−1; j′ = J ′+1, . . . ,∞; k′ =
0,1, . . . , 2 j′−1; r ′ = J ′+1, . . . ,∞; s′ = 0,1, . . . , 2r ′−
1; and J̃ = min{J , J ′}. By substituting (71)–(76)
into (43), we have

[‖EJJ ′(x , y)‖2]
2

<
[C(Γ )]2ω2

36(Λ!)2

�

1

2J̃+1

�4

+
[C(Λ)]2ω2

36(Γ !)2

�

1

2J̃+1

�4

+
[C(Γ )]2[C(Λ)]2ω2

1296

�

1

2J̃+1

�8

+
C(Γ )C(Λ)ω2

18Γ !Λ!

�

1

2J̃+1

�4

+
[C(Γ )]2C(Λ)ω2

108Λ!

�

1

2J̃+1

�6

+
C(Γ )[C(Λ)]2ω2

108Γ !

�

1

2J̃+1

�6

.

Hence,

‖EJJ ′(x , y)‖2 < G(Γ ,Λ)
�

1

2J̃+1

�2

,

or

‖EJJ ′(x , y)‖2 = O
�

�

1

2J̃+1

�2
�

; Γ ,Λ¾ 2,

where

G(Γ ,Λ) =

�

[C(Λ)]2

36(Γ !)2
+
[C(Γ )]2

36(Λ!)2

+
[C(Γ )]2[C(Λ)]2

1296
+

C(Γ )C(Λ)
18Γ !Λ!

+
[C(Γ )]2C(Λ)

108Λ!
+

C(Γ )[C(Λ)]2

108Γ !

�1/2

ω,

and C(Γ ) = 8/(3(b(Γ +1)/2c!)2) for Γ ¾ 2. 2

NUMERICAL VALIDATION

In this section, the validation of the convergence
analysis result is provided by the numerical results
for Poisson and Helmholtz equations which are
shown in examples 1 and 2, respectively. For con-
venience, we set the maximum level of resolution
J = J ′, so J̃ = J = J ′, and M1 = M2 = 2J̃ . When
estimating EJJ ′(x , y), we consider the matrix equa-
tion (17) at the collocation points x r and ys. Then,
we introduce EJ̃ (x , y) as the error of approximation
EJJ ′(x , y) when J = J ′ = J̃ . By Theorem 2, we have
the error of approximation at the maximal level of
resolution J̃ as

‖EJ̃ (x , y)‖2 ∼ (1/2J̃+1)2. (77)

Then we have

log2(‖EJ̃ (x , y)‖2/‖EJ̃+1(x , y)‖2)∼ 2.

Since the order of convergence from Theorem 2 is
2, the order of convergence is

log2(‖EJ̃ (x , y)‖2/‖EJ̃+1(x , y)‖2).

The error of approximation from the numerical re-
sult can be obtained by

(




EJ̃ (x , y)‖2

�

num =

√

√

√

∑

Ωcoll
(EJ̃ (x r , ys))2

n(Ωcoll)
,

where Ωcoll is the set of collocation points (x r , ys)
and n(Ωcoll) is the number of collocation points.

Poisson equation

For convenience, we introduce the Poisson equation
with the same boundary conditions as in Ref. 7 (see
equation (26) in Ref. 7) by considering the Poisson
equation as

∂ 2

∂ x2
u(x , y)+

∂ 2

∂ y2
u(x , y) = f (x , y), (78)

where (x , y)∈ [0, 1]2, with the boundary conditions
u(x , 0) = u(0, y) = u(x , 1) and u(1, y) = g(y). Then
let

∂ 4

∂ x2∂ y2
u(x , y) =

2M1
∑

i=1

2M2
∑

i′=1

aii′hi(x)hi′(y).

According to Lepik7, by integrating twice each with
respect to x and y and incorporating the boundary
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conditions, we obtain the numerical solution via

u(x , y) =
2M1
∑

i=1

2M2
∑

i′=1

aii′[p2,i(x)p2,i′(y)

−yp2,i(x)p2,i′(1)− x p2,i(1)p2,i′(y)

+x yp2,i(1)p2,i′(1)
�

+ x g(y). (79)

Then,

∂ 2

∂ x2
u(x , y) =

∞
∑

i=1

∞
∑

i′=1

aii′[hi(x)p2,i′(y) (80)

−hi(x)yp2,i′(1)
�

, (81)

∂ 2

∂ y2
u(x , y) =

∞
∑

i=1

∞
∑

i′=1

aii′[p2,i(x)hi′(y) (82)

−x p2,i(1)hi′(y)
�

+ x g ′′(y). (83)

By substituting (81) and (83) into (78), we have the
matrix equation in the form of (17) as

2M1
∑

i=1

2M2
∑

i′=1

aii′Rii′ l l ′ = fl l ′ ,

where

Rii′ l l ′ = hi(x l)p2,i′(yl ′)+ p2,i(x l)hi′(yl ′)
−hi(x l)yl ′p2,i′(1)− x l p2,i(1)hi′(yl ′)

and fl l ′ = f (x l , yl ′) − x l g
′′(yl ′). The numerical

solution can be obtained by calculating aii′ and
substituting back into (79).

Example 1 The Poisson equation

∇2u(x , y) = 2[y2(1−6x2)(1− y2)

+x2(1−6y2)(1− x2)
�

, (84)

with the boundary conditions that u(x , 0) =
u(0, y) = u(x , 1) = u(1, y) = 0, has the exact solu-
tion uex(x , y) in the form

uex(x , y) = x2 y2(1− x2)(1− y2).

Numerical errors from solving the Poisson equa-
tion using the Haar wavelet method are shown in
Table 1.

Helmholtz equation

To exploit the calculation of the Poisson equation for
obtaining the general solution in the form (15), we
introduce the Helmholtz equation

∇2u(x , y)+ k2u(x , y) = f (x , y), (85)

Table 1 Numerical results for Example 1.

J̃ numerical error order

1 6.19×10−4

2 1.67×10−4 1.8940
3 4.24×10−5 1.9731
4 1.07×10−5 1.9932
5 2.67×10−6 1.9983

where (x , y)∈ [0, 1]2, with the boundary conditions
u(x , 0) = u(0, y) = u(x , 1) and u(1, y) = g(y). Then
let

∂ 4

∂ x2∂ y2
u(x , y) =

2M1
∑

i=1

2M2
∑

i′=1

aii′hi(x)hi′(y).

Since (85) has the same boundary condition as the
Poisson equation in (78), by the same procedure, we
have the general solution of the Helmholtz equation
u(x , y), and derivatives ux x(x , y) and uy y(x , y)
the same as (79), (81) and (83), respectively. By
substituting (79), (81) and (83) into (85), we have
the matrix equation in the form of (17) as

2M1
∑

i=1

2M2
∑

i′=1

aii′Rii′ l l ′ = fl l ′ ,

where

Rii′ l l ′ = hi(x l)p2,i′(yl ′)+ p2,i(x l)hi′(yl ′)
−hi(x l)yl ′p2,i′(1)− x l p2,i(1)hi′(yl ′)

+ k2[p2,i(x l)p2,i′(yl ′)− yl ′p2,i(x l)p2,i′(1)
− x l p2,i(1)p2,i′(yl ′)+ x l yl ′p2,i(1)p2,i′(1)],

and fl l ′ = f (x l , yl ′)− x l g
(2)(yl ′)− x l k

2 g(yl ′). The
numerical solution can be obtained by the same
procedure as in the case of the Poisson equation.

Example 2 The Helmholtz equation

∇2u(x , y)+ k2u(x , y)

= (k2−2π2) sin(πx) sin(πy), (86)

with the boundary conditions u(x , 0) = u(0, y) =
u(x , 1) = u(1, y) = 0 has the exact solution

uex(x , y) = sin(πx) sin(πy).

Numerical errors from solving the Helmholtz equa-
tion using the Haar wavelet method (when k = 0.5)
are shown in Table 2.

www.scienceasia.org

http://www.scienceasia.org/2016.html
www.scienceasia.org


ScienceAsia 42 (2016) 355

Table 2 Numerical results for Example 2 (k = 0.5).

J̃ numerical error order

1 1.04×10−2

2 2.63×10−3 1.9840
3 6.59×10−4 1.9969
4 1.65×10−4 1.9993
5 4.12×10−5 1.9998

CONCLUSIONS

Theorem 2 shows that the method7 based on the
two-dimensional Haar wavelet converges as the
maximum level of resolution increases. The conver-
gence analysis shows that the order of approxima-
tion is 2 for boundary value problems.

Acknowledgements: This study is supported by the Fac-
ulty of Science, Mahidol University for the Sri-Trangthong
scholarship. We thank Michael A. Allen for his invaluable
assistance in language advice.

REFERENCES

1. Chen CF, Hsiao CH (1997) Haar wavelet method for
solving lumped and distributed-parameter systems.
IEE Proc Contr Theor Appl 144, 87–94.

2. Hsiao CH (1997) State analysis of linear time delayed
systems via Haar wavelets. Math Comput Simul 44,
457–70.

3. Lepik Ü (2005) Numerical solution of differential
equations using Haar wavelets. Math Comput Simul
68, 127–43.

4. Lepik Ü (2007) Numerical solution of evolution
equations by the Haar wavelet method. Appl Math
Comput 185, 695–704.

5. Lepik Ü (2008) Solving integral and differential
equations by the aid of non-uniform Haar wavelets.
Appl Math Comput 198, 326–32.

6. Lepik Ü (2008) Haar wavelet method for solving
higher order differential equations. Int J Math Com-
put 1, 84–94.

7. Lepik Ü (2011) Solving PDEs with the aid of two-
dimensional Haar wavelets. Comput Math Appl 61,
1873–9.

8. Siraj-ul-Islam, Šarler B, Aziz I, Fazal-i-Haq (2011)
Haar wavelet collocation method for the numerical
solution of boundary layer fluid flow problems. Int J
Therm Sci 50, 686–97.

9. Siraj-ul-Islam Aziz I, Ahmad M (2015) Numerical
solution of two-dimensional elliptic PDEs with non-
local boundary conditions. Comput Math Appl 69,
180–205.

10. Majak J, Shvartsman BS, Kirs M, Pohlak M, Herranen
H (2015) Convergence theorem for the Haar wavelet
based discretization method. Compos Struct 126,
227–32.

11. Majak J, Shvartsman B, Karjust K, Mikola M, Haava-
jõe A, Pohlak M (2015) On the accuracy of the
Haar wavelet discretization method. Composites B
80, 321–7.

12. Podlubny I (1998) Fractional Differential Equations:
An Introduction to Fractional Derivatives, Fractional
Differential Equations, to Methods of their Solution
and some of their Applications, Mathematics in Sci-
ence and Engineering vol 198, Academic Press, San
Diego, CA.

www.scienceasia.org

http://www.scienceasia.org/2016.html
http://dx.doi.org/10.1049/ip-cta:19970702
http://dx.doi.org/10.1049/ip-cta:19970702
http://dx.doi.org/10.1049/ip-cta:19970702
http://dx.doi.org/10.1016/S0378-4754(97)00075-X
http://dx.doi.org/10.1016/S0378-4754(97)00075-X
http://dx.doi.org/10.1016/S0378-4754(97)00075-X
http://dx.doi.org/10.1016/j.matcom.2004.10.005
http://dx.doi.org/10.1016/j.matcom.2004.10.005
http://dx.doi.org/10.1016/j.matcom.2004.10.005
http://dx.doi.org/10.1016/j.amc.2006.07.07
http://dx.doi.org/10.1016/j.amc.2006.07.07
http://dx.doi.org/10.1016/j.amc.2006.07.07
http://dx.doi.org/10.1016/j.amc.2007.08.036
http://dx.doi.org/10.1016/j.amc.2007.08.036
http://dx.doi.org/10.1016/j.amc.2007.08.036
http://dx.doi.org/10.1016/j.camwa.2011.02.016
http://dx.doi.org/10.1016/j.camwa.2011.02.016
http://dx.doi.org/10.1016/j.camwa.2011.02.016
http://dx.doi.org/10.1016/j.ijthermalsci.2010.11.017
http://dx.doi.org/10.1016/j.ijthermalsci.2010.11.017
http://dx.doi.org/10.1016/j.ijthermalsci.2010.11.017
http://dx.doi.org/10.1016/j.ijthermalsci.2010.11.017
http://dx.doi.org/10.1016/j.camwa.2014.12.003
http://dx.doi.org/10.1016/j.camwa.2014.12.003
http://dx.doi.org/10.1016/j.camwa.2014.12.003
http://dx.doi.org/10.1016/j.camwa.2014.12.003
http://dx.doi.org/10.1016/j.compstruct.2015.02.050
http://dx.doi.org/10.1016/j.compstruct.2015.02.050
http://dx.doi.org/10.1016/j.compstruct.2015.02.050
http://dx.doi.org/10.1016/j.compstruct.2015.02.050
http://dx.doi.org/10.1016/j.compositesb.2015.06.008
http://dx.doi.org/10.1016/j.compositesb.2015.06.008
http://dx.doi.org/10.1016/j.compositesb.2015.06.008
http://dx.doi.org/10.1016/j.compositesb.2015.06.008
www.scienceasia.org

